Soil Fertility Improvement and Carbon Sequestration through Exogenous Organic Matter and Biostimulant Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Materials
Chopped Straw | 5.0 t h−1 | 25 g pot−1 |
UGmax (0.9 dm3 UGmax to 600 dm3 water) | 600 dm3 ha−1 | 0.003 dm3pot−1 |
CaO | 1500 kg ha−1 | 7.5 g pot−1 |
Nmin. (CO(NH2)2) | 30 kg ha−1 | 0.15 g pot−1 |
Cattle manure | 30 t ha−1 | 150 g pot−1 |
2.2. Methods
2.2.1. Basic Soil Parameters
2.2.2. Fractional Composition of Humus and Isolation of Humic Acids
2.2.3. Characteristics of Humic Acids
- A2/4—280 nm and 465 nm absorbance ratio;
- A2/6—280 nm and 665 nm absorbance ratio;
- A4/6—465 nm and 665 nm absorbance ratio;
- ΔlogK = log A400 – log A600 [51].
2.2.4. Statistical Analyses
3. Results and Discussion
3.1. Basic Parameters of Organic Matter
3.2. Properties of Humic Acids
3.2.1. Elemental Composition of Humic Acids
3.2.2. Spectrometric Parameters in the UV-VIS Range
3.2.3. Hydrophilic–Hydrophobic Properties of Humic Acids
3.2.4. EPR Spectroscopy
3.2.5. FT-IR Spectra of Humic Acids
- Group I comprises the HAs isolated from the soil samples with UGmax;
- Group II comprises the soil HAs of the remaining variants. However, this group includes subgroups that comprise:
- -
- Subgroup I—HAs of the soil without additives (K), the soil mixed with CaO (H) and the soil mixed with chopped straw (variants C and F);
- -
- Subgroup II—HAs of the soil mixed with manure, the soil from the 10–20 cm layer onto which a mulch of chopped straw was applied (A2) and the soil with chopped straw and CaO (B) and variant G (soil mixed with manure).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brevik, E.C. The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 2013, 3, 398–417. [Google Scholar] [CrossRef]
- Law, B.E.; Hudiburg, T.W.; Berner, L.T.; Kent, J.J.; Buotte, P.C.; Harmon, M.E. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl. Acad. Sci. USA 2018, 115, 3663–3668. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.G.; Chaki, A.K.; Farooq, M. Agricultural land degradation: Processes and problems undermining future food security. In Environment, Climate, Plant and Vegetation Growt; Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Ali Khan, I., Adnan, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 17–61. [Google Scholar]
- Scherr, S.J. Soil Degradation: A Threat to Developing-Country Food Security by 2020? International Food Policy Research Institute: Washington, DC, USA, 1999. [Google Scholar]
- Hari, V.; Rakovec, O.; Markonis, Y.; Hanel, M.; Kumar, R. Increased future occurrences of the exceptional 2018–2019 central European drought under global warming. Sci. Rep. 2020, 10, 12207. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- European Commision. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—The European Green Deal, Brussels. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0016.02/DOC_1&format=PDF (accessed on 11 December 2019).
- Robert, M. Soil Carbon Sequestration for Improved Land Management. In World Soil Resources Report; FAO: Rome, Italy, 2001; p. 75. [Google Scholar]
- Orlov, D.S. Humus Acids of Soils, 1st ed.; A.A. Balkema: Rotterdam, The Netherlands, 1986. [Google Scholar]
- Guimaraes, D.V.; Gonzaga, M.I.S.; da Silva, T.O.; da Silva, T.L.; da Silva Dias, N.; Silva Matias, M.I. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 2012, 126, 177–182. [Google Scholar] [CrossRef]
- Cao, Z.Y.; Wang, Y.; Li, J.; Zhang, J.J.; He, N.P. Soil organic carbon contents, aggregate stability, and humic acid composition in different alpine grasslands in Qinghai-Tibet Plateau. J. Mt. Sci. 2016, 13, 2015–2027. [Google Scholar] [CrossRef]
- Debska, B.; Dlugosz, J.; Piotrowska-Dlugosz, A.; Banach-Szott, M. The impact of a bio- fertilizer on the soil organic matter status and carbon sequestration—Results from a field-scale study. J. Soils Sediments 2016, 16, 2335–2343. [Google Scholar] [CrossRef]
- Rosa, E.; Debska, B. Seasonal changes in the content of dissolved organic matter in arable soils. J. Soils Sediments 2018, 18, 2703–2714. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Z.; Zhou, H.; Wang, D.; Peng, X. The efect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol. Sci. Rep. 2019, 9, 2505. [Google Scholar] [CrossRef] [Green Version]
- Debska, B.; Jaskulska, I.; Jaskulski, D. Method of tillage with the factor determining the quality of organic matter. Agronomy 2020, 10, 1250. [Google Scholar] [CrossRef]
- Banach-Szott, M.; Debska, B.; Tobiasova, E. Properties of humic acids depending on the land use in different parts of Slovakia. Environ. Sci. Pollut. Res. 2021, 28, 58068–58080. [Google Scholar] [CrossRef] [PubMed]
- Zsolnay, A. Dissolved humus in soil waters. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 171–223. [Google Scholar]
- Zsolnay, A. Dissolved organic matter: Artefacts, definitions and functions. Geoderma 2003, 113, 187–209. [Google Scholar] [CrossRef]
- Gonet, S.S.; Debska, B.; Pakula, J. The Content of Dissolved Organic Carbon in Soils and Organic Fertilizers; PTSH: Wroclaw, Poland, 2002. [Google Scholar]
- Bolan, N.S.; Adriano, D.C.; Kunhikrishnan, A.; James, T.; McDowell, R.; Senesi, N. Dissolved organic matter: Biogeochemistry, dynamics and environmental significance in soils. Adv. Agron. 2011, 110, 1–75. [Google Scholar] [CrossRef]
- Aranda, V.; Oyonarte, C. Characteristics of organic matter in soil surface horizons derived from calcareous and metamorphic rocks and different vegetation types from the Mediterranean high-mountains in SE Spain. Eur. J. Soil Biol. 2006, 42, 247–258. [Google Scholar] [CrossRef]
- Yang, Z.H.; Singh, B.R.; Sitaula, B.K. Soil organic carbon fractions under different land uses in Mardi Watershed of Nepal. Commun. Soil Sci. Plant Anal. 2006, 35, 615–629. [Google Scholar] [CrossRef]
- Kalbitz, K.; Solinger, S.; Park, J.H.; Michalzik, B.; Matzner, E. Controls on the dynamics of organic matter in soils: A review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Chantigny, M.H. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practice. Geoderma 2003, 113, 357–380. [Google Scholar] [CrossRef]
- Debska, B.; Drag, M.; Tobiasova, E. Effecf of post-harvest residue of maize, rapeseed, and sunflower on humic acids properties in various soils. Pol. J. Environ. Stud. 2012, 21, 603–613. [Google Scholar]
- Domingo-Olive, F.; Bosch-Serra, A.D.; Yague, M.R.; Poch, R.M.; Boixadera, J. Long term application of dairy cattle manure and pig slurry to winter cereals improves soil quality. Nutr. Cycl. Agroecosyst. 2016, 104, 39–51. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, N.; Xu, M.; Li, Z.; Lou, Y.; Chen, Y.; Wu, C.; Wang, Z. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system. Biol. Fertil. Soils 2015, 51, 583–591. [Google Scholar] [CrossRef]
- Zhang, J.; An, T.; Chi, F.; Wei, D.; Zhou, B.; Hao, X.; Jin, L.; Wang, J. Evolution over years of structural characteristics of humic acids in Black Soil as a function of various fertilization treatments. J. Soils Sediments 2019, 19, 1959–1969. [Google Scholar] [CrossRef]
- Debska, B.; Banach-Szott, M.; Dziamski, A.; Gonet, S.S. Chromatographic characteristics (HPLC, HPSEC) of humic acids of soil fertilised with various organic fertilisers. Chem. Ecol. 2010, 26, 49–57. [Google Scholar] [CrossRef]
- Ferreira, F.P.; Vidal-Torrado, P.; Otero, X.L.; Buurman, P.; Martin-Neto, L.; Boluda, R.; Macias, F. Chemical and spectroscopic characteristics of humic acids in marshes from the Iberian Peninsula. J. Soils Sediments 2013, 13, 253–264. [Google Scholar] [CrossRef]
- Enev, V.; Pospisilova, L.; Klucakova, M.; Liptaj, T.; Doskocil, L. Spectral characterization of selected humic substances. Soil Water Res. 2014, 9, 9–17. [Google Scholar] [CrossRef]
- Trubetskaya, O.E.; Trubetskoj, O.A.; Voyard, G.; Richard, C. Determination of hydrophobicity and optical properties of soil humic acids isolated by different methods. J. Geochem. Explor. 2013, 132, 84–89. [Google Scholar] [CrossRef]
- Tinoco, P.; Almendros, G.; Gonzalez-Vila, F.J.; Sanz, J.; Gonzalez-Perez, J.A. Revisiting molecular characteristics responsive for the aromaticity of soil humic acids. J. Soils Sediments 2015, 15, 781–791. [Google Scholar] [CrossRef]
- Rodriguez, F.J.; Schlenger, P.; Garcia-Valverde, M. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and H NMR techniques. Sci. Total Environ. 2016, 541, 626–637. [Google Scholar] [CrossRef]
- Hayes, M.H.B.; Swift, R.S. An appreciation of the contribution of Frank Stevenson to the advancement of studies of soil organic matter and humic substances. J. Soils Sediments 2018, 18, 1212–1231. [Google Scholar] [CrossRef]
- Dou, S.; Zhang, J.J.; Li, K. Effect of organic matter applications 13C-NMR spectra of humic acids of soil. Eur. J. Soil Sci. 2008, 59, 532–539. [Google Scholar] [CrossRef]
- Debska, B.; Drag, M.; Tobiasova, E.; Pakula, J. structural investigation of humic acids of forest soils by pyrolysis-gas chromatography. Pol. J. Environ. Stud. 2019, 28, 4099–4107. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. The comparison of the structure of humic acids from soil amended with different sources of organic matter. Pol. J. Soil Sci. 2015, 48, 57–64. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; An, T.; Wei, D.; Chi, F.; Zhou, B. Effects of long-term fertilization on soil humic acid composition and structure in Black Soil. PLoS ONE 2017, 12, e0186918. [Google Scholar] [CrossRef]
- Song, X.; Liu, J.; Jin, S.; He, X.; Liu, S.; Kong, X.; Dong, F. Differences of C sequestration in functional groups of soil humic acid under long term application of manure and chemical fertilizers in North China. Soil Tillage Res. 2018, 176, 51–56. [Google Scholar] [CrossRef]
- Khaliq, A.; Kaleem Abbasi, M.; Hussain, T. Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresur. Technol. 2006, 97, 967–972. [Google Scholar] [CrossRef]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol. 2010, 101, 4697–4702. [Google Scholar] [CrossRef]
- Mayer, J.; Scheid, S.; Widmer, F.; Fließbach, A.; Oberholzer, H.R. How effective are Effective microorganisms (EM)? Results from a field study in temperate climate. Appl. Soil Ecol. 2010, 46, 230–239. [Google Scholar] [CrossRef]
- Dineshkumar, R.; Subramanian, J.; Gopalsamy, J.; Jayasingam, P.; Arumugam, A.; Kannadasan, S.; Sampathkumar, P. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valorization 2019, 10, 1101–1110. [Google Scholar] [CrossRef]
- Pranagal, J.; Ligeza, S.; Smal, H. Impact of effective microorganisms (EM) application on the physical condition of Haplic Luvisol. Agronomy 2020, 10, 1049. [Google Scholar] [CrossRef]
- Wu, S.C.; Cao, Z.H.; Li, Z.G.; Cheung, K.C.; Wong, M.H. Effects of biofertilizer containing N-fixer, P and K solublizers and AM fungi on maize growth: A greenhouse trial. Geoderma 2005, 125, 155–166. [Google Scholar] [CrossRef]
- Piotrowska, A.; Długosz, J.; Zamorski, R.; Bogdanowicz, P. Changes in some biological and chemical properties of an arable soil treated with the microbial biofertilizer UGmax. Pol. J. Environ. Stud. 2012, 21, 455–463. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. In International for Soil Classification System for Naming Soil and Creating Legends for Soil Maps; World Soil Resources Reports No 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Schnitzer, M.; Khan, S.U. Humic Substances in the Environment; Marcel Dekker: New York, NY, USA, 1972. [Google Scholar]
- Kumada, K. Chemistry of Soil Organic Matter; Elsevier: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Debska, B.; Spychaj-Fabisiak, E.; Szulc, W.; Gaj, R.; Banach-Szott, M. EPR Spectroscopy as a tool to characterize the maturity degree of humic acids. Materials 2021, 14, 3410. [Google Scholar] [CrossRef] [PubMed]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley and Sons: New York, NY, USA, 1983. [Google Scholar]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Aye, N.S.; Sale, P.W.G.; Tan, C. The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils. Biol. Fertil. Soils 2016, 52, 697–709. [Google Scholar] [CrossRef]
- Ventorino, V.; De Marco, A.; Pepe, O.; De Santo, A.V.; Moschetti, G. Impact of innovative agricultural practices of carbon sequestration on soil microbial community. In Carbon Sequestration in Agricultural Soils; Piccolo, A., Ed.; Springer: Berlin, Germany, 2012; pp. 145–178. [Google Scholar] [CrossRef]
- Chen, J.; Baohua, G.; Eugene, J.; Boeuf, L.; Pan, H.; Dai, S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 2002, 48, 59–68. [Google Scholar] [CrossRef]
- Kawasaki, S.; Ikeya, K.; Sugiura, Y.; Watanabe, A. Changes in the composition of humic acids in various upland field soils with a continuous application of an organic amendment as revealed by fractional precipitation analysis. Soil Sci. Plant Nutr. 2015, 61, 450–460. [Google Scholar] [CrossRef]
- Tan, H.K. Humic Matter in Soil and the Environment, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Jimenez-Gonzalez, M.A.; Almendros, G.; Waggoner, D.C.; Alvarez, A.M.; Hatcher, P.G. Assessment of the molecular composition of humic acid as an indicator of soil carbon levels by ultra-high-resolution mass spectrometric analysis. Org. Geochem. 2020, 143, 104012. [Google Scholar] [CrossRef]
- Zavyalova, N.E. Elemental composition of humic acids of sod-podzolic clay loam soil of Cisuralia during long-term use of fertilizer systems. Russ. Agric. Sci. 2010, 37, 140–142. [Google Scholar] [CrossRef]
- Woelki, G.; Friedrich, S.; Hanschmann, G.; Salzer, R. HPLC fractionation and structural dynamics of humic acids. Fresen. J. Anal. Chem. 1997, 357, 548–552. [Google Scholar] [CrossRef]
- Preuße, G.; Friedrich, S.; Salzer, R. Retention behavior of humic substances in reversed phase HPLC. Fresenius J. Anal. Chem. 2000, 368, 268–273. [Google Scholar] [PubMed]
- Kumada, K. Elementary composition and absorption spectra of humic and fulvic acids. Soil Sci. Plant Nutr. 1985, 31, 437–448. [Google Scholar] [CrossRef]
- Senesi, N.; Loffredo, E. The chemistry of soil organic matter. In Soil Physical Chemistry; Sparks, D.L., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 242–345. [Google Scholar]
- Christofiridis, K.C.; Un, S.; Deligiannakis, Y. High-Field 285 GHz Electron Paramagnetic Resonance study of indigenous radicals of humic acids. J. Phy. Chem. A 2007, 111, 11860–11866. [Google Scholar] [CrossRef] [PubMed]
- Jezierski, A.; Czechowski, F.; Jerzykiewicz, M.; Golonka, I.; Drozd, J.; Bylinska, E.; Chen, Y.; Seaward, M.R.D. Quantitative EPR study on free radicals in the natural polyphenols interacting with metal ions and other environmental pollutants. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Jezierski, A.; Skrzypek, G.; Jezierski, P.; Paul, D.; Jedrysek, M.O. Electron paramagnetic resonance (EPR) and stable isotope records of paleoenvironmental conditions during peat formation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 69, 1311–1316. [Google Scholar] [CrossRef]
- Barancikova, G.; Jerzykiewicz, M.; Gomoryova, E.; Tobiasova, E.; Litavec, T. Changes in forest soil organic matter quality affected by windstorm and wildfire. J. Soils Sediments 2018, 18, 2738–2747. [Google Scholar] [CrossRef]
Symbol | Object of Experiment |
---|---|
A * | Mulch of chopped residual surface straw from the pot |
B | Chopped straw + CaO mixed with soil |
C | Chopped straw + Nmin. ** mixed with soil |
D | Chopped straw + UGmax *** mixed with soil |
E | UGmax mixed with soil |
F | Chopped straw mixed with soil |
G | Manure mixed with soil |
H | CaO mixed with soil |
K | Control |
Sample | TOC | Nt | TOC/Nt | DOC | DOC | DNt | DNt |
---|---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | % | mg kg−1 | % | |||
A1 | 22.35 ± 0.61 * | 2.49 ± 0.16 a | 9.01 ab | 286.1 ± 14.1 a | 1.28 ± 0.06 bc | 53.4 ± 1.7 a | 2.14 ± 0.07 ab |
A2 | 13.34 ± 073 bc | 1.14 ± 0.11 de | 8.75 ab | 165.9 ± 15.0 bcd | 1.24 ± 0.1 bc | 27.2 ± 0.4 cd | 2.39 ± 0.03 a |
B | 14.19 ± 0.73 b | 1.65 ± 0.09 b | 8.59 b | 179.0 ± 12.2 b | 1.26 ± 0.09 bc | 28.8 ± 1.6 c | 1.74 ± 0.10 c |
C | 11.77 ± 0.64 cde | 1.34 ± 0.25 cd | 8.79 ab | 164.5 ± 12.4 bcd | 1.40 ± 0.10 b | 17.5 ± 1.5 f | 1.31 ± 0.11 d |
D | 11.52 ± 0.48 de | 1.32 ± 0.07 cd | 8.74 ab | 141.3 ± 6.8 de | 1.23 ± 0.06 bc | 17.7 ± 0.9 f | 1.34 ± 0.07 d |
E | 10.82 ± 0.78 ef | 1.24 ± 0.05 cd | 8.71 ab | 124.6 ± 5.3 e | 1.15 ± 0.05 c | 27.9 ± 1.7 c | 2.25 ± 0.14 a |
F | 12.61 ± 0.31 bcd | 1.48 ± 0.12 bc | 8.53 b | 151.8 ± 5.5 bcde | 1.20 ± 0.04 bc | 35.7 ± 2.3 b | 2.41 ± 0.15 a |
G | 14.32 ± 0.33 b | 1.54 ± 0.19 b | 9.33 ab | 166.2 ± 4.4 bcd | 1.16 ± 0.03 c | 20.0 ± 1.1 ef | 1.29 ± 0.07 d |
H | 9.69 ± 0.70 f | 1.06 ± 0.05 e | 9.11 ab | 172.4 ± 4.9 bc | 1.78 ± 0.05 a | 19.8 ± 1.0 ef | 1.87 ± 0.10 bc |
K | 12.26 ± 0.65 cde | 1.31 ± 0.08 cd | 9.37 a | 148.4 ± 6.4 cde | 1.21 ± 0.05 bc | 23.6 ± 1.4 de | 1.80 ± 0.11 c |
DOC | DNt | CHAs | CFAs | NHAs | NFAs | CHAs | CFAs | Ch | NFAs | Nh | |
---|---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 | % | ||||||||||
TOC | 0.908 | 0.835 | 0.676 | 0.961 | 0.861 | 0.849 | - | −0.778 | 0.726 | −0.793 | 0.552 |
Nt | 0.870 | 0.827 | 0.567 | 0.881 | 0.746 | 0.800 | −0.629 | −0.797 | 0.763 | −0.917 | 0.756 |
Sample | Cd | CFAs | CHAs | CHAs/ CFAs | Cd | CFAs | CHAs | Ch |
---|---|---|---|---|---|---|---|---|
mg kg−1 | % of TOC | |||||||
A1 | 260.8 ± 5.1 ab* | 2757.5 ± 58.5 a | 1948.5 ± 32.3 b | 0.71 e | 1.17 ± 0.02 f | 12.34 ± 0.26 g | 8.72 ± 0.14 f | 77.78 ± 0.37 a |
A2 | 219.4 ± 7.9 cde | 2065.0 ± 21.3 bc | 1751.0 ± 25.8 c | 0.85 bc | 1.64 ± 0.06 cd | 15.48 ± 0.16 bc | 13.13 ± 0.19 b | 69.75 ± 0.08 e |
B | 202.9 ± 12.3 ef | 2013.1 ± 15.9 c | 1629.9 ± 26.9 d | 0.81 cd | 1.43 ± 0.09 e | 14.19 ± 0.11 e | 11.49 ± 0.19 d | 72.90 ± 0.21 b |
C | 243.0 ± 7.2b ce | 1715.6 ± 35.4 e | 1395.4 ± 13.3 e | 0.81 cd | 2.06 ± 0.06 b | 14.57 ± 0.30 de | 11.86 ± 0.11 d | 71.50 ± 0.31 cd |
D | 217.3 ± 3.1 df | 1743.1 ± 25.0 e | 1249.9 ± 14.5 f | 0.72 e | 1.89 ± 0.03 bc | 15.13 ± 0.22 cd | 10.84 ± 0.13 e | 72.13 ± 0.15 bc |
E | 280.5 ± 8.3 a | 1743.1 ± 33.4 e | 1355.4 ± 23.0 e | 0.78 de | 2.59 ± 0.08 a | 16.10 ± 0.31 ab | 12.53 ± 0.21 c | 68.78 ± 0.59 f |
F | 194.6 ± 7.1 f | 1848.8 ± 12.5 d | 1603.3 ± 19.4 d | 0.87 b | 1.54 ± 0.06 de | 14.66 ± 0.10d e | 12.71 ± 0.15 bc | 71.08 ± 0.29 d |
G | 233.1 ± 2.9 cd | 2148.1 ± 27.3 b | 2135.9 ± 10.0 a | 0.99 a | 1.63 ± 0.02 de | 15.00 ± 0.19 cd | 14.92 ± 0.07 a | 68.45 ± 0.27 f |
H | 270.8 ± 15.7 a | 1605.0 ± 22.8 f | 1403.5 ± 20.8 e | 0.87 b | 2.79 ± 0.16 a | 16.56 ± 0.23 a | 14.48 ± 0.21 a | 66.16 ± 0.29 g |
K | 210.7 ± 4.2d ef | 1628.1 ± 20.7 f | 1278.9 ± 11.6 f | 0.79 d | 1.71 ± 0.03 cd | 13.28 ± 0.17 f | 10.43 ± 0.09 e | 74.57 ± 0.22 a |
Sample | Nd | NFAs | NHAs | NHAs/ NFAs | Nd | NFAs | NHAs | Nh |
---|---|---|---|---|---|---|---|---|
mg kg−1 | % of Nt | |||||||
A1 | 37.0 ± 2.7 a* | 167.6 ± 2.4 a | 221.4 ± 7.6 a | 1.32 a | 1.49 ± 0.11 d | 8.89 ± 0.31 e | 6.73 ± 0.07 d | 82.89 ± 0.32 a |
A2 | 23.8 ± 2.6 cd | 143.3 ± 6.3 cd | 182.7 ± 4.6 b | 1.27 a | 2.09 ± 0.23 bc | 16.03 ± 0.41 a | 12.57 ± 0.55 a | 69.32 ± 0.73 f |
B | 27.7 ± 2.2 bc | 151.4 ± 7.3 abc | 165.6 ± 7.6 c | 1.09 bc | 1.68 ± 0.13 cd | 10.04 ± 0.46 cd | 9.18 ± 0.44 c | 79.11 ± 0.18 b |
C | 18.8 ± 1.6 d | 131.6 ± 5.6 d | 136.9 ± 3.1 d | 1.04 cd | 1.40 ± 0.13 d | 10.21 ± 0.23 c | 9.82 ± 0.41 bc | 78.56 ± 0.70 b |
D | 20.7 ± 2.1 d | 136.4 ± 6.0 cd | 129.1 ± 5.4 de | 0.95 def | 1.57 ± 0.16 d | 9.78 ± 0.41 cde | 10.33 ± 0.46 bc | 78.56 ± 0.74 b |
E | 33.6 ± 2.9 ab | 134.2 ± 5.2 d | 129.8 ± 2.5 de | 0.97 cde | 2.71 ± 0.24 a | 10.47 ± 0.21 c | 10.82 ± 0.42 b | 76.00 ± 0.82 cd |
F | 33.7 ± 4.1 ab | 145.1 ± 6.3 bcd | 155.9 ± 5.7 c | 1.07 bcd | 2.28 ± 0.28 ab | 10.53 ± 0.38 c | 9.80 ± 0.43 bc | 77.38 ± 0.73 bc |
G | 20.5 ± 1.5 d | 161.9 ± 7.6 ab | 195.6 ± 4.2 b | 1.21 ab | 1.33 ± 0.10 d | 12.70 ± 0.28 b | 10.51 ± 0.50 b | 75.45 ± 0.73 d |
H | 23.0 ± 1.4 cd | 137.8 ± 6.8 cd | 123.7 ± 5.9 de | 0.90 ef | 2.17 ± 0.13 bc | 11.67 ± 0.56 b | 13.00 ± 0.64 a | 73.16 ± 1.13 e |
K | 31.0 ± 1.3 ab | 145.0 ± 3.0 bcd | 119.5 ± 2.2 e | 0.82 f | 2.37 ± 0.10 ab | 9.12 ± 0.17 de | 11.07 ± 0.23 b | 77.44 ± 0.15 bc |
Sample | C | H | N | O | H/C | N/C | O/C | O/H | ω |
---|---|---|---|---|---|---|---|---|---|
A1 | 36.65 ± 0.01 f* | 40.27 ± 0.08 a | 3.10 ± 0.09 a | 19.98 ± 0.44 ab | 1.10 ± 0.01 a | 0.085 ± 0.002 ab | 0.545 ± 0.012 a | 0.496 ± 0.012 cd | 0.245 ± 0.026 abcd |
A2 | 37.39 ± 0.17d e | 40.36 ± 0.32 a | 3.09 ± 0.05 a | 19.16 ± 0.56 ab | 1.08 ± 0.01 ab | 0.083 ± 0.002 ab | 0.512 ± 0.013 ab | 0.475 ± 0.017 d | 0.193 ± 0.036 cd |
B | 37.84 ± 0.10 bc | 40.37 ± 0.32 a | 3.06 ± 0.05 a | 18.75 ± 0.40 b | 1.07 ± 0.01 bc | 0.081 ± 0.001 abc | 0.495 ± 0.010 b | 0.464 ± 0.013 d | 0.167 ± 0.025 d |
C | 37.24 ± 0.07 e | 39.34 ± 0.30 b | 2.98 ± 0.09 a | 20.46 ± 0.68 a | 1.06 ± 0.01b cd | 0.080 ± 0.002 abc | 0.549 ± 0.017 a | 0.520 ± 0.020 abc | 0.282 ± 0.049 abc |
D | 39.39 ± 0.02 a | 36.92 ± 0.19 c | 3.02 ± 0.04 a | 20.69 ± 0.37 a | 0.94 ± 0.01 f | 0.077 ± 0.001 c | 0.525 ± 0.009 ab | 0.560 ± 0.012 a | 0.344 ± 0.025 a |
E | 38.97 ± 0.10 a | 37.62 ± 0.16 c | 3.04 ± 0.03 a | 20.38 ± 0.42 a | 0.97 ± 0.01 e | 0.078 ± 0.001 bc | 0.523 ± 0.012 ab | 0.542 ± 0.0093 ab | 0.315 ± 0.021 ab |
F | 37.93 ± 0.11 b | 39.45 ± 0.20 b | 3.06 ± 0.04 a | 19.57 ± 0.81 ab | 1.04 ± 0.01 d | 0.081 ± 0.001 abc | 0.516 ± 0.023 ab | 0.496 ± 0.018 cd | 0.234 ± 0.040 bcd |
G | 37.80 ± 0.13 bc | 39.71 ± 0.33 ab | 3.03 ± 0.04 a | 19.47 ± 0.64 ab | 1.05 ± 0.01 cd | 0.080 ± 0.001 abc | 0.515 ± 0.016 ab | 0.490 ± 0.020 cd | 0.220 ± 0.038 bcd |
H | 37.60 ± 0.08 c | 39.54 ± 0.16 b | 2.98 ± 0.07 a | 19.89 ± 0.60 ab | 1.05 ± 0.01 cd | 0.079 ± 0.002 bc | 0.529 ± 0.017 ab | 0.503 ± 0.013 bcd | 0.244 ± 0.034 abcd |
K | 37.15 ± 0.06 de | 39.81 ± 0.11 ab | 2.99 ± 0.09 a | 20.06 ± 0.70 ab | 1.07 ± 0.01 bc | 0.080 ± 0.002 abc | 0.540 ± 0.019 a | 0.504 ± 0.016 bcd | 0.250 ± 0.039 abcd |
Sample | A280 | A400 | A465 | A600 | A665 | A2/4 | A2/6 | A4/6 | ΔlogK ** |
---|---|---|---|---|---|---|---|---|---|
A1 | 4.00 ± 0.17 * | 1.31 ± 0.03 | 0.714 ± 0.003 | 0.256 ± 0.005 | 0.117 ± 0.003 | 5.60 ± 0.26 f | 34.2 ± 1.79 e | 6.11 ± 0.16 bc | 0.709 ± 0.009 ab |
A2 | 6.61 ± 0.10 | 1.67 ± 0.04 | 0.925 ± 0.004 | 0.341 ± 0.004 | 0.145 ± 0.004 | 7.15 ± 0.07 a | 45.6 ± 0.69 ab | 6.36 ± 0.16 abc | 0.690 ± 0.016 abc |
B | 5.81 ± 0.16 | 1.51 ± 0.04 | 0.829 ± 0.006 | 0.298 ± 0.006 | 0.136 ± 0.003 | 7.01 ± 0.18 ab | 42.7 ± 0.41 bc | 6.10 ± 0.13 bc | 0.705 ± 0.011 ab |
C | 5.31 ± 0.12 | 1.62 ± 0.04 | 0.901 ± 0.006 | 0.331 ± 0.004 | 0.134 ± 0.005 | 5.89 ± 0.17 def | 39.7 ± 1.95 cd | 6.73 ± 0.24 a | 0.690 ± 0.013 abc |
D | 7.28 ± 0.06 | 1.87 ± 0.03 | 1.104 ± 0.005 | 0.447 ± 0.004 | 0.193 ± 0.010 | 6.60 ± 0.08 bc | 37.8 ± 1.78 de | 5.73 ± 0.31 d | 0.622 ± 0.010 d |
E | 6.63 ± 0.17 | 1.80 ± 0.05 | 1.048 ± 0.030 | 0.413 ± 0.011 | 0.175 ± 0.004 | 6.33 ± 0.05 cd | 37.9 ± 0.53d e | 5.99 ± 0.05 cd | 0.639 ± 0.004 d |
F | 6.59 ± 0.15 | 1.59 ± 0.04 | 0.904 ± 0.005 | 0.345 ± 0.018 | 0.148 ± 0.004 | 7.29 ± 0.13 a | 44.5 ± 0.15 ab | 6.10 ± 0.11 bc | 0.664 ± 0.029 cd |
G | 6.09 ± 0.21 | 1.57 ± 0.04 | 0.847 ± 0.007 | 0.302 ± 0.017 | 0.129 ± 0.004 | 7.19 ± 0.23 a | 47.2 ± 2.64 a | 6.57 ± 0.24 ab | 0.716 ± 0.029 a |
H | 6.87 ± 0.08 | 1.85 ± 0.04 | 1.11 ± 0.040 | 0.423 ± 0.020 | 0.191 ± 0.008 | 6.19 ± 0.16 cde | 36.0 ± 1.09d e | 5.82 ± 0.08 d | 0.642 ± 0.018 cd |
K | 5.40 ± 0.13 | 1.56 ± 0.05 | 0.928 ± 0.007 | 0.349 ± 0.011 | 0.183 ± 0.006 | 5.82 ± 0.18 ef | 29.5 ± 0.29 f | 5.08 ± 0.20 e | 0.650 ± 0.008 cd |
Sample | HIL | HOB-1 | HOB-2 | HOB-3 | ∑HOB | HIL/∑HOB | S ** |
---|---|---|---|---|---|---|---|
A1 | 22.27 ± 1.25 a* | 14.99 ± 0.85 bcd | 19.34 ± 0.69 a | 43.40 ± 1.35 e | 77.73 ± 2.60 c | 0.286 ± 0.008 a | 2.10 d |
A2 | 19.96 ± 1.01 abc | 13.58 ± 0.52 de | 19.09 ± 0.47 a | 47.36 ± 0.89d | 80.04 ± 1.24 abc | 0.250 ± 0.015 bcd | 4.05 b |
B | 21.02 ± 1.00 ab | 11.20 ± 0.89 f | 16.23 ± 0.41 b | 51.56 ± 1.23 b | 78.98 ± 1.40 bc | 0.266 ± 0.015 b | 2.85 cd |
C | 19.06 ± 0.74b cd | 16.20 ± 0.75 ab | 12.73 ± 0.63 c | 52.01 ± 0.57 b | 80.94 ± 0.55 abc | 0.235 ± 0.010 cd | 3.40 c |
D | 17.03 ± 1.29 d | 13.11 ± 0.72 e | 14.74 ± 0.67 b | 55.12 ± 0.71 a | 82.97 ± 2.04 ab | 0.205 ± 0.011 ef | 5.90 a |
E | 16.45 ± 0.51 d | 13.13 ± 0.35 e | 15.08 ± 0.48 b | 55.34 ± 0.81 a | 83.55 ± 1.47 a | 0.197 ± 0.004 f | 4.30 b |
F | 16.84 ± 0.77 d | 15.16 ± 0.53 bcd | 16.37 ± 0.56 b | 51.63 ± 0.77 b | 83.16 ± 1.69 ab | 0.202 ± 0.006 ef | 3.70 c |
G | 20.27 ± 1.12 abc | 14.02 ± 0.87 cd | 15.21 ± 0.56 b | 50.51 ± 0.43 bc | 79.73 ± 0.86 abc | 0.254 ± 0.016 bc | 0.60 e |
H | 18.26 ± 0.70 cd | 15.65 ± 0.83 abc | 15.70 ± 0.62 b | 50.40 ± 1.01 bc | 81.74 ± 0.58 abc | 0.223 ± 0.010d e | 4.50 b |
K | 18.73 ± 0.75 bcd | 17.31 ± 0.52 a | 14.97 ± 0.68 b | 48.99 ± 0.69 cd | 81.27 ± 1.85 abc | 0.230 ± 0.004 cd | 3.70 c |
C | H | H/C | O/H | A280 | A465 | A665 | ΔlogK | HIL | HOB-3 | ΣHOB | HIL/ΣHOB | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
H | −0.880 | - | - | - | - | - | - | - | - | |||
H/C | −0.961 | 0.975 | - | - | - | - | - | - | - | |||
O/H | 0.661 | −0.938 | −0.840 | - | - | - | - | - | - | |||
A280 | 0.764 | −0.557 | −0.687 | - | - | - | - | - | - | |||
A465 | 0.683 | −0.709 | −0.737 | 0.635 | 0.826 | - | - | - | - | |||
A665 | 0.560 | −0.621 | −0.633 | 0.589 | 0.650 | 0.905 | - | - | - | |||
ΔlogK | −0.630 | 0.751 | −0.734 | - | −0.623 | −0.883 | −0.945 | - | - | |||
HIL | −0.713 | 0.759 | 0.779 | −0.681 | −0.731 | −0.805 | −0.731 | 0.853 | - | |||
HOB-3 | 0.868 | −0.781 | −0.847 | 0.610 | 0.700 | 0.685 | 0.529 | −0.590 | −0.780 | |||
ΣHOB | 0.713 | −0.759 | −0.779 | 0.681 | 0.731 | 0.805 | 0.731 | −0.853 | −0.999 | 0.780 | ||
HIL/ΣHOB | −0.705 | 0.752 | 0.772 | −0.677 | −0.731 | −0.808 | −0.735 | 0.852 | 0.999 | −0.781 | −0.999 | |
S | 0.547 | −0.621 | −0.609 | 0.592 | 0.602 | 0.797 | 0.790 | −0.871 | −0.689 | - | 0.689 | −0.686 |
Variable | PCA1 | PCA2 | Variable | PCA1 | PCA2 |
---|---|---|---|---|---|
C | 0.802 | −0.470 | A665 | 0.856 | 0.122 |
H | −0.897 | 0.028 | A2/4 | −0.040 | −0.942 |
N | −0.555 | −0.394 | A2/6 | −0.244 | −0.853 |
O | 0.669 | 0.614 | A4/6 | −0.389 | −0.380 |
H/C | −0.894 | 0.228 | ΔlogK | −0.922 | −0.155 |
N/C | −0.911 | 0.060 | HIL | −0.908 | 0.110 |
O/C | 0.091 | 0.938 | HOB-1 | 0.021 | 0.784 |
O/H | 0.841 | 0.303 | HOB-2 | −0.592 | −0.164 |
ω | 0.792 | 0.380 | HOB-3 | 0.817 | −0.363 |
A280 | 0.720 | −0.604 | ΣHOB | 0.908 | −0.110 |
A400 | 0.882 | −0.239 | HIL/ΣHOB | −0.908 | 0.104 |
A600 | 0.951 | −0.073 | S | 0.774 | 0.032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debska, B.; Kotwica, K.; Banach-Szott, M.; Spychaj-Fabisiak, E.; Tobiašová, E. Soil Fertility Improvement and Carbon Sequestration through Exogenous Organic Matter and Biostimulant Application. Agriculture 2022, 12, 1478. https://doi.org/10.3390/agriculture12091478
Debska B, Kotwica K, Banach-Szott M, Spychaj-Fabisiak E, Tobiašová E. Soil Fertility Improvement and Carbon Sequestration through Exogenous Organic Matter and Biostimulant Application. Agriculture. 2022; 12(9):1478. https://doi.org/10.3390/agriculture12091478
Chicago/Turabian StyleDebska, Bozena, Karol Kotwica, Magdalena Banach-Szott, Ewa Spychaj-Fabisiak, and Erika Tobiašová. 2022. "Soil Fertility Improvement and Carbon Sequestration through Exogenous Organic Matter and Biostimulant Application" Agriculture 12, no. 9: 1478. https://doi.org/10.3390/agriculture12091478
APA StyleDebska, B., Kotwica, K., Banach-Szott, M., Spychaj-Fabisiak, E., & Tobiašová, E. (2022). Soil Fertility Improvement and Carbon Sequestration through Exogenous Organic Matter and Biostimulant Application. Agriculture, 12(9), 1478. https://doi.org/10.3390/agriculture12091478