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Abstract: This study introduces a non-parametric approach to estimate the marginal products of
agricultural inputs (agricultural land, labor, machinery, fertilizers and pesticides) in Jiangsu province,
China. To study the effects of climate change on these marginal products, we used a fixed-effects
regression model. The results show an upward trend of inefficiency in Jiangsu’s agricultural pro-
duction from 2001 to 2018. The marginal products of agricultural land, labor, machinery, chemi-
cal fertilizers and pesticides are 1.54 thousand USD per hectare, 0.32 thousand USD per person,
0.31 thousand USD per kWh, 21.63 thousand USD per ton and 0.88 USD per ton, respectively. Cli-
mate change refers mainly to temperature and precipitation, and we analyzed their effects on the
marginal products. Temperature has a statistically significant positive effect on the marginal product
of fertilizers and machinery, whereas precipitation harms the marginal product of land. Two inputs
(i.e., land and fertilizer) are critical driving forces in agricultural production. This study recommends
government action to improve agricultural efficiency and ensure climate change adaptation.

Keywords: optimization; marginal product; agricultural input; shadow value; climate change

1. Introduction

The exploitation of natural resources not only affects the competitiveness of a sector,
but also influences its contribution to economic growth [1]. The marginal product reflects
the expansion of output resulting from an additional unit of input. Thus, the marginal
product can be computed directly by the output to input ratio. This approach may gen-
erate biased results, however, as it does not consider the multiple inputs and outputs in
production simultaneously.

Economic growth is not only dependent on resources as factors of production, but also
on technological progress. Specifically, owing to the law of diminishing marginal returns,
technological progress is the primary force behind economic growth, with material and
labor investments playing a significant role in this process [2]. In China, agricultural added
value increased from 92.7 billion RMB in 1978 to 6616.1 billion RMB in 2018, with an average
annual growth rate of 5.3% [3]. This considerable increase was because of technological
progress—the most crucial factor in achieving sustainable agricultural development. China
has witnessed an average annual growth rate of more than 2% from 1985 to 2013 [4], which
is twice the world average [5]. In the context of profound changes in the international
and domestic environment, the Chinese government claims that “the bowl of the Chinese
people must be held firmly in our own hands at all times”, and implements a food security
policy of “ensuring basic self-sufficiency of grains and absolute security of staple food”.

Despite the rapid growth of agricultural technologies, China’s agricultural development
faces significant challenges due to the shortage of inputs in production [6]. For example,
rapid urbanization has led to farmers’ urbanization, continuous occupation of farmland
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resources and the transfer of a considerable portion of agricultural labor [7,8]. Additionally,
China’s rural areas have been experiencing a continuous decrease in the supply of agricul-
tural labor due to aging [9,10]. Furthermore, the rapid development of the service industry,
such as real estate, has led to the rapid expansion of urban land resources, most of which
have been converted from cultivated land [11]. This has caused a shortage of cultivated
land in some places [12]. Regarding intermediate resources, the large-scale use of chemical
fertilizers has caused soil quality degradation and serious agricultural pollution [1,13,14],
thus hindering the long-term green development of agriculture, although it might bring
agricultural output growth in the short term [15]. To tackle this problem, some local gov-
ernments have introduced quantitative fertilizer and pesticide input policies to limit the
amount of fertilizer and pesticide input (Department of Agriculture and Rural Affairs of
Jiangsu province, Department of Agriculture and Rural Affairs of Zhejiang Province).

Jiangsu is one of the major agricultural provinces in China. In 2013, the total num-
ber of permanent agricultural labor resources in Jiangsu was 30.604 million, with 30%
(9.675 million) employed outside rural areas [16]; in 2018, however, it ranked first for its
output per unit area, and ninth for total grain output. The rapid expansion of secondary
and tertiary industries in Jiangsu utilized a large number of land resources for agricultural
production. The latest data from the National Bureau of Statistics show that the total
sown area of crops in Jiangsu fell from 8582 thousand hectares in 1978 to 7442 thousand
hectares in 2019—a decrease of 14%. Furthermore, the sown area of food crops dropped
from 6311 thousand hectares in 1978 to 5381 thousand hectares in 2019—a 15% decrease.
Previous studies have suggested that changes in land use in Jiangsu show a significant
transformation of cultivated land to urban and rural construction land, waters, forests
and grasslands [17]. To protect and improve the quality and quantity of cultivated land
resources, the Jiangsu Provincial Government issued a series of policies and regulations,
such as “Regulations of Jiangsu province on the Quality Management of Cultivated Land”
in 2012. Moreover, Jiangsu is facing the pressure of ecological environmental protection. As
the Jiangsu province Chemical Fertilizer Reduction and Efficiency Action Implementation
Plan (2018–2022) points out, agricultural production requires a great reduction in chemical
fertilizer input. The latest data from provincial statistics show that the scalar amount
of agricultural chemical fertilizers in Jiangsu declined from 3.38 million tons in 2001 to
2.86 million tons in 2019—a 16% decrease [3]. The current situation of China’s agriculture
is that the eastern coastal areas are the most developed, gradually lagging behind from east
to west, showing a ladder-style development situation, and the agricultural development
in Jiangsu province is exactly similar, so there must be similar conclusions between the
two, from the research in Jiangsu province to get conclusions, and then analogous to other
provinces in the country. Studying the agricultural production status in various regions of
Jiangsu province, and the conclusions thereof, are of representative significance.

The marginal contribution of agricultural inputs depends not only on changes in the
number of input factors, but also on environmental factors such as climate change [18].
China’s agricultural sector provides food for 22% of the world’s population, utilizing
just 8% of its land, which has caused a series of resource and environmental issues [19].
Climatic changes in temperature and precipitation have significantly influenced agricultural
production in China [18]. A favorable environment can promote an increase in agricultural
output, whereas a harsh environment will reduce output. Therefore, learning how to deal
with the impact of environmental factors, such as climate change, is necessary. Based on
this, two hypotheses are proposed. First, because of the limit of arable land resources and
intermediate resources, land and fertilizers may be input products that contribute more to
agricultural production. Second, good temperature and precipitation will push agricultural
production closer to the optimal scale, and high temperature or excessive precipitation will
lead to an increase in inefficiency in Jiangsu’s agricultural production. Therefore, learning
how to deal with the impact of environmental factors, such as climate change, is necessary.

Do reduced inputs increase inefficiency in Jiangsu’s agricultural production, or do
they push its agricultural production closer to the optimal scale? What role do agricultural
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inputs (including land, labor, agricultural machinery, fertilizers, and pesticides) play in
agricultural production? Does climate change affect the marginal product of agricultural
inputs? The answers to these questions can help the government enforce effective policies to
ensure the better use of natural resources for agricultural development and environmental
protection [1]. This study introduces a non-parametric method to estimate the marginal
product of each input resource and efficiency in prefecture-level cities in Jiangsu province
from 2001 to 2018 (Figure 1). Then, an econometric model is used to measure the effect of
government land policies on the marginal products of inputs and final production.
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Figure 1. Agricultural inefficiency in different cities of Jiangsu province.

This study contributes to the existing literature in two significant ways. First, to the
best of our knowledge, it is the first of its kind at the prefectural level in Jiangsu province to
identify the contribution of agricultural inputs to agricultural production based on shadow
value estimates, including agricultural land, labor, machinery, chemical fertilizers, and
pesticides. Second, given that climate change is a long-term factor affecting agricultural
production, this research considers the effect of climate change on each agricultural input,
and whether there is room for improvement. Moreover, it provides empirical evidence on
how climate change affects the marginal products of agricultural inputs.

The remainder of this article is organized as follows. Section 2 elaborates on the
literature on the importance of agricultural inputs, the methods of measuring agricultural
inputs’ marginal products and agricultural efficiency, and the influence of climate change
on agricultural production. Section 3 presents the data and methodology of the study.
Section 4 describes our empirical results. Finally, Section 5 summarizes the conclusions and
provides policy implications.

2. Literature Review
2.1. Agricultural Inputs and Their Importance to Agricultural Growth in China

Many studies have examined the contribution of agricultural inputs (e.g., labor, land,
fertilizers, and agricultural machinery) to agricultural production in China, reaching the
unanimous conclusion that they play a critical role in China’s agricultural growth. For
example, Shu et al. (2019) [6] found the elasticity of land input to be the largest in China’s
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agricultural production. However, the marginal product of land in Zhejiang province was
lower than those of labor and capital according to Yang (2009) [20]. Nevertheless, because
land intensification was still not high, it could be replaced by labor and capital elements.
According to Li (2019) [21], labor elasticity has been stable in China, while the elasticity
coefficients of capital and land have increased since 2000. Shen et al. (2019) [22] found that
fertilizers and agricultural machinery were the primary sources of agricultural economic
growth in Sichuan Province. Zhang et al. (2016) [23] suggested that fertilizer, irrigation and
mechanical inputs have had a statistically significant positive effect on wheat yield in China,
whereas Wu (2010) [24] found that labor and capital were the most critical determinants of
provincial agricultural output in the country.

Furthermore, agricultural production efficiency and inputs’ use efficiency were also
examined. Ma et al. (2021a, 2021b) [25] investigated agricultural production efficiency
and fertilizer use efficiency in China, and found that the country’s agricultural production
efficiency level was relatively low, with a fertilizer use efficiency of only 25.4%. Ye et al.
(2020) [26] measured the efficiency of agricultural land use at the county level in China,
and showed that land-use efficiency was lower than 70% in more than 70% of counties in
the country. Yu et al. (2019) [27] investigated the causal relationship between land use and
socio-economic development of urban agglomerations. They found that the average urban
land-use efficiency of urban agglomerations in China was not high. Using Germany as a
case study to analyze the effects of crop inputs on wheat output under the influence of
climatic factors, Albers et al. (2017) [28] showed that changes in inputs explained 49% of
wheat yield fluctuations in Germany. However, most studies have focused on estimating
the elasticity coefficient or marginal products of each input factor, but did not identify
how each decision-making unit (DMU) can improve agricultural production efficiency by
increasing a specific input resource during the observation period.

2.2. The Related Methods

Different methods have been employed to investigate the importance or contribution
of agricultural inputs to agricultural production. Shen et al. (2019) [22] used the Cobb-
Douglas function to calculate the elasticity of agricultural inputs and estimated future
agricultural production indicators in Sichuan province by building a grey model (1,1).
Shu et al. (2019) [6] employed the constant elasticity of substitution production function to
measure the contribution of agricultural inputs to agricultural production in China. Chen
and Hu (2016) [29] used the Tobit model to analyze the effect of fertilizer, mechanization,
and human capital level on the output of japonica rice. Li et al. (2014) [30] used Griliches’
production function to analyze the contribution of input factors to agricultural output in
light of significant institutional changes.

Agricultural production efficiency measures the distance between the actual output of
agricultural activities and the optimal output (production frontier) using the same amount
of agricultural resource input; the closer the distance between them, the higher the overall
efficiency of agricultural production. There are two main approaches for measuring the
efficiency of agricultural output: parametric and non-parametric. Parametric methods
typically use stochastic frontier analysis (SFA), whereas non-parametric methods typically
use data envelopment analysis (DEA).

Meeusen and Broeck (1977) [31] proposed and developed stochastic frontier produc-
tion functions under specific technical conditions; Aigner et al. (1977) [32] and Battese
and Coelli (1993) [33] studied the functional relationship between input factors and the
maximum yield, and a combination of production factors was given. In particular, it is often
combined with the translog production function, which is a variable elastic production
function model, and can be easily estimated with strong tolerance [34]. From a structural
perspective, it is classified as a quadratic response surface model. This means that it can
better capture the relationship among inputs in the production function, the differences
in technological progress of various inputs, and changes in technological advancement
over time [34]. For example, Wang and Wu (2015) [34] employed SFA to investigate the
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production efficiency of the corn industry in different provinces in China, whereas Cheng
et al. (2016) [35] used an SFA model beyond the logarithmic production function to examine
the efficiency loss caused by factor misplacement in agricultural production in the country.

Charnes et al. (1978) [36] proposed the non-parametric DEA method based on Farrell’s
(1957) [37] theory. This typically uses a set of input and output datasets to build parametric
segmentation surfaces on data points to obtain boundary production and distance functions
that estimate productivity. Jiao (2013) [38] used a three-stage DEA model to calculate the pure
technical efficiency, scale efficiency, and comprehensive efficiency of agricultural production
in Shandong province. In addition, spatial measurement models were employed to measure
agricultural production efficiency. For example, Wu (2010) [24] used the spatial lag and
spatial error models to explore the output elasticity of agricultural inputs in China. Ma et al.
(2021a) [25] employed a spatial econometric model to calculate the production efficiency of
China’s agricultural production and its temporal changes between 1990 and 2017.

In summary, both parametric and non-parametric methods have been widely applied
to calculate technical efficiency by constructing production frontier models in the field of
agricultural research. On one hand, the parametric approach uses a predefined production
function to build the production frontier, and employs a conditional expectation of the
technical inefficiency term as technical efficiency. On the other hand, the non-parametric
approach can calculate efficiency through linear programming, with one of its advantages
being that only input-output data are required, and it precludes the need for functional
forms of production boundaries. As the actual production function is always unknown,
this study employs a non-parametric method to calculate the efficiency of agricultural
production in Jiangsu province.

2.3. The Effect of Climate Change on Agricultural Production

Recently, the effect of climate change on agricultural production has attracted widespread
attention from governments and academia. Climate change could affect the production envi-
ronment, which might lead to changes in agricultural production inputs and outputs [39]. For
example, increases in temperature and carbon dioxide levels can enhance the yields of some
crops, while climatic changes that cause severe drought and floods are harmful to agricultural
production. In particular, temperature and precipitation are two of the most critical indicators
used to study the influence of climate change on agricultural production [40]. Previous
studies have shown that climate change has a negative effect on total factor production, and
furthermore, high temperature has a negative effect on labor and fertilizers, but has no effect
on machinery in the short term [18]. Yi et al. (2021) [19] found that agricultural research
investment has regional differences in addressing the effect of climate change on agricul-
tural productivity, and the annual average temperature has a positive effect on agricultural
productivity. The existing research on climate change on agricultural production pays more
attention to agricultural production efficiency, or a certain agricultural input factor, but few
studies focus on the effect of climate change on each agricultural input. Studying the contri-
bution of each agricultural input (including land, labor, agricultural machinery, fertilizers
and pesticides) to agricultural production when climate changes can determine the room
for improvement in agricultural production, which can help the government and farmers
respond to changes in the production environment in a more targeted manner. Despite many
studies on the effect of climate change on agricultural output, few have examined the effect of
climate change on the marginal contribution of inputs in agricultural production. This study
focuses on the relationship between climate change and the marginal product of agricultural
inputs, providing a new research perspective.

3. Materials and Methods
3.1. Data

This study examines balanced panel data of the main prefecture-level cities in Jiangsu
province from 2001 to 2018. The data were divided into input and output. Inputs includes
labor force (10,000 people), cultivated land area (1000 hectares), total power of agricultural
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machinery (10,000 kWh), chemical fertilizer (10,000 tons), and pesticides (10,000 tons).
Output represents the agricultural gross output value (billion USD) of the prefecture-level
city and has been deflated based on the 2011 level. All data were obtained from the
Statistical Yearbook of Jiangsu province from 2001 to 2018.

Table 1 presents the summary statistics of the variables used in the analysis. The results
show that labor, fertilizers and pesticides have a downward decreasing trend, whereas
land has an upward trend, first increasing and then decreasing over the same period. The
total power of agricultural machinery and agricultural gross output value increases over
the analysis period.

Table 1. Descriptive statistics of agricultural inputs and outputs.

Year Labor Land Machinery Fertilizers Pesticides Output

2001 111.69 590.29 228.81 26.00 0.70 2.18
2002 104.16 588.77 229.53 25.95 0.66 2.22
2003 94.64 576.11 233.75 25.68 0.68 1.78
2004 87.47 582.07 234.37 25.89 0.71 2.04
2005 81.41 586.81 242.78 26.22 0.79 1.97
2006 75.54 584.62 261.18 26.38 0.76 2.09
2007 71.55 567.76 260.95 26.31 0.74 2.06
2008 68.95 584.60 279.30 26.21 0.72 2.26
2009 67.41 591.81 293.12 26.46 0.71 2.62
2010 66.14 601.31 302.87 26.24 0.69 2.79
2011 63.21 603.76 315.85 25.94 0.67 2.97
2012 61.23 606.37 324.20 25.46 0.64 3.33
2013 59.70 606.08 339.53 25.14 0.62 3.63
2014 58.62 603.75 357.69 24.89 0.61 3.90
2015 56.62 603.51 371.37 24.61 0.60 4.17
2016 55.59 595.53 377.43 24.04 0.59 4.25
2017 55.59 583.64 383.95 23.37 0.56 4.33
2018 54.46 578.50 387.87 22.49 0.54 4.45

Notes: A fixed exchange rate is employed; 1 USD is equal to 6.5 RMB. Data sources: Statistical yearbook of
Jiangsu province.

3.2. Method of Estimating Marginal Product by Shadow Price Ratio

Assume that there are K DMUs, namely, cities in the Jiangsu province of China. The
production technology includes inputs and outputs of the agricultural sector, and x =
(x1, . . . , xn) ∈ RN

+ represents N types of inputs (e.g., labor, land), y = (y1, . . . , ym) ∈ RM
+

are M types of outputs (e.g., GDP), and T is the production technology defined as follows:

T = {(x, y) : x can produce y} (1)

To eliminate the influence of heterogeneity in the sample, we assumed variable re-
turns to scale (VRS) for the agricultural sector’s production technology, which could be
represented based on an output-oriented directional distance function. The inefficiency
score was computed by the directional distance function, which is the difference between
the evaluated DMUs and their benchmarks. For instance, 1% inefficiency suggests that the
evaluated DMU can increase its agricultural output by 1%, given a certain level of inputs,
whereas zero inefficiency implies that the evaluated city is on the production frontier
serving as the benchmark. The directional distance function (D) can be defined as

D̂
(

x, y; gx, gy
)
= sup

δ

{
δ ∈ <+ :

(
x− δgx, y + δgy

)
∈ T̂

}
(2)

where δ is the inefficiency score that represents the potential expansion of the outputs and
the reduction in inputs. By applying the output-oriented directional distance function,
the direction vectors of (gx, gy) = (0, ym

k ) are initialized. λk is the activity variable that
represents the reference set. For instance, “k” cities are included in the reference set of the
evaluated DMU if λk is greater than 0.
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The linear program of estimating the shadow price is given as

D(x, y; gx, gy) = min
πy ,πx ,φ

φ− (
M
∑

m=1
πm

y ym
k′ −

N
∑

n=1
πn

x xn
k′)

s.t.
M
∑

m=1
πm

y ym
k −

N
∑

n=1
πn

x xn
k ≤ φ, k = 1, . . . , K

M
∑

m=1
πm

y gm
y +

N
∑

n=1
πn

x gn
x = 1

πm
y ≥ 0, m = 1, . . . , M

πn
x ≥ 0, n = 1, . . . , N

(3)

where φ is the shadow profit to be computed, which also allows for VRS; and πm
y and

πn
x are the shadow output and input values, respectively. The objective function is

set to minimize the difference between the shadow profit (φ) and the evaluated profit(
∑M

m=1 πm
y ym

k′ −∑N
n=1 πn

x xn
k′

)
. ∑M

m=1 πm
y gm

y + ∑N
n=1 πn

x gn
x = 1 is the constraint on the direc-

tional distance function.
Although the shadow values have no intrinsic meaning, their ratio between inputs and

outputs may provide useful information for policymakers. The marginal product between
output (πy) and input (πx) can be expressed as:

dy
dx

= −
∂D
∂x
∂D
∂y

=
πx

πy
(4)

In the empirical analysis, the shadow price ratios between the inputs and outputs are
investigated. Table 2 presents the shadow price ratios and their economic interpretations.

Table 2. Economic interpretation of shadow price ratios.

Notation Economic Interpretation Formula

SPLabor
The GDP expansion resulting from an extra unit of labor use,
or the marginal product of labor.

πLabor
πGDP

SPLand
The GDP expansion resulting from an extra unit of land use,
or the marginal product of land.

πLand
πGDP

SPMachinery
The GDP expansion resulting from an extra unit of machinery
use, or the marginal product of machinery.

πMachinery
πGDP

SPFertilizer
The GDP expansion resulting from an extra unit of fertilizer
use, or the marginal product of fertilizers.

πFertilizer
πGDP

SPPesticide
The GDP expansion resulting from an extra unit of pesticide
use, or the marginal product of pesticides.

πPesticide
πGDP

It is noteworthy that some inputs’ shadow value might be zero because of multiple
solutions in linear programming. The zero value suggests that such inputs may be less
important during the production process. The high frequency of a non-zero value indicates
that this input plays a significant role in producing the corresponding output—in other
words, it is scarce.

3.3. Econometric Strategy

One of this study’s significant purposes is to capture the effect of climate change on
the marginal products of land and other agricultural input factors. The empirical model
was formulated as follows

spinputit = α + βclimateit + γXit + µt + εit (5)

where spinputit is the marginal product of land or the fertilizer factor in city i in year t, and
climateit is a climatic variable, including temperature and precipitation. This study selected
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annual average temperature (◦C) and annual precipitation to measure the climate changes.
Xit is the control variable which included the proportion of crop output value in the output
value of agriculture and the amount of each agricultural input, µt is the fixed year effect,
and εit is the random disturbance term.

A fixed-effect model was employed to estimate Equation (5). Given that limited
variables are used in the regression model, we chose the fixed-effects model instead of
the random-effects model, as the results of the fixed-effect model are always consistent
regardless of whether the invariant omitted estimators are correlated with the error terms.
When the invariant omitted estimators are associated with the error terms, random-effects
models are inconsistent.

4. Results

The estimation results show that, as a whole, agricultural inefficiency in Jiangsu
province increased from 2001 to 2018, despite some sharp fluctuations (Figure 2). The
average annual growth rate was 6.6%, and reached a maximum of 21% in 2017. In particular,
agricultural inefficiency moved by approximately 10% from 2001 to 2012. After 2012, it
showed a rapid upward trend, especially after 2015. From 2016 to 2018, agricultural
inefficiency remained at approximately 20%. These results suggest that there is still room
for improving agricultural productivity in Jiangsu province.
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Figure 2. Changes in agricultural inefficiency in Jiangsu province.

Comparing the changes in agricultural inefficiency in each city of Jiangsu province from
2001 to 2018, the trends in most cities are consistent with the overall trend of Jiangsu province
(Figure 1). In only a few cities, such as Nanjing and Wuxi, the inefficiency level remained
at 0%. However, in Lianyungang, Suqian, and Huai’an, the inefficiency level exhibited an
upward trend. The results indicate that there is great potential for agricultural growth in
many cities in Jiangsu province. They also suggest that each city should treat itself as a DMU
to determine the possible policies or measures to improve its production efficiency.

Given that agricultural inefficiency in most cities in Jiangsu province increased from
2001 to 2008, we then identified which input factors could improve production efficiency.
The average marginal products of agricultural inputs in Jiangsu province from 2001 to
2018 are presented in Table 3. The marginal products of agricultural land, labor, machin-
ery, chemical fertilizers, and pesticides are 1.54 thousand USD per hectare, 0.32 thousand
USD per person, 0.31 thousand USD per kWh, 21.63 thousand USD per ton and 0.88 USD
per ton, respectively. In particular, in Changzhou, where the marginal contribution rate
of land elements is the highest, the marginal product of land is 3.58 thousand USD per
ha. Yancheng has the highest marginal product of labor (1.77 thousand USD per per-
son), namely, labor productivity. Taizhou has the highest marginal product of machinery
(1.05 thousand USD per kWh). In Zhenjiang City, which has the highest marginal contri-
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bution rate of fertilizer elements, every additional ton of fertilizer input could increase
agricultural GDP by 243.73 thousand USD.

Table 3. The marginal products of inputs at the city level.

City SPLand SPLabor SPMachinery SPFerilizer SPPesticide

Unit 103$/ha 103$/Person 103$/kwh 103$/ton $/ton

Changzhou 3.58 0.00 0.08 15.18 0.00
Huai’an 1.39 0.47 0.16 2.88 3.83

Lianyungang 3.79 0.00 0.19 0.00 3.83
Nanjing 1.21 1.21 0.07 2.99 0.00
Nantong 0.05 0.00 0.00 7.74 0.00
Suqian 1.88 0.14 0.44 3.33 0.00
Suzhou 3.56 0.00 0.04 1.00 3.83
Taizhou 0.13 0.05 1.05 0.54 0.00

Wuxi 2.90 0.02 0.41 1.47 0.00
Xuzhou 1.06 0.00 0.00 1.31 0.00

Yancheng 0.34 1.77 0.00 0.79 0.00
Yangzhou 0.00 0.40 1.04 0.28 0.00
Zhenjiang 0.15 0.09 0.52 243.73 0.00

Average 1.54 0.32 0.31 21.63 0.88
Notes: A fixed exchange rate is employed; 1 USD is equal to 6.5 RMB.

It is worth noting that a high marginal product value suggests a lack in the corresponding
input, while a zero value indicates a relatively abundant resource. Thus, the zero value of the
marginal product of pesticides indicates that this input is not scarce in Jiangsu province.

We utilized an econometric model to identify the effect of climate change, in terms of
temperature and precipitation, on marginal products of agricultural inputs. Table 4 shows
the regression results of the average annual temperature on marginal products. In the short
term, the increase in temperature significantly enhances the marginal products of fertilizers
and machinery. In the short term, the increase in ambient temperature will accelerate
the loss of nutrients. To cope with this, farmers will increase the input of fertilizers and
other chemicals; therefore, in the short term, as the investment in fertilizers increases, the
marginal fertilizer product will increase. It is worth noting that changes in temperature also
have a significant effect on the marginal products of agricultural machinery, and a possible
explanation is that as the temperature rises, the uncertainty of agricultural production
increases, and farmers will invest more in mechanical technology to maintain production
stability. Therefore, in the short term, as the machinery input increases, so too will the
marginal machinery product. Table 5 shows the effect of annual precipitation on marginal
products. The regression results indicate that the increase in annual precipitation reduces
the marginal contribution of land significantly, which may be because of the increase in
precipitation destroying the soil structure. The marginal contribution of temperature and
precipitation to other agricultural inputs does not have a significant effect in the short term.

Table 4. The effect of temperature on the marginal product.

(1) (2) (3) (4)

Variables Spland Lnspfertilize Lnsplabor Lnspmachinery

temperature 0.203 0.366 * 0.208 0.328 **
(1.22) (1.81) (0.75) (2.38)

share 4.941 * 1.460 7.866 * 0.494
(1.79) (0.63) (1.84) (0.22)

land 0.002
(0.81)

fertilizer −0.007
(−0.13)
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Table 4. Cont.

(1) (2) (3) (4)

Variables Spland Lnspfertilize Lnsplabor Lnspmachinery

labor −0.020
(−0.79)

machinery −0.012 **
(−2.55)

Constant −133.543 *** −193.468 *** −64.797 −192.545 ***
(−3.09) (−3.43) (−0.42) (−3.21)

Year Fe YES YES YES YES
Observations 106 105 36 76

R-squared 0.168 0.207 0.411 0.223
Notes: t-statistics in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 5. The effect of precipitation on the marginal product.

(1) (2) (3) (4)

Variables Spland Lnspfertilize Lnsplabor Lnspmachinery

precipitation −0.009 ** −0.007 −0.001 0.002
(−2.15) (−1.52) (−0.22) (0.52)

share 5.443 ** 1.901 8.192 * 1.326
(2.02) (0.81) (1.82) (0.57)

land 0.001
(0.45)

fertilizer −0.007
(−0.14)

labor −0.018
(−0.71)

machinery −0.012 **
(−2.51)

Constant −137.493 *** −209.977 *** −73.755 −188.414 ***
(−3.23) (−3.66) (−0.47) (−2.94)

Year Fe YES YES YES YES
Observations 106 105 36 76

R-squared 0.195 0.198 0.398 0.155
Notes: t-statistics in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1.

5. Conclusions

This study first investigates the efficiency of Jiangsu province’s agricultural produc-
tion in China from 2001 to 2018. Then, a robust non-parametric model is introduced to
explore the shadow price and marginal products of inputs. Finally, an econometric model
was utilized to examine the effect of climate change on the marginal product of agricul-
tural inputs. The empirical results show an increasing trend of agricultural production
inefficiency in Jiangsu province from 2001 to 2018, despite the existence of significant
differences in performance among different prefectures. Land and fertilizer inputs are the
two most important driving forces in agricultural production, as their maximum shadow
values are non-zero. Most prefectures improve their production efficiency by increasing
land and fertilizer inputs. The marginal products of agricultural land, labor, machinery,
chemical fertilizers, and pesticides are 1.54 thousand USD per hectare, 0.32 thousand USD
per person, 0.31 thousand USD per kWh, and 21.63 thousand USD per ton and 0.88 USD
per ton, respectively. Finally, higher temperature increased the marginal fertilizer and
machinery products significantly, whereas increased precipitation decreased the marginal
land product.

There are some clear lessons for the government in Jiangsu province. First, improving
agricultural factor productivity is key to promoting high-quality agricultural development
in Jiangsu province and ensuring the security of food supply. As an important agricultural
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province, Jiangsu plays a vital role in ensuring a stable supply of agricultural products,
and increasing agricultural productivity can help ensure food security. Therefore, under
the constraints of limited land resources, further enhancement of the marginal products
of agricultural inputs is of great importance to the strategy of “reserving grain on the
ground and storing grain on technology”. The empirical results show that agricultural
productivity in Jiangsu province still has room for improvement. For example, Jiangsu
province can further increase financial support, such as increasing investment in arable
land infrastructure, soil improvement, soil fertility cultivation, and dynamic monitoring.
Furthermore, it is essential to continuously strengthen and improve the agricultural tech-
nology extension system to increase the productivity of inputs by providing subsidies for
agricultural production resources.

Second, the government can better allocate inputs to improve agricultural production
efficiency in Jiangsu province. Each prefecture should consider itself a DMU to deter-
mine the possible policies or measures to improve its production efficiency. Given the
differences in the marginal output of agricultural inputs in various regions of Jiangsu
province, the heterogeneity of agricultural development among regions should be fully
considered when formulating agricultural development policies. The government should
continuously formulate differentiated agricultural development strategies and explore
agricultural development paths with regional characteristics, as different regions require
different improvement paths. For example, Lianyungang should focus on improving
the production efficiency of land and pesticides, whereas Nantong should focus more
on fertilizers. In addition, Jiangsu province should pay more attention to promoting the
improvement of agricultural production efficiency through institutional innovation. Fur-
thermore, the government of Jiangsu province should consider the establishment of an
inter-regional coordination and cooperation mechanism to guide each region regarding
rational investment, and to complement the use of agricultural production resources, thus
improving the spatial allocation efficiency of the resources and promoting the continuous
improvement of the overall production capacity of agriculture.

Third, the government should strengthen the construction of agricultural infra-structure
and formulate relevant policies to better cope with climate change to increase the marginal
contribution of agricultural inputs. Agricultural production is greatly affected by climate
change and how to respond accurately to climate changes is crucial for agricultural produc-
tion. Furthermore, climate change is uncontrollable; therefore, it is particularly important
to formulate reasonable and accurate policies in order to deal with it. The government
should provide input subsidies and implement policies to improve the marginal products
of inputs in agricultural production. In addition, owing to the differences in the natural en-
vironment, location, economic foundation, and other conditions, when formulating policies
to deal climate change, measures should be adapted to local conditions, and implemented
according to the differences in primary conditions.

The current study has the following limitations. First, we only used data from 2001
to 2018. Hence, future studies should extend the time span. Second, this study mainly
investigates the reasons for changes in the marginal products of agricultural inputs at the
prefectural level. Thus, future research should explore the reasons for such changes at
higher administrative levels.
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