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Abstract: The growth and development of generative organs of the tomato plant are essential for
yield estimation and higher productivity. Since the time-consuming manual counting methods
are inaccurate and costly in a challenging environment, including leaf and branch obstruction and
duplicate tomato counts, a fast and automated method is required. This research introduces a
computer vision and AI-based drone system to detect and count tomato flowers and fruits, which is a
crucial step for developing automated harvesting, which improves time efficiency for farmers and
decreases the required workforce. The proposed method utilizes the drone footage of greenhouse
tomatoes data set containing three classes (red tomato, green tomato, and flower) to train and test
the counting model through YOLO V5 and Deep Sort cutting-edge deep learning algorithms. The
best model for all classes is obtained at epoch 96 with an accuracy of 0.618 at mAP 0.5. Precision and
recall values are determined as 1 and 0.85 at 0.923 and 0 confidence levels, respectively. The F1 scores
of red tomato, green tomato, and flower classes are determined as 0.74, 0.56, and 0.61, respectively.
The average F1 score for all classes is also obtained as 0.63. Through obtained detection and counting
model, the tomato fruits and flowers are counted systematically from the greenhouse environment.
The manual and AI-Drone counting results show that red tomato, green tomato, and flowers have
85%, 99%, and 50% accuracy, respectively.

Keywords: fruit and flower counting; deep learning; YOLO V5; deep-sort; drone communication

1. Introduction

Tomato (Solanum lycopersicum L.), grown in open fields or greenhouses in various geo-
graphical regions, is one of the most consumed vegetables [1]. Increasing demand for toma-
toes has pushed producers towards higher productivity, which significantly contributes
to the agricultural economy. The yield productivity mostly depends on morphological
developments in plants and the vegetative and generative growing stages [2]. New meth-
ods are needed to identify anomalies and timely intervention to prevent pest infestation
and maximize crop yields since manual observation methods are time-consuming and
costly in a challenging environment. The difficulties in finding the required workforce for
manual measurements of morphological information may suffer from several shortcomings,
including low Precision, high labor-intensive tasks, and time-efficiency [3]. Hence, more
sensitive technologies are needed to avoid phenotypical measurement errors.

Artificial intelligence (AI) based autonomous greenhouses make it possible to achieve
higher harvest in a short time at a lower cost. Computer vision and related artificial in-
telligence technology identify and distinguish various parts of the plant from each other
and perform autonomous evaluations and many functional analyses such as plant growth,
flower formation, and increased flower numbers in terms of phenotypic data acquisition
and analysis. [4,5]. This innovative technology also enables detecting and eliminating the
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adverse effects or stress development in plants at an earlier stage to achieve higher yield pro-
duction and optimizes the number of fertilizers and even agricultural chemicals. Computer
vision techniques play an essential role in identifying and classifying plants and evaluating
their growth and development [6–8]. In addition, AI-aided fast and non-destructive yield
detection and counting processes for flower ripped and unripped tomato fruits are crucial
for yield prediction. Numerous approaches have been conducted in the literature to achieve
higher accuracy in detecting and counting flowers and fruits using images. However, those
approaches usually utilize standard computer vision algorithms based on color classifica-
tion and thresholds to identify vegetables’ color, size, and shape [9,10]. Standard computer
vision algorithms may not cope with the level of environmental variability commonly
found in greenhouses due to objects in different reflectance in non-visible regions [11].
The counting process can also be performed by Deep Convolutional Neural Networks
(CNN), which are increasingly used for image segmentation and classification due to their
ability to learn robust discriminants and deal with significant variations [12]. They require
pre-labeled datasets for preprocessing, such as model training and dimension variation,
and these are used for image-level classification, disease detection, or floral identification
in some studies [13–16], as seen in most of the studies.

The advancement in computer vision and AI technology has tremendously minimized
object detection processing time. Prior algorithms were used to utilize the classifier and
localizers individually to perform detection. In other words, the detection model was
utilized at multiple spots and scales on the image, and those areas are considered detection
points based on the highest probability score. Even though these algorithms seem efficient,
they are not entirely applicable in real time. In contrast, a new technique called the You Only
Look Once (YOLO) algorithm [17] changed this approach significantly due to applying
a single neural network to the whole image. This single neuron divides the full image
into different sections and predicts each section’s bounding boxes and related probabilities.
Since whole processes are made in a single neural network, it is called YOLO. This approach
has evolved over the years, and many efficient versions have emerged. In this article, one
of the state-of-the-art YOLO algorithms, YOLO V5, is used to detect and count tomato
fruits and flowers.

Drone technology has been increasingly used for many studies and applications in
the last decade. Drones are indispensable when recording high-resolution images without
any restrictions and capturing the desired field of view, even in challenging areas like
greenhouses. The sensor fusion technology, including an Inertial Measurement Unit (IMU),
GPS, a mechanical gimbal, a distance sensor, and a high-resolution camera, helps the drone
locate its position and orientation, which is called geo-referencing. Thus, they can smoothly
elevate, balance, and maneuver in the air. The drones are also equipped with high-tech
wireless communication technologies that help us to capture videos in real-time using
Real-Time Messaging Protocol (RTMP) [18]. Through RTMP, drones can connect to the local
network and be used as a webcam for a trained deep learning model input source. The
combination of drones and artificial intelligence has many implementations in agriculture,
such as distinguishing the desired plant and its different parts [19–22].

In this research, we aimed to detect and count different tomato fruits using deep
learning and a deep sort algorithm. Fruit and flower counting has many advantages
regarding quantity estimation of yields and taking required measures to achieve higher
productivity. For instance, if there is an inconsistency between flower and fruit numbers,
indicating a pollination problem, the producer can take the required action accordingly.
Moreover, the red tomato counting will help the producer accurately estimate the costs,
such as packaging and transportation, before harvesting. In short, the proposed detection
and counting system has many improvements in terms of employing an advanced YOLO
V5, capturing videos by drone, and usage of a distance filtering algorithm. We have
also minimized the cost of high labor-intensive tasks and processing time and avoided
low precision errors. Thus, this detection and counting system can be utilized for better
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crop growth management in greenhouses. The rest of the paper is organized as follows:
Materials and methods, results and analysis, discussion, and conclusion.

2. Materials and Methods

Rapid developments in deep learning and high-performance computing have greatly
expanded the scope of systems, including video-based object identification and its deriva-
tives [23–26]. The state of art video-based object detection and tracking algorithms are
utilized in this project, and it aims to accurately track and count different tomato classes.
Combinations of multiple object detection models fused with different tracking systems
will be applied to achieve the most effective tomato counting system. The difficulties
associated with low light settings have been eliminated with different image variations in
the resulting model that calculates tomato information and numbers efficiently through
computationally rich training and feedback loops. This endeavor intends to achieve high
accuracy in flower and fruit counting for greenhouses, gardens, and fields through deep
learning algorithms, including YOLOv5 and Deep-SORT.

2.1. Tomato Fruit Growing Conditions

Tomato Seedlings were purchased from the open market and planted 25 cm in rows
and 125 cm between rows. The seedlings were irrigated every two days based on soil
moisture and the different growth and development stages. In addition, fertilization
and hoeing were applied when necessary. The training data set are collected when the
greenhouse has three different forms of tomato fruits as red, green, and flower.

2.2. You Only Look Once Version 5 (YOLO V5)

YOLO V5 is one of the states of art object detection algorithms that belongs to the
YOLO family. The higher processing speed and accuracy make this machine learning
algorithm applicable in real-time applications [27]. The YOLO V5 architecture comprises the
backbone (CSPDarknet), the neck (PANet), and the head (YOLO Layer), as seen in Figure 1.
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The backbone deals with feature extrication for different levels at Cross Stage Partial
(CSP) network. Next, the bottleneck formulates and sends the image features to both
Neck (PA-Net) and Special Pyramid Pooling (SPP). The Neck contains a series of concate-
nated BottleNeckCSP and convolution networks. In the last step, the head aggregates
the image features using series convolutional networks to process the prediction box and
corresponding classes. The localization of prediction boxes is based on an object tracking
algorithm that iteratively corrects the position of the bounding boxes [28]. These processes
significantly increase YOLO V5 algorithm efficiency and make it applicable in real-time.
YOLO V5 contains 30 different training hyperparameters to train, validate and test the
custom data sets. The parameters affecting the accuracy of the model are learning rate,
batch size, image size, number of epochs, and Intersection over the Union (IOU) threshold.
The learning rate can be considered as a step size to move to the minimum cost for every
iteration. The learning rate should be picked carefully to avoid overfitting. The batch size
determines the number of images that will be fed to the network as a batch. Therefore,
setting a higher batch size will then lead to higher training speeds. It should also be noted
that larger batch sizes can end in poor generalization. Image size represents the size of the
input network (in our case: 416 pixels), so every image before being fed to the network
is resized to 416 × 416. The epoch represents how many times you want to train the full
dataset. Lastly, the IOU threshold helps us to determine how close is the estimation is to the
ground truth based on lower and upper limits (in our case: 0.1–0.7). The other important
factor is the feature visualization through Convolutional Neural Network (CNN). By their
nature, CNNs are used to extract features that will play major roles in image recognition.
Visualizing the features reveals the shortcomings of the model, which need to be improved.

2.3. Object Tracking

The IOU tracker assumes that each object is tracked per frame with little or no gap
between detections. Similarly, the IOU assumes a larger overlap value for intersection over
joints when detecting an object in successive frames [29]. In Equation (1), the calculation of
the IOU metric, which forms the basis of this approach, is given.

IOU(a, b) =
Area(a) ∩ Area(b)
Area(a) ∪ Area(b)

(1)

If the IOU tracker does not meet a certain threshold, it tracks objects by assigning
the highest IOU value in Equation (1). Since we aim to track objects in this study, IOU
performance can be improved by canceling tracks that do not meet a certain threshold time
length and where no detected vehicle exceeds the required IOU threshold. It is important
to note that the IOU tracker is highly dependent on how accurately object detection models
recognize objects, so the particular focus should be placed on effectively training object
detection models. The IOU’s ability to handle frame rates of more than 50,000 fps combined
with its low computational cost makes it an incredibly powerful object tracker. The Kalman
filter’s predictive ability allows users to skip frames while continuing to follow the object.
Skipping frames allows the detector to speed up the process and fewer frames to reduce
computational costs. IOU tracking algorithm is represented in Algorithm 1.

2.4. Deep-Sort

Deep-Sort, a deep learning extension of the simple online real-time tracker algorithm,
integrates view information with tracking components, making it possible to track multiple
objects [30]. Deep sort uses a combination of Kalman Filter and Hungarian algorithm for
tracking. While Kalman filtering is performed in the image area, the Hungarian technique
facilitates frame-by-frame data connections using an association measure that calculates
bounding box overlap. Once motion and appearance information is obtained, a trained
convolutional neural network (CNN) is applied.
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Algorithm 1: IOU Tracking Algorithm

1: function Tracker (detections, σl , σh, σiou, mintsize)
⇐detection (dict(class, score, box))

2: let σl ← low detection threshold
3: let σh ← high detection threshold
4: let σiou ← IOU threshold
5: let mintsize←minimum track size in frames
⇐active tracks

6: let Ta ←[]
7: let T f ←[]
⇐finished tracks

8: for frame, dets in detections do
9: dets← filter for dets with score ≥ σl
⇐updated tracks

10: let Tu ←[]
11: for ti in Ta do
12: if not empty(dets) then
13: biou, bbox ← find max iou box(tail box(ti), dets)
14: if biou ≥ σiou then
15: append new detection(ti, bbox )
16: set max score (ti, box score (bbox))
17: set class(ti, box score (bbox))
18: Tu ← append (Tu, ti)
⇐remove box from dets

19: remove(dets, bbox)
20: if empty(Tu) or ti is not last(Tu) then
21: if get max score ( ti) ≥ σh or size(ti) ≥mintsize then
22: T f ← append (T f , ti)
23: Tn ← new tracks from dets
24: Ta ← Tu + Tn
25: return T f

By integrating CNN, the tracker gains greater robustness against object skips and
occlusions while retaining the tracker’s ability to execute online quickly and in real-time
scenarios. The CNN architecture of the system is shown in Figure 2. A large residual
network with two convolutional layers followed by six Wide Residual Blocks (WRB) is
applied. In dense layer 10, a global feature map of dimensionality 128 is computed. Finally,
the aggregate and `2 normalization properties on the unit hypersphere access compatibility
with the cosine arrival metric are obtained. The obtained features are used to calculate the
minimum cosine separation between tracks and detections. In addition, the Mahalanobis
distance is also utilized to detect dissimilarities through cascade matching. Overall, Deep
SORT is a highly versatile tracker and can match its performance characteristics with other
cutting-edge tracking algorithms.

2.5. Implementation of Proposed Method

The real-time counting model for tomato generative organs is critical in the agricultural
production sector since it is directly related to harvest estimation. Manual counting is a
highly erroneous and time-consuming procedure. In this research, we have integrated deep
learning and a Deep-Sort aided tomato generative organ counting algorithm onto a drone
to increase efficiency and minimize production costs. The YOLO V5 deep learning model
is trained through an augmented and labeled tomato data set and PyTorch library. The
obtained model detects the tomatoes and related classes, which are sent to the deep sort
algorithm supported by the Kalman filter. Next, the counting will be performed for every
trajectory of a detected tomato, as indicated in Figure 3. In addition, the drone field of view
possesses an entry zone that accepts the tomatoes from north to south which differentiates
and counts each tomato based on detected classes as red, green, and flower. The drone also
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uses size filtering to avoid faulty counting from other aisles. Algorithm 2 presents how
inspection and counting work. The object detectors and tracking algorithms used in this
study are explained in more detail in the following sections.
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Algorithm 2: Inspection and Counting Algorithm using distance filtering

1: Define Deep Sort Configurations as cfg
2: Initialize Deep-Sort(Deep-Sort model, cfg)
3: Initialize Device(GPU)
4: YOLO V5 Model = Detect Multi Backend (V5 model, device = GPU, dnn = opt.dnn)
5: Select Device Source(Drone Camera)
6: Img = imread(Drone Camera)
7: Pred = model(img, augment = opt.augment, visualize = visualize)
8: Process detection
9: for i, det in enumerate(Pred): # detections per image
10: find(detections)
11: confs, clss, xywhs = detections
12: Pass detection to Deep-Sort
13: outputs = Deep-Sort Update (xywhs.cpu(), confs.cpu(), clss.cpu(), img)
14: Draw boxes for visualization
15: Drone distance = 25 (cm) # Drone distance to tomato isle.
16: Size Filter = Max height, Max width.
17: if len(outputs) > 0:
18: for j, (output, conf) in enumerate(zip(outputs, confs)):
19: c = int(cls) # integer class
20: find yd, xd
21: if yd × xd > Size Filter:
22: if c == 0:#class 0 is flower
23: if c == 1:#class 1 is green tomato
24: if c == 2:#class 2 is red tomato
25: Stream results
26: Save results (image with detections)

2.6. Setting Target Metric2.6 Performans and Evaluation

In building a deep learning model, assessing object detection and tracking accuracy
is essential to determine the best model. The YOLO V5 model performance depends on
various parameters such as Precision, Recall, F1 score, and mAP. The precision is computed
by dividing the true positive prediction by whole predictions, whether true or false, while
the recall values evaluate the model performance in detecting only positive samples. F1
score provides insight for determining the optimized confidence level (0–1), which will
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evenly distribute the weights on the precision and recall for the given model. Another
performance metric, the PR curve (precision and recall), indicates the trade-off between
precision and recall for different thresholds. The mAP, Mean Average Precision, provides
the summary of the model. Precision, recall, F1 score, and mAP can be calculated through
Equations (2)–(5).

Precision =
TruePositive

TruePositive + FalsePositive
(2)

Recall =
TruePositive

TruePositive + FalseNegative
(3)

F1 = 2
Precision.Recall

Precision + Recall
(4)

mAP =
1
n

n

∑
k=1

APk (5)

where: AP is ∑n−1
i=0 [recalls(i)− Recalls(i + 1)].Precision(i)

n and i are the number of classes and thresholds, respectively.
These metrics aim to achieve the desired accuracy rate in tomato detection and count-

ing using the YOLO V5 algorithm. Since accuracy is essential for counting fruits, we will
also calculate the Mean Absolute Percentage Error (MAPE) between Manuel Counting and
AI-Drone counting, as indicated in Equation (6).

MAPE =
100
n

n

∑
i=0

∣∣∣∣GroundTruth−Model
GroundTruth

∣∣∣∣ (6)
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2.7. Equipment Setup

Counting tomatoes through deep learning will be carried out in a greenhouse having
straight corridors in a specific order, as shown in Figure 4. The gaps in the corridors are set
to 80 cm to provide enough space for maintaining the maneuverability of the DJI Spark
Drone. The drone is configured for transmitting the video frames to the HP omen laptop
with a Gforce-1050Ti GPU (Santa Clara, CA, USA) that allows us to run multiple neural
networks in parallel since applications require higher computation work, such as image
classification object detection, segmentation, and speech processing.



Agriculture 2022, 12, 1290 8 of 17

Agriculture 2022, 12, x FOR PEER REVIEW 8 of 17 
 

 

n and i are the number of classes and thresholds, respectively. 
These metrics aim to achieve the desired accuracy rate in tomato detection and count-

ing using the YOLO V5 algorithm. Since accuracy is essential for counting fruits, we will 
also calculate the Mean Absolute Percentage Error (MAPE) between Manuel Counting 
and AI-Drone counting, as indicated in Equation (6). LOSሺMAPEሻ = 100n  ฬGroundTruth − ModelGroundTruth ฬ୬

୧ୀ  (6) 

2.7. Equipment Setup 
Counting tomatoes through deep learning will be carried out in a greenhouse having 

straight corridors in a specific order, as shown in Figure 4. The gaps in the corridors are 
set to 80 cm to provide enough space for maintaining the maneuverability of the DJI Spark 
Drone. The drone is configured for transmitting the video frames to the HP omen laptop 
with a Gforce-1050Ti GPU (Santa Clara, CA, USA) that allows us to run multiple neural 
networks in parallel since applications require higher computation work, such as image 
classification object detection, segmentation, and speech processing. 

 
Figure 4. Equipment Setup. 

2.8. Greenhouse Data Collection 
RGB video frames were acquired through the DJI Spark drone having a 12 MP cam-

era in the tomato greenhouse under daylight. The counting path of the tomato is prede-
fined, as indicated in Figure 4. The scanning and video capturing process is performed by 
directing the camera to the tomatoes in the greenhouse of Şırnak University. The details 
about the video specifications are given in Table 1 and Figure 5. 

Table 1. Video Capture Conditions. 

Date  Weather Condition Device  Resolution FPS 
10 June 2021 Sunny DJI Spark drone 12 MP 30 @ 1080p 
20 June 2021 Sunny DJI Spark drone 12 MP 30 @ 1080p 

Figure 4. Equipment Setup.

2.8. Greenhouse Data Collection

RGB video frames were acquired through the DJI Spark drone having a 12 MP camera
in the tomato greenhouse under daylight. The counting path of the tomato is predefined, as
indicated in Figure 4. The scanning and video capturing process is performed by directing
the camera to the tomatoes in the greenhouse of Şırnak University. The details about the
video specifications are given in Table 1 and Figure 5.

Table 1. Video Capture Conditions.

Date Weather Condition Device Resolution FPS

10 June 2021 Sunny DJI Spark drone 12 MP 30 @ 1080p
20 June 2021 Sunny DJI Spark drone 12 MP 30 @ 1080p
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RGB video frames are converted into image frames using the OpenCV library with a
half-second delay between each image. Since the frame rate of the video used in this study
is 30 FPS, one image frame was taken every 15 frames. In the next step, the non-tomato
fruit images were extracted from the dataset, resulting in 2329 with 1920 × 1080 resolution.
Then, the augmentation method was used to increase the dataset.

2.9. Labeling and Data Augmentation

It is essential to make the object detection process more reliable in terms of data
variability. Therefore, this project applies data augmentation to the tomato fruit data set to
increase the variability. Spatial level and pixel-level techniques are the main methods of
image data augmentation. Spatial-level transform techniques change both the bounding
box and the image, while pixel-level transformation changes the images and leaves the
bounding boxes unchanged. The pixel-level augmentation is used when the bounding
boxes are preserved without distortion of the object’s shape, exposure, brightness, blur,
and noise levels can be changed. Both types of augmentation methods were used in this
research. Subsequently, the images were resized to 608 × 608, 512 × 512, and 416 × 416
by preserving the image aspect ratios and adding black padding to avoid distortion of the
tomato fruits aspect ratio. The dataset in the study was expanded from 1097 images to 2329
images and 6957 annotations through augmentation. The ground truth of both training
and augmented training data is shown in Figure 6. The numerical presentation of “0”, “1”,
and “2” indicates flower, green tomato, and red tomato, respectively.
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2.10. Data Splitting and Health Check

Data splitting and health checks are one of the most critical concepts in deep learning
to avoid overfitting [31–34]. In this research, the data with 2329 augmented images and
6957 annotations was split into training, validation, and test sets as 70%, 20%, and 10%,
respectively. Every data set contains two folders as images and labels. While the images
folder contains .png, .jpeg, and .jpg extensions, the labels folders contain .txt files that
contain all coordinates of ground truth bounding boxes. The validation and test sets’ pri-
mary purposes are to find data discrepancies between images and determine the prediction
accuracy, respectively. The correlogram of images given in Figure 7 clearly shows the label
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distribution and correlation of the corresponding classes. It shows the position (x, y), width,
and height of the bounding boxes of the flowers, green tomatoes, and red tomatoes in
the dataset.
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3. Analysis and Results

This article uses computer vision, drones, and deep learning technologies to au-
tonomously evaluate and count tomato fruits under greenhouse conditions at Şırnak
University Greenhouse Field. The training and counting processes are performed through
python AI libraries (TensorFlow, Keras, Pandas, and OpenCV), PyTorch, Roboflow online
data augmentation services, and Google Colab Cloud Service. In addition, HP-Omen
Laptop with a Gforce-1050Ti GPU and DJI Spark is used to collect the data from Şırnak Uni-
versity Tomato Greenhouse area and evaluate the real-time performance evaluation. The
1097 raw RGB images are taken manually through the DJI drone. The data is augmented
with 90◦ rotation Clockwise and Counter-Clockwise. As a result, 2329 augmented images
and 6957 annotations are obtained. Next, the data is divided into three parts: Training,
Validation, and Test set. The training parameters, which are class name, the epoch number,
batch size, GPU, and learning rate, are initialized as “Tomato”, 200, 16, GPU enabled, and
0.001. These parameters are run on Google Colab Cloud Service using PyTorch, AI libraries,
and OpenCV. The results show that the best weights are obtained at epoch 192 with 0.63 of
mAP 0.5. The training results are represented in Figure 8 and Table 2.

Table 2. Best mAP@0.5 and mAP@0.95 performance parameters results.

Classes P R mAP@0.5 mAP@0.95

All 0.741 0.570 0.630 0.321
Flower 0.703 0.508 0.508 0.249
Green Tomato 0.618 0.492 0.549 0.269
Red Tomato 0.772 0.757 0.796 0.442

According to Table 2, the predictions obtained from the red tomato class have higher
accuracies due to the high number of training samples and its distinct color feature. On the
other hand, the green tomato class has lower prediction accuracies because the greenhouse
complex environment contains green color leaves in almost all survey areas. Lastly, the
flower class has the lowest prediction accuracies due to the low number of samples and
similarity between tomato and flower sepals. Moreover, the best Precision, Recall, and F1
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score versus confidence level plots and PR curve are obtained to see how well the model is
performed, as seen in Figure 8.
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According to Figure 9, the Precision has an almost linear increase as the confidence
level approach 1. The maximum Precision is obtained at a confidence level of 0.923 which
means that the portion of true positive values with all classes is at a significant level. The
recall values also give us an insight into the prediction performance. It is seen that the
recall values gradually go down as the confidence level is increasing. This is because false
negative tomato detection has a higher impact on prediction accuracy. Moreover, when
checking the PR curve, it can be seen that different thresholds affect the classes differently.
Since the flower class has a lower number of annotations, it shows unstable behaviors.
Finally, individual F1 scores for red tomato, green tomato, and flower are computed as 0.74,
0.56, and 0.61 at a confidence level of 0.423, respectively. In addition, at the same confidence
level, the average F1 score for all models rapidly increases and achieves a peak of 0.63.
However, as the confidence level accedes to 0.8, the F1 score starts to decrease gradually. In
other words, the best predictions occur between a confidence level of 0.5 and 0.8. Since the
number of annotations is higher for the tomato class, its F1 score increases rapidly. With the
optimum tomato detection model, the following prediction is made and tested on different
images and represented in Figures 10 and 11 as batch images form.

After analyzing the whole model, the best training weights (coefficients) are saved
and converted to the Tensor Flow model. Later, the Deep-Sort algorithm was applied to the
trained model to follow the detected tomatoes with respect to their locations. To count the
tomatoes, two lines were placed at the bottom of the image frames. The algorithms count
anytime a tomato passes these two yellow lines, as indicated in Figure 12.

The detection and counting results in Table 3 show that the proposed algorithm has
detected 18 flowers, 240 green tomatoes, and 36 red tomatoes for one aisle. After comparing
the manual counting results, it was obtained that the flower, green tomato, and red tomato
had accuracy rates of 50%, 99%, and 85%, respectively. The related captured video sample
link can be found in the Supplementary Section.
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Table 3. Detection and Counting Results.

Flower Green Tomato Red Tomato

No. Manuel AI Drone Manuel AI Drone Manuel AI Drone

1. 5 7 52 44 8 9
2. 0 0 41 45 7 10
3. 3 5 41 42 4 4
4. 2 3 49 53 9 10
5 2 3 54 56 3 3

Total 12 18 237 240 31 36

MAPE (%) 50% 1% 15%

Accuracy 50% 99% 85%

4. Discussion

The introduction of aerial image and object detection systems into the field of agricul-
ture has led to a rapid increase in applications such as the detection of different tree species
in forests, tree counting, diseased plant detection, etc. The increase in computer processor
speeds and the emergence of fast deep learning algorithms have allowed studies on fruit
detection and yield estimation to take place in the last few years.

In their research, Vanbrabant et al. used pixel-based classification of pear fruit flowers
using RGB images taken from drones. Orthomosaics and the dense point cloud that are
processed from drone images are converted into a binary classified image and point cloud
using stochastic gradient boosting algorithms, and the flower counting is determined by
taking the sum of the pixel values. They achieve R2 of 0.61 and RRMSE of 18% by using
2D pixel-based estimation [35]. Hosseiny and his research group sought a reliable fruit
counting system based on image processing and deep learning methods for plant detection
in agricultural lands from high-resolution images provided by drones. In this study, in
which RGB images are also used, plant detection and counting were made on the cornfield
by using the R-CNN method. As a result, a prediction accuracy of 89% was obtained
on plant counting [36]. Heylen studied the counting of strawberry flowers using drone
imagery and sequential convolutional neural networks. In their study, they used annotation
and data augmentation methods and achieved an average error rate of 10% compared to
manual counting from the images [37]. Vandermaeseri and her research group worked on
flower counting from four pear orchards for three consecutive years with drones. They
aimed to predict the fruit yield in the gardens by using the flower numbers and vegetation
indices on the random forest model. Their results achieved an R2 of between 0.41 to 0.51,
although some of the trees were affected by severe frost damage [38]. Liu et al. worked
on only a tomato fruit detection system using the YOLO V3 algorithm and compared the
detection prediction accuracy with YOLO V2 and R-CNN methods. They achieved tomato
fruit detection accuracy of 94.6% using YOLO V3 [39,40]. Syazwani et al. conducted a study
on pineapple fruit detection and counting using many machine learning and deep learning
models from top-view drone imagery. The best results are obtained by ANN-GDX with a
prediction accuracy of above 90% [41].

Our research aimed to quickly and accurately count the tomato fruits and flowers to
reduce the workload and expenses of the farmers in agriculture and thus support cheap
fruit production. In our study, by counting red tomatoes, green tomatoes, and flowers
at the same time, we obtain data on how many flowers turn into tomato fruits. When
the low rate of this ratio has been determined beforehand, the low yield problem can
be solved in a shorter time by adding fertilizer and improving pollination parameters.
Real-time greenhouse video recording and fruit counting processes were carried out with
the communication of the drone and the computer, and the accuracy rate was increased by
supporting the specially developed counting algorithm. This algorithm prevented distant
tomatoes and flowers from being counted, and the drone did not count again while passing
through the next aisle, providing an increased prediction rate. The data augmentation
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method we use has increased the training data set. Therefore, it has also increased the
prediction accuracy by facilitating fruit and flower detection. In addition, the robustness of
the counting process is increased by using the YOLO V5 algorithm in the system. According
to the MAPE score, we achieved an accuracy rate of 99% for green tomatoes, 85% for red
tomatoes, and 50% for flower counting. The reason for the low accuracy in flower counting
is the inadequate number of ground truth flowers in the environment.

5. Conclusions

This study introduces a real-time automated fruit recognition and counting mech-
anism using advanced image processing to achieve higher productivity and lower cost
in agricultural sectors. Once YOLO V5 and drone are combined, it is possible to reduce
the counting of the process into minutes rather than hours or days. In addition, a size
filter is added to the counting algorithm to avoid faulty counts belonging to other rows in
the greenhouse. The provided AI-aided drones also have side benefits such as increasing
pollination for tomato fruits. The system, which processes the greenhouse videos taken
with the DJI Spark drone with the help of YOLO V5, Deep-SORT, and Tensor-Flow algo-
rithms on the Python platform, first separates the fruits and flowers and then performs
their counting processes. The data set containing 2329 images with 6957 annotations were
divided into training, validation, and test sets in the ratio of 70:20:10, respectively, and the
accuracy rates in red tomato, green tomato, and flower counts were predicted. The average
F1 score for all classes is obtained as 0.63, while the F1 scores of red tomato, green tomato,
and flower classes are determined as 0.74, 0,56, and 0.61, respectively. According to the
MAPE score, we achieved an accuracy rate of 99% for green tomatoes and 85% for red
tomatoes. However, we achieved a 50% error rate in counting tomato flowers since the
number of flowers to be used in the learning process is inadequate. Future work will focus
on reducing the flower prediction error rate by expanding the data size and using more
data augmentation techniques to improve overall fruit and flower prediction accuracy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriculture12091290/s1, Video S1: Real-Time Drone-Based Tomato
Generative Organ Counting Model Using YOLO V5 and Deep-Sort. figshare. Media.
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