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Abstract: Potato machinery has become more intelligent thanks to advancements in autonomous
navigation technology. The effect of crop row segmentation directly affects the subsequent extraction
work, which is an important part of navigation line detection. However, the shape differences of crops
in different growth periods often lead to poor image segmentation. In addition, noise such as field
weeds and light also affect it, and these problems are difficult to address using traditional threshold
segmentation methods. To this end, this paper proposes an end-to-end potato crop row detection
method. The first step is to replace the original U-Net’s backbone feature extraction structure with
VGG16 to segment the potato crop rows. Secondly, a fitting method of feature midpoint adaptation is
proposed, which can realize the adaptive adjustment of the vision navigation line position according
to the growth shape of a potato. The results show that the method used in this paper has strong
robustness and can accurately detect navigation lines in different potato growth periods. Furthermore,
compared with the original U-Net model, the crop row segmentation accuracy is improved by 3%,
and the average deviation of the fitted navigation lines is 2.16◦, which is superior to the traditional
visual guidance method.

Keywords: crop row detection; potato; semantic segmentation; feature midpoint adaptation

1. Introduction

As the world’s population continues to grow, so does the demand for agricultural
products. According to the United Nations World Population Prospects, the global popula-
tion will reach 9.6 billion in 2050 [1]. As the fourth major food crop in the world, potato is
produced in large quantities, but its yield per unit area is low. Among them, the low level
of intelligence of agricultural machinery is an important factor limiting the increase in its
yield per unit area. As a result, in the event of limited resources such as land, the key focus
for current agricultural academics is to investigate how to apply new technology to increase
grain production per unit area [2] to fulfill the growing demand of the population. Auto-
matic guidance technologies are not only a means to reduce the waste of labor resources [3],
they are also a means to improve the level of intelligence of agricultural machinery, which
in turn helps to boost food harvests. At present, most potato machinery with intelligent
control technology relies on GPS or inertial navigation for operation. However, the cost
of satellite navigation is high, and global path planning of the operating area is required
before each use. In contrast, visual navigation stands out among other navigation methods
because of its low cost and high flexibility [4].

Many experts have performed a great deal of research on this visual navigation
technology [5–7]. The most important issue of visual navigation is to extract navigation
information from the acquired images. According to conventional methods, navigation
information extraction is generally divided into image segmentation, feature extraction,
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clustering, and navigation line fitting. Image segmentation is the primary work of navi-
gation line extraction, and its segmentation effect determines the accuracy of navigation
line extraction. Moreover, the segmentation effect is often different due to different objects.
In the field of agriculture, researchers often use crops as segmentation objects for image
preprocessing. However, the appearance differences exhibited by crops in different growth
periods often have an impact on the segmentation effect. Potatoes, in particular, have
obvious differences in crop appearance in different periods. In addition, illumination and
the presence of weeds in the field also affect the segmentation effect of the image. Therefore,
finding a method for extracting potato visual navigation lines which can adapt to multiple
growth periods and is not disturbed by noise, such as illumination and weeds, to meet the
navigation requirements of potato machinery in different periods is an important focus of
study for researchers.

Image-based guidance technology is mainly divided into two categories: traditional
image processing and image processing based on deep learning [8]. In the traditional
processing method, many researchers have devoted themselves to improving the classical
green feature algorithm and Otsu algorithm to provide better cropping and background
segmentation effects [9–11] before using cropping features to extract navigation lines. This
approach has obtained decent results in field crop environment segmentation [12]. To
efficiently identify corn seedlings and weeds in the field, Montalvo et al. [13] used the
double-threshold segmentation approach, followed by another threshold segmentation
after utilizing the Otsu threshold method, which significantly reduced the influence of
field weeds on crop row segmentation. In this manner, they realized the identification and
detection of straight and curved crop rows. Yue Yu et al. [12] used a triple classification
method to segment rice seedlings, and then used a two-dimensional adaptive clustering
method to eliminate misleading crop feature points. The experimental results show that
this method can achieve better navigation line extraction results in weeds, duckweed,
and eutrophic complex paddy field environments. In addition, there are various experts
dedicated to the study of stereo vision [14–16]. To meet the precise navigation operation of
a cotton harvester, Fue et al. [17] proposed a cotton crop row detection method based on
stereo vision, which provided an effective solution for the crop row detection of canopy
crops and is expected to assist RTK-GNSS navigation in harvesting cotton bolls. However,
the accuracy and real-time performance of stereo vision matching are problems that remain
to be solved. Although the above traditional image processing methods are effective in
specific situations, they are easily affected by noise, such as light and weeds, and have poor
anti-interference ability. Moreover, potatoes vary in appearance in different growth periods,
and there are different requirements for the setting of a segmentation threshold.

In recent years, Artificial intelligence [18] and deep learning have made significant
progress in the fields of autonomous driving [19], medical image processing [20,21], and
speech recognition [22]. Especially with the application of transfer learning [23], it solves
the important problem of the lack of relevant datasets in the agricultural field. It is most
commonly used in crop identification [24,25], weed identification [26,27], plant pest detec-
tion [28–30], water quality monitoring [31], and agricultural robot navigation in the field
of agricultural engineering. To reduce the complexity of traditional image segmentation,
many researchers utilize object detection and semantic segmentation techniques to locate
crop rows [32,33]. Based on the ES-Net network model, Adhikari SP et al. [34] performed
segmentation training on the rice line dataset [35], and the sliding window algorithm was
used to cluster and fit the crop lines within the ROI. Finally, the geometric midline formed
by two crop rows was used as the navigation line. The results show that the error was
approximately 5-pixel values. To adapt to the different row spacing of strawberries, Pon-
nambalam et al. [36] used SegNet [37] to identify and segment strawberry crop rows. The
semantic information was divided into three categories: strawberry row, non-crop row, and
background. In the end, the adaptive ROI algorithm was used to achieve the autonomous
navigation of strawberries with various line spacings. Bah et al. proposed a CRowNet
model [38] consisting of SegNet and CNN-based Hough transform for UAV crop row
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detection. The performance of this method was quantitatively compared with traditional
methods, and a good crop row detection rate of 93.58% was obtained. In addition, the
object detection algorithm was also applied to crop row recognition. Jiahui Wang [39] used
the YOLO V3 object detection algorithm to identify paddy field seedlings under various
working conditions. In this paper, segmentalized labeling and the prediction box were used
to locate paddy rice seedlings, providing a new method for crop row detection. To make
the navigation line detection effect suitable for different growth periods of kiwifruit trees,
Zongbin Gao [40] identified the kiwifruit trunks based on the Yolo v3 Tiny-3p model and
fitted the navigation lines through the midpoints of the trunks on both sides of the road.
The results show that the extracted guidelines can be applied to different kiwifruit growing
environments. The above research shows that the crop row detection method based on
deep learning is widely used, and it is more and more favored by researchers because of
its strong learning ability and robustness. However, due to the lack of data samples, such
methods only have strong applicability to specific learned objects. For the detection of
potato crop rows and their different periods, in particular, no research exists at present.

The objective of this study was to utilize deep learning-based methods to reduce the
impact of illumination, weeds, and other noise on crop row segmentation and to achieve
accurate segmentation of potato crop rows in different growth periods, something that
has not been fully addressed in the literature. In addition, a feature midpoint adaptive
navigation line extraction method is proposed, which can realize the adaptive adjustment
of the vision navigation line position according to the growth shape of the potato to ensure
that the potato machine always maintains the center position of the row during operation.
The main contributions are as follows:

1. A potato crop row dataset was established under various growth periods and lighting
conditions.

2. Based on improved U-Net, a segmentation and recognition model of potato crop rows
was constructed.

3. A complete detection scheme for the potato visual navigation line suitable for multiple
growth periods was proposed.

The remainder of this paper is divided as follows: Section 2 contains the details of
potato visual navigation line detection. Section 3 details the model segmentation and
vision navigation fitting results and provides the discussion. Finally, Section 4 provides
this study’s conclusions.

2. Materials and Methods

As shown in Figure 1, the potato visual navigation line detection system proposed in
this paper is mainly composed of two parts: semantic segmentation and feature midpoint
adaptive fitting. First, semantic segmentation is performed on the RGB images captured by
the camera. Secondly, the feature midpoint adaptive algorithm is used to locate the crop
row and detect the navigation line. The details are as follows:

1. Potato crop row segmentation and prediction: First, the dataset is established for
the potato crop rows under various working conditions, and then the dataset is
trained using the improved U-Net semantic segmentation model to obtain the training
weights, in which data augmentation is used to prevent overfitting during training.
The newly acquired images are then segmented using the training weights to obtain
segmentation masks for the potato crop row and background.

2. Feature midpoint adaptation fitting: First, the ROI is set on the segmented binary
image mask. Secondly, the edge information of the potato crop row within the ROI
is extracted, and the center position of the crop row is located using the extracted
boundary points. Since the segmentation effect may occasionally be unsatisfactory,
resulting in the center of the crop row being incorrectly positioned, a simple k-means
algorithm is introduced to correct it, but this situation is extremely rare. Then, the
crop row center position is used to locate the lane center position, and finally, the least
squares method is used to fit the navigation line to the lane center point.



Agriculture 2022, 12, 1363 4 of 17

Agriculture 2022, 12, x FOR PEER REVIEW 4 of 18 
 

 

is extracted, and the center position of the crop row is located using the extracted 

boundary points. Since the segmentation effect may occasionally be unsatisfactory, 

resulting in the center of the crop row being incorrectly positioned, a simple k-means 

algorithm is introduced to correct it, but this situation is extremely rare. Then, the 

crop row center position is used to locate the lane center position, and finally, the 

least squares method is used to fit the navigation line to the lane center point. 

Original image

U-Net Semantic 
segmentation

Label  image

Model trained weights

Prediction

Input image

Binary mask

Edge 
scan

Midpoint 
extraction

Lane 
center

Navigation 

line fitting

Set 
ROI

Semantic segmentation

k-means 
clustering

Feature midpoint adaptation

 

Figure 1. The flow of the visual navigation line detection method. 

2.1. Data Collection and Annotation 

The 3WP-700PG unmanned sprayer (Qingdao, China, Wuniu Intelligent Technology 

Co., Ltd., Qingdao, China) image acquisition platform is shown in Figure 2a. The platform 

is an electric-driven spraying robot equipped with inertial navigation, which has two 

working modes: manual remote control and automatic driving. RS232 communicates data 

between a top-level navigation decision system and a low-level execution system. The 

image acquisition equipment comprises a ZED camera from Stereolabs, which has a 4 M 

pixel sensor with 2 um pixels and can operate in challenging environments. As an image 

acquisition device, the ZED binocular camera is mounted at the front of the high-ground-

clearance sprayer, at a height of 200 cm from the ground and a horizontal angle of 70° 

with the ground. The monocular size of the collected images is 1280 × 720 pixels. The 

sprayer’s lever arm is opened during collection, and the high-ground-clearance sprayer is 

controlled by remote control to simulate spraying. 

Figure 1. The flow of the visual navigation line detection method.

2.1. Data Collection and Annotation

The 3WP-700PG unmanned sprayer (Qingdao, China, Wuniu Intelligent Technology
Co., Ltd., Qingdao, China) image acquisition platform is shown in Figure 2a. The platform
is an electric-driven spraying robot equipped with inertial navigation, which has two
working modes: manual remote control and automatic driving. RS232 communicates data
between a top-level navigation decision system and a low-level execution system. The
image acquisition equipment comprises a ZED camera from Stereolabs, which has a 4 M
pixel sensor with 2 um pixels and can operate in challenging environments. As an image
acquisition device, the ZED binocular camera is mounted at the front of the high-ground-
clearance sprayer, at a height of 200 cm from the ground and a horizontal angle of 70◦ with
the ground. The monocular size of the collected images is 1280 × 720 pixels. The sprayer’s
lever arm is opened during collection, and the high-ground-clearance sprayer is controlled
by remote control to simulate spraying.
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Data were collected using two different methods: a mobile phone camera and a camera
mounted on a moving vehicle. Uncertainty in an artificial shooting angle can help avoid
overfitting and improve the model segmentation’s robustness by increasing the diversity
of the sample dataset. To cover all periods of potato growth, a variety of image datasets
were created. The image collection site was the National Key Project Demonstration Base
of Potato Intelligent Production Equipment in Jiaolai Town in Jiaozhou City, Shandong
Province. The collection took place from March to June 2021. Images were taken under
different illumination conditions during the three periods of potato growth, i.e., the seedling,
tillering, and tuber setting periods. Table 1 shows the total number of images gathered.

Table 1. Number of images collected under different working conditions.

Working Conditions Number of Acquired Images

Seedling period
8:00–9:00 167

10:30–11:00 156
17:00–18:30 178

Tillering period 8:30–9:30 210
14:00–15:00 292

Tuber period 7:30–8:30 158
16:00–17:00 175

The potato crop row dataset was created by selecting 1200 images from the collected
data. For the segmentation dataset and the original image information to be consistent,
these images were manually annotated with the LabelMe software(LabelMe ==3.16.7,
CSAIL, MIT, Massachusetts, America). The potato crop row outlines were retained during
labeling. Because only the effect of the potato crop rows was considered in this paper,
all other information in the image was considered background. The rows of potatoes in
Figure 3 were annotated using the LabelMe software. These were then converted to label
files containing only the semantic information of the crop line that was gathered during the
annotation process.
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Figure 3. LabelMe labeled potato crop rows.

2.2. Semantic Segmentation

The U-Net semantic segmentation model was used to perform the crop row segmenta-
tion task. The U-Net semantic segmentation network is the earliest semantic segmentation
model for biomedical cells and was proposed by Olaf Ronneberger et al., 2015 [41]. The
model is divided into two parts: encoding and decoding, i.e., the backbone feature extrac-
tion network and the enhanced feature extraction network. The backbone feature extraction
network is the coding part of this network and is responsible for feature extraction. The
enhanced feature extraction network on the right is the decoding part, which is responsible
for feature restoration. The training data input to the model is comprised of patches, so
there is no requirement for the sample size of the dataset. However, since the model
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needs to be trained for each patch, overlapping patches waste resources, and the training
time increases.

To reduce the training time and speed up the convergence of the model, in this
paper, the VGG16 model was used as the backbone feature extraction network of the
U-Net network. The structure of the VGG16 model is shown in Figure 4. When used,
the max-pooling layer and the subsequent fully connected layer in the fifth convolution,
plus the max-pooling structure of the VGG16 model, are deleted. This part consists of
13 convolutional layers with kernel size 3 × 3, stride 1 and padding pixel 1, and four
max-pooling layers with size 2 × 2, stride 2 and padding pixel 1, and the ReLU activation
function. As compared with the original U-Net model, three layers of convolution depth
are added so that the model can better extract the feature information of potato crop rows.
After the encoding part is completed, five preliminary valid feature layers are obtained.
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The enhanced feature extraction network comprises four upsampling modules with a
stride of 2 and a convolution kernel size of 3 × 3; eight convolutional layers with a size
of 3 × 3, a stride of 1, and pixel padding of 0; and four skip connection layers. The last
convolutional layer of the backbone feature extraction network carries out directly doubled
upsampling. The height and width of the feature map are doubled during the upsampling
process to facilitate the construction of the model and make it universal. The effective
feature layer obtained from the backbone feature extraction network is then fused with the
final output image height and width using skip connections, resulting in the final output
image height and width being equal to the input image height and width. Figure 5 depicts
the U-Net (also known as VU-Net) model structure used in this paper.

2.3. Model Training and Data Augmentation

The purpose of model training was to enable the U-Net semantic segmentation model
to learn certain information about potato crop rows in a large sample dataset. The quality
of its training results directly determines the effect of crop row segmentation. The model
training platform was built using the Pytorch framework in the Anaconda environment
of the Windows10 operating system, and the programming software was Visual Studio
Code. For training, AMD Ryzen 7 4800H with Radeon Graphics 2.90 GHz, Nvidia Geforce
RTX2060 GPU, and 6 GB RAM were used. During training, the training set and the
validation set were divided into an 8:2 ratio. Before the image was input into the network,
the image resolution was uniformly converted to 512 × 512 pixels to reduce memory usage
during the training process.

When the neural network was trained, we used a method known as fine-tuning for
training to take full advantage of the network’s generalization capacity. To ensure that the
weights in the network model were not too random during the feature extraction process,
the weights obtained by VGG16 from the ImageNet dataset were used to load the network



Agriculture 2022, 12, 1363 7 of 17

model. Fractionalized and thawed versions of the backbone feature extraction network
were both covered in the training. The Adam adaptive optimizer was used to train the
models. Initially, the learning rate was set to 1 × 10−4, and the batch size was set to 4,
but the learning rate was then reduced to 1 × 10−5 to ensure the model’s continuity after
thawing. All the other parameters were left unchanged, and the iteration process was
repeated 50 times.
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Data augmentation was used to increase the dataset’s robustness and reduce over-
fitting because not all working conditions and time periods were included in the image
acquisition, as shown in Figure 6. Rotating the images 45 degrees clockwise and counter-
clockwise, mirroring the images, and changing the brightness and contrast of the images
were used during the model training process to promote flexibility, which is required when
dealing with a wide range of lighting conditions.
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2.4. Crop Row Detection Based on Feature Midpoint Adaptation
2.4.1. ROI Determination

After the image has been semantically segmented, two semantic data types are ob-
tained: background and crop rows. The obtained field of view was wider due to the
camera’s high installation position, and the number of crop rows increased, but only two
rows possessed the navigation value in actual operation. As a result, their ROI had to
be set to minimize the interference of irrelevant rows. Crop rows parallel to each other
form a convergence phenomenon in the image, similar to an isosceles trapezoid, due to
the effect of perspective projection. As a result, as shown in Figure 7, a trapezoidal ROI
is created. Because the datasets in this paper were not all captured by onboard cameras,
certain images had to have their ROI set based on experience and requirements.
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2.4.2. Crop Row Feature Point Extraction

After semantic segmentation and ROI setting, a binary map mask with only two lines
in the field of view is obtained. Crop row feature point extraction is needed to determine
the crop row’s position by identifying the white connected domain as a set of feature points
with precise coordinates. In this paper, a scanning method was used to determine the
location of white-connected regions. The more times you scan, the more reference points
you collect, and the more precise your navigation line fitting is. The computational load
will be increased if there are too many reference points. As a result, in this study, we
employed the interlaced scanning method to extract edge feature points.

The scanning interval k must be determined first, and horizontal scanning processing
must then be performed to traverse the pixel values of all coordinate points in each horizon-
tal line. This means that when the pixel point changes from black to white (background to
potato crop row), the coordinate value ln (x1n, y1n) in the current pixel coordinate system is
output as the left border of the crop row; when it changes from white to a sudden change in
color, it is output as the right border of the crop row. When the potato crop row is black, the
current pixel coordinate system’s coordinate value is also displayed as the right boundary
rn (xrn, yrn) of the crop row. To improve the detection accuracy of edge feature points,
continuous α variables are defined to traverse the pixel points of the determined row if
and only if the continuous α/2 pixel values are the same and the (α + 2)/2th pixel value is
abrupt and continuous. If the α/2 pixel values are the same, it is determined that the edge
of the potato crop row is detected, and the pixel coordinates of the current mutation point
are output.

After obtaining the crop row’s edge coordinates, the crop’s morphological center
coordinates are calculated to obtain the center coordinates bn (xbn, ybn). Finally, using the
morphological center coordinates of the two crop rows, the coordinate cm (xcm, ycm) of the
lane with the guiding function’s center point is calculated, where m = n/2. The following
are the specific calculation formulae:

bn(xn, yn) =
[(xln, yln) + (xrn, yrn)]

2
(1)
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xn =
(xln + xrn)

2
(2)

yn =
(yln + yrn)

2
(3)

cn =
(bn + bn+1)

2
(4)

2.4.3. K-Means Clustering

The segmentation effect is sometimes visible in the connected area of the white crop
row, where a small black, connected area has been segmented into the background. The
navigation line’s fitting effect is affected by the presence of this area insofar as it increases
the number of detected left and right edge points. Therefore, unnecessary features must
be eliminated.

In this paper, we assume that there is only one feature midpoint in each crop row,
which means that only two green feature midpoints can be obtained in each horizontal
scan when the green feature midpoint is greater than 2. The K-means clustering process is
applied to the feature midpoints obtained from the horizontal row. When clustering, the
number of centroids is set to 2 as needed, then the Euclidean distance from the midpoint of
each green feature to the cluster center is calculated, and the “cluster center” is updated
according to the newly divided cluster until the “cluster center” no longer moves.

d(x, y) =

√
n

∑
i=1

(xi − yi)
2 (5)

where d (x, y) is the Euclidean distance, and xi, yi are the horizontal and vertical coordinates
of the pixel. The obtained centroid coordinates are put back into the original green feature
midpoint set, and finally, the removed morphological center coordinates are obtained.
Figure 8 shows the clustering process.
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2.4.4. Least Squares Fitting

Hough transform and least squares methods are two of the most commonly used
methods for fitting navigation lines. The Hough transform algorithm has excellent pre-
cision, and it is also capable of detecting crop rows in weedy fields, but the algorithm is
complicated, and the amount of computation is massive.

In this study, the least squares method was preferred to fit the navigation line. Gener-
ally, the straight line model of the least squares method is in the form of y = kx + b; however,
since the generated set of coordinate points approximately exists near a vertical straight
line, the slope of the straight line may not exist; thus, in this paper, the straight line model
is set in the x = by + a form. According to its definition:

E =
n

∑
i=1

[xi − f (yi)]
2 (6)

where E represents the sum of the squares of the difference between the actual value of
all coordinate points and the estimated value of the fitted line, and the function f(y) that
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minimizes the value of the objective function is the equation function of the regression
line. It can be seen from the above formula that the function E is a function of a and b and
has a second-order continuous partial derivative. According to the existence theorem of
extreme value, the function has a minimum value, and the partial derivatives of b and a are
calculated respectively and set equal to zero to obtain:

n
∑

i=1
(xi − byi − a) = 0

n
∑

i=1
yi(xi − byi − a) = 0

(7)

which, when solved, gives 
b̂ =

n
∑

i=1
xiyi−nxy

n
∑

i=1
y2

i −ny2

â = x − b̂y

(8)

The specific algorithm in this paper is as described in Algorithm 1:

Algorithm 1. Adaptive Midpoint Fitting Algorithm

(1) Define ln, rn, bn, cn/2 as four sets to store the left and right borders of the crop row, the center
point of the crop row, and the coordinates of the navigation reference point, respectively.
(2) Input the image after semantic segmentation; set interlacing interval k and threshold α.
(3) Convert the image to a single-channel binary image and set the ROI.
(4) Interlaced traversal scan.
(5) Scan all pixel coordinates of one row.
(6) If α/2 consecutive pixels have a value of 255, the remaining α/2 consecutive pixels have a
value of 0.
(7) Output the α/2th pixel coordinate and store it in ln.
(8) If α/2 consecutive pixels have a value of 0, the remaining α/2 consecutive pixels have a value
of 255.
(9) Output the α/2th pixel coordinate and store it in rn.
(10) Traverse ln, rn, and calculate the midpoint coordinates of the green feature of the crop and
store it in bn.
(11) When the number of green feature points in a horizontal row is greater than 2, perform
k-means clustering to obtain the centroid coordinates.
(12) Remove the original feature points from the set, and put the obtained centroid coordinates
into the original feature point set.
(13) Calculate the center position of two adjacent coordinate points in bn and store it in cn/2.
(14) Use least squares fitting to obtain the navigation line.

3. Results and Discussion
3.1. Semantic Segmentation Experiment

Based on the potato crop row dataset established in this paper, we trained the VU-Net
model for 100 iterations and compared the segmentation results of the original U-Net,
SegNet, PSPNet, and Deeplab V3 models. To calculate the predicted crop row and the
actual crop, the coincidence degree of the rows was evaluated using the pixel average
accuracy (MPA) and the average intersection and union ratio (MIOU). The calculation
formulae are shown in formulae (9) and (10).

MPA =
1

k + 1

k

∑
i=0

pii
k
∑

i=0
pij

(9)
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MIOU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

(10)

where pii is the number of correctly predicted pixels; pij is the number of pixels that belong
to class i but are predicted to be class j; pji is the number of pixels that belong to class j but
are predicted to be class I; k is the number of categories.

Table 2 displays the MPA, MIOU, and loading speed of each model for various neural
network models. The accuracy of VU-Net improved by three percentage points over
the original U-Net model, but the number of frames processed per second decreased by
approximately six frames as a result of the deeper network layers; However, it was still
superior to SegNet and Deeplab V3.

Table 2. Comparison of the prediction results of different models.

Model MPA/% MIOU/% FPS f/s

VU-Net 97.29 93.94 12.62
U-Net 94.35 90.06 18.30
SegNet 90.52 86.54 11.15
PSPNet 92.37 87.45 15.59

Deeplab V3 93.71 90.94 10.79

Figure 9 depicts the training process’s loss function and accuracy curve. The loss
function of the training set continued to decrease as the number of iterations increased, as
shown in Figure 9a. The loss function of the reduced learning rate continued to decline
when the number of iterations reached 50, as shown by the loss function curve of the
model using the validation set. The loss function remained essentially unchanged when
the number of iterations reached approximately 80. The validation set and the training set
accuracy rose steadily before settling.
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To test the effect of the training model on the segmentation of potato rows in differ-
ent growth periods and light intensities, we conducted segmentation experiments under
various growth periods and in various light intensities. For each period of growth, the
images were divided into three sets, with each set containing a total of 100 images, 50 of
which were high-light intensity photos and 50 of which were weak light-intensity photos.
Figure 10 shows the segmentation results for potatoes at various periods of growth and in
different lighting conditions. The segmentation accuracy results are shown in Table 3 under
various conditions. As shown in Table 3, the accuracy rate and MIOU value decreased by
1–2 percentage points under the same growth period conditions when the light intensity
was increased. These results in Figure 10c,g show that, under strong light conditions, tree
shadows near the road occluded the crop rows in the distance, resulting in incorrect identifi-
cation of the distant crop rows, which reduced the segmentation accuracy and MIOU value.
In the workplace, the distant crop rows are considered non-ROI areas, which have little
impact on visual navigation. As a result, the segmentation results are within the allowable
range of errors and meet the operational requirements of visual navigation. Segmentation
results show that crops in the tillering period fall somewhere between the seedling and
tuber periods. Figure 10e shows rows with small holes in them due to plant spacing errors
or missed seeding. This type of cavitation is clearly visible during the tillering period of
the potato, but not during the seedling or tuber periods. Since the existence of small holes
affects the extraction of navigation lines, in the actual labeling, the holes with too small an
area in the row are not processed. Therefore, a segmentation error occurs, but this does not
much influence the overall crop row segmentation effect.
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are the corresponding segmentation results. The green anchor box is the part of the distant shadow
interference that is not correctly segmented.

A comparative experiment was conducted to test the weed processing abilities of the
method in this paper and the traditional image processing method. Figure 11b,e show
that, even though the traditional image processing method can separate the potato plants
from the background, there are still parts of the weeds in the lane that are not filtered
out. In addition, the presence of other green crops in the area influences the segmentation
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results. Second, the green crop rows have numerous black areas of varying sizes due to
illumination and mutual occlusion between potato plants. The crop rows have some noise
if these black areas are processed traditionally. If morphological processing methods such
as dilation and erosion are used in the later stages, finding the convolution kernel size
suitable for all growth periods and the number of iterations will become a new problem
to consider.

Table 3. Comparison of segmentation accuracy under different working conditions.

Growth Periods Lighting Conditions MPA/% MIOU/% FPS f/s

Seedling period weak light intensity 97.72 90.36 12.78
strong light intensity 96.44 89.63 12.77

Tillering period weak light intensity 95.46 86.64 12.83
strong light intensity 93.25 84.56 12.83

Tuber period weak light intensity 97.35 93.21 12.52
strong light intensity 95.27 86.12 12.50
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Figure 11. Comparison of traditional image processing and our method under weed interference
(a,d) RGB images; (b,e) traditional methods; (c,f) our method.

To prevent errors in the experimental results caused by the small dataset in this study,
we compared our method with orchard road segmentation in the literature [42]. In ref. [42]
the authors use the U-Net model to segment orchard roads. The specific comparison is
shown in Table 4. We can see that under the same number of datasets, the U-Net network
achieves better results for both potato crop rows and orchard roads. The segmentation
effect, using VGG16 as the backbone feature extraction network, increases the segmentation
accuracy by several percentage points. From the above results, we can see that, even if the
dataset is not very large, it can still achieve satisfactory results. This coincides with the
view that U-Net was originally proposed for use on smaller medical datasets [41].

Table 4. Performance of U-Net on different segmented objects.

Index This Paper Literature [37]

Segment Objects Potato crop row with background Orchard road and background
Model U-Net U-Net

Backbone VGG16 Unused
Dataset size 1200 1200
Accuracy/% 97.72 94.51
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3.2. Feature Midpoint Adaptation Fitting

To accurately classify the potato crop row and the background, semantic segmentation
was used to remove distracting elements in the driveway, such as weeds. After obtaining a
binary image mask, the crop row’s morphological center point was extracted, and the crop
row’s lane center line was obtained by fitting.

The test sets of the above three different periods were chosen for fitting accuracy testing
to evaluate the applicability of this method in different potato growth periods and under
different illuminations. To verify the algorithm, we used the angle between the manually
calibrated center line and the fitted line proposed in [43] as the evaluation standard to judge
the accuracy of the fitted line. The fitting effect was considered poor when the angle’s root
mean square error (RMSE) was greater than 5◦. Figure 12 depicts the navigation line fitting
effect (a–f) of the method in this paper under various working conditions and the navigation
line effect (g–i) of the method using the traditional image processing method proposed by
Otsu [44]. The traditional image processing method was affected by the illumination, as
shown in (g–i), resulting in a large number of segmentation holes in the crop row, and the
extracted feature points were incorrectly segmented as the background. The navigation
line’s fitting accuracy is reduced if it is too random. The method used in this paper, on the
other hand, better represented potato crop row connectivity, resulting in morphological
midpoints extracted from features that were closer to the crop morphological midpoints in
the real world. The accuracy of the navigation lines also improved.
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Table 5 shows the average root mean square error and the time required for fitting
using the Hough transform and the least squares methods. It can be seen from Table 4
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that the Hough transform and the least squares method produced good results in the
three growth stages of potatoes, especially in the growing stage, exhibiting a higher fitting
accuracy and shorter execution time. Tins were due to the growth of potatoes in the growing
period being relatively regular and the inter-row lanes being more obvious. The extracted
navigation reference points met the ideal conditions, and the intermediate clustering and
other processes were reduced. However, when the potatoes were in the tuber stage, the
fitting effect was lower. This was due to the growth of the crop, causing the leaves to
gather and block the driveway. In terms of fitting time, the Hough transform method took
relatively long. In contrast, the least squares method was more suitable for agricultural
machinery navigation operations.

Table 5. Navigation line fitting accuracy test in different growth periods.

Season of Growth
Hough Transform Least Squares

Average Angular Deviation Execution Time Average Angular Deviation Execution Time

Seedling period 2.35 0.712 ± 0.05 2.03 0.625 ± 0.03
Tillering period 1.87 0.701 ± 0.05 1.32 0.532 ± 0.03

Tuber period 3.56 0.776 ± 0.05 3.13 0.654 ± 0.03

4. Conclusions

Image-based guidance methods to control the navigation operation of agricultural
machinery can be used to greatly improve the automation level of agricultural robots.
Moreover, they can operate stably in areas without satellite signals. There are two main
methods for image-based guidance: (1) methods based on traditional image processing;
(2) methods based on CNN offline training. In practical applications, although the guidance
method based on traditional threshold segmentation has obvious advantages in terms
of time, it is not particularly applicable in different growth periods. In this paper, a
method for the segmentation of potato crop rows based on semantic segmentation is
proposed. By creating data labeling files under actual working conditions in navigation
operations, the sample data are learned to achieve pixel-level segmentation of potato
crop rows and backgrounds under different working conditions. In addition, the feature
midpoint adaptive algorithm proposed in this paper was used to extract the navigation
reference point. Finally, the navigation line was fitted by the least square method. The
experimental results show that the method proposed in this paper has strong robustness and
can better adapt to the field operation environment, which contains many non-structural
factors. This, therefore, provided a reference for the self-adaptive adjustment of agricultural
machinery in the field. Furthermore, using VGG16 as the feature extractor of the U-Net
network not only improved the model’s convergence speed but also reduced the training
time. Our method outperforms the original U-Net, SegNet, PSPNet, and Deeplab V3
methods in terms of segmentation. The proposed method can meet the actual operational
requirements of agricultural machinery because the average running speed of agricultural
machinery is 1.5 km/h.

However, the size of the dataset collected in this study and the working conditions
were limited; thus, they could not completely represent each potato growth period. There-
fore, increasing the dataset size should be considered in future research to improve the
applicability of the model. Moreover, this paper only segmented the potato crop rows
and did not consider the influence of other factors, such as obstacles. In the future, a vari-
ety of sensors should be integrated to improve the intelligent mechanical perception and
decision-making capabilities of machinery. In addition, although this paper has achieved
ideal results in detecting potato navigation lines, the method used is relatively primitive.
In future work, it is necessary to study and improve upon our methods by exploring new
semantic segmentation models and SVM to overall improve the innovation of the system.
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