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Abstract: To explore the relationship between consumption upgrading and agricultural green total
factor productivity in the context of green and high-quality development of agriculture in China.
Based on the construction of a composite index of consumption upgrading and the Malmquist
index of non-expected output in the SBM-DEA model to measure agricultural green total factor
productivity, this paper uses the PVAR model and panel data from 30 Chinese provinces from 2008 to
2020 to empirically analyze the mechanism of the effect of consumption upgrading on agricultural
green total factor productivity under high-quality development. The results are as follows: (1)
Both the real economy and consumption upgrading are ahead of the change in agricultural green
total factor productivity and have a negative short-run impact on agricultural green total factor
productivity but a continuous boosting effect in the long-run. (2) In terms of specific impact paths,
the real economy boosts agricultural green total factor productivity through technical efficiency and
technical change paths and has a negative impact through scale efficiency, whereas consumption
upgrading has inhibitory and sustained promotional effects in the short- and long-run, respectively,
through technical efficiency and technical change paths and has opposite impact effects in the scale
efficiency path.

Keywords: high-quality development; agricultural green production; consumption upgrading; total
factor productivity

1. Introduction and Literature Review

At present, China’s comprehensive agricultural production capacity has been dra-
matically improved, with total grain production remaining above 1.3 trillion catties for
eight consecutive years and the output of meat, eggs, vegetables, fruits, and fish ranking
first in the world, ensuring that 1.4 billion Chinese people can not only be “Enough-Fed”,
but also “Well-Fed”. This is a strong guarantee for China to cope with various risks and
achieve stable economic and social development. However, behind this promising data
is the environmental cost of long-run, sloppy agricultural development. The contradic-
tion between agriculture and the carrying capacity of resources and the environment is
becoming increasingly acute; ecological deterioration and environmental pollution caused
by agricultural production are becoming increasingly prominent; and reliance on resource
consumption to achieve quantitative growth is no longer sustainable [1–3]. All these are
forcing us to accelerate the transformation of production methods, adopt scientific and
technological means to improve the use of agricultural resources and economic efficiency,
and drive green agricultural development with low carbon [3,4], so as to achieve green
and high-quality agricultural development. The goal of green agricultural production is
not only to increase yields but also to improve the quality of sustainable resource use and
agro-ecological protection [2,3]. As an important engine of economic growth outside the
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input factors that take into account the output of environmental pollution, green total factor
productivity has become a powerful evaluation indicator to judge green and sustainable
agricultural development.

Regarding the factors influencing green total factor productivity in agriculture, most
existing studies on the power sources of agricultural green total factor productivity have
cut from the supply perspective, analyzing the effects of environmental regulation [5,6],
changes in the structure of the agricultural industry [7], agglomeration of the agricultural
industry [8], trade opening [1,9] and agricultural subsidies [6] on agricultural green total
factor productivity. Despite the different issues explored from different perspectives,
scholars have gradually developed a general understanding of agricultural green total
factor productivity, namely that technological progress is the primary source driving
agricultural green total factor productivity.

However, with the emergence of counter-globalization, the rise of trade protectionism,
and the entire play of the advantages of the domestic mega-market, more and more scholars
have begun to study the impact of consumption on agricultural green total factor productiv-
ity. Especially at present, with the improvement of quality of life, the continuous expansion
and quality upgrade of people’s consumption demand has raised higher expectations and
requirements for agricultural production, especially the in-depth practice of the concept of
green consumption, which has called for greater integration of production factors [10] and
efforts to improve the agricultural green total factor productivity [2,3]. Therefore, in the
process of promoting green and low-carbon development in agriculture, it is worthwhile to
conduct an in-depth study on whether the opportunity of consumption upgrading can be
used to promote green total factor productivity in agriculture.

Relevant studies focus on the following three aspects: The first is the impact of dietary
consumption structure optimization. As China moves toward overall well-being, residents’
lives have shifted from subsistence to nutrition and health [11]. Increasing attention has
been paid to the balance and health of dietary structure [12,13]. The optimization of
the dietary consumption structure has reduced the consumption of staple foods such as
cereals and significantly increased the consumption of livestock and poultry products,
fresh fruits, and vegetables, which has accelerated the optimization and transformation
of the agricultural structure and led to an increase in indirect food consumption and
total food consumption [11,14]. Thus, China still needs to accelerate the improvement
of comprehensive agricultural production capacity and the overall competitiveness of
the whole industrial chain under the basic premise of food security. Producers increase
their factor inputs in a cumulative self-generated cycle according to the demand-induced
innovation theory. This satisfies market demand and is driven by profit maximization
and comparative competitive advantage to innovate [13,15,16] to increase agricultural
productivity [4,17]. In a study on the path to high-quality agricultural development in
China, Xie [18] found that the structure and scale of dietary consumption can promote
agricultural structure, technological innovation, and green development through market
expansion effects.

The second focus is the impact of consumption upgrading. From the perspective
of China’s consumption characteristics, consumption shows a continuous upgrading
trend [18,19], which plays a guiding role in agricultural quality change [20]. Consumption
upgrading is manifested not only in consumers’ pursuit of high-end goods, but also in
their desire for green, healthy, and high-quality agricultural products [12], and more so
in the pursuit of other additional values beyond the basic values such as situational and
humanized experiences in the consumption process [18,20]. This will prompt agricultural
production and services to leap deeper, reshape the original agricultural structure model
and production methods, and improve agricultural quality, efficiency, and competitive-
ness [2,15,16]. Notably, the strong market demand for high-value-added green agricultural
by-products and their refined processed products effectively stimulates the enthusiasm and
effectiveness of investment and innovation in green agriculture-related industries [16,17,21],
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improves the value-added capacity of agricultural products, and helps the development of
agricultural industrialization.

Third, agricultural technological progress is driven by changes in consumption. From
the perspective of science and technology management, changes in consumer demand
stimulate the subjective initiative of producers to improve technology and increase tech-
nical efficiency, ensuring the smooth realization of technology’s physical, aesthetic, and
ethical effects [21]. At the microlevel, changes in consumer demand play a guiding role in
innovation development. Technological innovation in response to the trend of upgrading
consumer demand is essential for firms to reduce market risk and increase profits for sound
development [13,16]. Studies have shown that consumption upgrading accelerates the
degree of agglomeration and scale in the agricultural industry [8], promotes the promotion
and application of green technologies in agricultural production, accelerates the special-
ized division of labor in the agricultural industry, improves labor productivity [22,23],
effectively stimulates the innovation behavior of micro-entities [24], and enhances the
efficiency of green production in agriculture by attracting capital inflows and enhancing
the competitiveness of the industry.

These studies provide a valuable reference for analyzing the green and sustainable
development of agriculture under consumption upgrading but still leave some questions
to be addressed. (1) Previous empirical analyses have primarily defined and measured
consumption upgrading based on consumption structure models but less on consumption
patterns and philosophies [19]. However, there is still a lack of direct analyses and evidence
on whether consumption upgrading affects agricultural green total factor productivity. In
the context of the transformation of economic development from a “Both Abroad” to an
“Internal-external Balance, Internal Focus” economy, the impact of consumption upgrading
on agricultural green total factor productivity is discussed from the demand side and
its mechanism is examined in depth, which can provide a new perspective for thinking
about green and high-quality development in agriculture. (2) The specific paths and
forms by which consumption upgrading affecting green total factor productivity are less
explored in existing research. On the one hand, agricultural green total factor productivity
enhancement can proceed along the paths of achievement transformation, technological
imitation, or independent innovation [21]. On the other hand, agricultural green total factor
productivity may come from technical efficiency and technological innovation [3,24]. Thus,
consumption upgrading along different paths may bring about different forms of progress
in agricultural green total factor productivity, and the exploration of the above issues may
expand our understanding of agricultural green total factor productivity.

The remainder of this study is structured as follows: Part II is the analysis of the
mechanism of consumption upgrading affecting agricultural green production efficiency;
Part III is the construction of the econometric model and data processing; Part IV is the
testing of the baseline empirical model and the interpretation of the results; Part V is the
analysis of the impact mechanism and the results discussion; and Part VI is the conclusion
of the whole paper.

2. Consumption Upgrading and Green Production Efficiency in Agriculture: The
Mechanism of Influence

Consumption creates demand and production motives, leading to technological inno-
vation and change, whereas technology can materialize demand [25]. From the perspective
of consumption upgrading, as income rises, on the one hand, residents’ consumption levels
will follow Maslow’s Hierarchy of Needs theory, shifting from subsistence and materi-
alistic consumption to enjoyment and developmental consumption; on the other hand,
residents will continue to improve the quality and requirements of their existing consump-
tion products and show a higher willingness to pay for new industries and services. This
will inevitably force the supply bodies in the agricultural industry chain to upgrade their
technology and improve the efficiency of production materials in line with the trend of
consumption. Therefore, we not only need to give full play to the power of consumption
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upgrading but also need to identify the path and mechanism of the impact of consumption
upgrading on green total factor productivity and use this path to harness the long-term
trend of high-quality agricultural development.

By decomposing agricultural green total factor productivity and summarizing and
sorting out the existing literature, this study intends to analyze in detail the impact of
consumption upgrading through the channels of technical efficiency, scale efficiency, and
technological progress in agriculture, starting from the path of technological progress
through the transformation of technological achievements and independent innovation.

First, the transformation mechanism of existing technological achievements enhances
the technical efficiency of agriculture. If the rising consumer demand for agricultural prod-
ucts can be met only through the transformation of existing technological achievements,
agricultural producers will promote the transformation of technological achievements to
meet new consumer demand and profit from it. Without technological reserves or the
ability to develop new technologies, the quickest way to improve technological efficiency
is to imitate the technologies in competitors’ or partners’ products to improve their tech-
nological level, accelerate productivity, and mass produce them to meet the new demand
for agricultural products and services arising from the upgrading of consumption [21].
However, the technological achievements used are readily available and do not break
through the existing production frontier. Therefore, at this time, consumption upgrading
only brings about an increase in the efficiency of green technology in agriculture.

Second, the mechanism of technological progress involves economies of scale. Accord-
ing to the Engel effect, with the growth of income and wealth levels, residents’ consumption
will maintain a continuous upgrading trend. Consumers will tend to buy higher-quality,
more innovative agricultural products after their demand for low-elasticity agricultural
products reaches saturation, leading to accelerated agricultural production and service
development in scale, quality, and agglomeration. Under this development trend, labor-
saving technologies and advanced and applicable technologies have become the main
direction of agricultural technology selection, and the quality and proficiency of laborers
are further improved, with labor productivity significantly increasing [22,23]. According to
the Baumol effect, as residents’ demand for highly elastic agricultural products increases
with fast technological progress, the upgrading of residents’ consumption will trigger
the transfer of production factors such as capital from low-end traditional agricultural
production to high-end agricultural production, which will lead to a continuous expansion
of its scale and the realization of economies of scale and ultimately an increase in operators’
profitability, thus promoting technological innovation [21].

Third, the mechanism of green technological progress resulting from innovation break-
throughs. Consumption upgrading has widened the quality of agricultural consumption
and increased the level of differentiation of agricultural products. On the one hand, con-
sumers’ demand for quality and innovation inhibits or eliminates agricultural products
that do not meet consumer demand and promote more adaptable agricultural products for
substitution. This leads to a narrowing of profit margins for agricultural producers under
the original technology and forces agricultural producers to accelerate technological inno-
vation changes to strengthen the matching of agricultural supply and demand structures
under the pressure of survival of the fittest [16,18]. On the other hand, to produce better
quality or higher levels and newer agricultural products to capture the increased profits
from the increase in market prices due to the increase in residents’ consumption of green,
ecological, and other high-value-added agricultural products, agricultural producers will
increase their investment in technological research and development, continuously carry
out technological innovation, improve input-output efficiency, reduce resource consump-
tion [3,24], and eventually, break through existing production frontiers and drive overall
agricultural technological progress [25,26].

The various pathways through which consumption upgrading drives green total factor
productivity in agriculture are ultimately similar, and we summarize the mechanism of
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the impact of consumption upgrading on green total factor productivity in agriculture
in Figure 1.
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3. Empirical Strategy and Data Processing
3.1. Measurement Model Settings

Holtz-Eakin proposed the vector autoregressive model (PVAR) for panel data in 1988,
which expanded the VAR model from the plane to the space [27,28]. At present, the
refinement of PVAR model theory is still being explored and developed, and key issues
such as dimensional catastrophe, variable endogeneity, and spatial correlation still need to
be addressed. However, considering that the PVAR model retains the good characteristics
of the VAR model, extends the model of pure time series to the spatial direction, overcomes
the requirement of the VAR model for time span, and can enrich the data from both time
and regional dimensions using the panel data model, while imposing restrictions on the
model by reducing the number of parameters, setting the order of variables according to
economic principles, and choosing appropriate estimation methods, the PVAR model can
still effectively argue and test many problems in the economic system and is widely used to
accurately estimate the dynamic relationship between variables [20,25,28]. In view of this,
the PVAR model shown in Equation (1) is set up to examine the impact of consumption
upgrading on agricultural green total factor productivity.

Yit = αi + β0 +
p

∑
j=1

β jYi,t−j + γt + µit (1)

In Equation (1), the subscript i = 1, 2, · · · , 30 represents the sample provinces; t =
2008, 2009, · · · , 2020 represents the year; Y is the column vector of endogenous variables,
including agricultural green total factor productivity, consumption upgrading index, and
high-quality, sustainable economic development; p represents the optimal lag of the PVAR
model; αi, γt and µit are vectors of individual effects, time effects, and random disturbance
terms, respectively.

Because the explanatory vector of the PVAR model contains lagged terms in the vector
of endogenous variables and individual heterogeneity due to individual (time) effects,
it has a similar econometric test to the dynamic panel model, which requires that the
endogeneity of variables and individual (time) effects be dealt with effectively before the
model is estimated. The data are first subjected to a “Helmert process” to remove sample
time and individual fixed effects, ensuring that the transformed variables are orthogonal
to the lagged variables and independent of the random disturbance terms. Finally, the
parameters of the PVAR model are estimated using the generalized method of moments
(GMM) estimation with the lagged variables acting as instrumental variables.
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3.2. Indicator Selection and Measurement
3.2.1. Agricultural Green Total Factor Productivity

The data envelopment analysis (DEA) method has become the primary method for
measuring total factor productivity, as it does not require a specific production function and
avoids the effects of a biased function setting. In addition, the continuous improvement
of agricultural technology in the long-run production process will lead to an increase in
agricultural productivity. However, it is still inevitable that negative products, such as
pollution and other undesired outputs, will be produced, and Malmquist can better reflect
changes in productivity and is more adaptive when the decision unit is panel data and there
are undesired outputs [1,3]. Therefore, in this study, the Malmquist index approach, which
is output-oriented and variable in size, is based on the non-expected output super-efficiency
slacks-based measure (SBM) DEA model, which is output-oriented and variable in size.

Mi(t, s) =

√√√√ βt(xt
i , ytd

i )

βt(xs
i , ysd

i )
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βs(xt
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i )
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In Equation (2), βt(xt
i , ytd

i ) and βs(xt
i , ytd

i ) represent the efficiency values of the decision
unit i in the t period based on the SBM-DEA model of non-expected output super-efficiency,
respectively, while βt(xs

i , ysd
i ) and βs(xs

i , ysd
i ) represent the efficiency values in the s period

based on the t and s periods, respectively, and the reference technology. In this paper, with
reference to Guo and Liu [3], a “Resource-Energy-Environment-Economy” input-output
index system for green agricultural production is constructed, taking into account the
resource and energy constraints and pollution emissions in agricultural production. The
input indicators include labor, land, capital, energy, and water resources. Labor input is
measured by the number of workers in the primary sector; land input is measured by the
sum of crop sowing area and aquaculture area; capital input elements include the total
power of agricultural machinery, fertilizer application, pesticide use, and agricultural film
use; energy input is measured by agricultural diesel use and agricultural electricity use;
energy inputs are measured by the amount of diesel used in agriculture and electricity used
in agriculture; and water inputs are represented by the amount of water used in agriculture.
Agricultural outputs include both desired and undesired outputs, with desired outputs rep-
resented by the total output value of agriculture, forestry, animal husbandry, and fisheries in
each province over the years. Undesired outputs are defined as agricultural surface source
pollution and agricultural carbon emissions, among which agricultural surface source
pollution is measured by the unit survey and assessment method of Chen et al. [9]. Agri-
cultural carbon emissions were estimated using the carbon emission estimation formula
and corresponding coefficients from Guo and Liu [3].

3.2.2. Consumption Upgrading Index

Following the basic principles of systematicity, scientificity, and comparability, this
study refers to relevant policy documents and draws on the research of Ye J. [19] to con-
struct a consumption upgrading evaluation index system containing 26 indicators in five
dimensions: total consumption, consumption level, consumption content, consumption
pattern, and consumption concept, as shown in Table 1. The comprehensive evaluation
index system not only considers the changes in the structure of the consumption object,
which is the transformation of traditional “Material-Services (Spiritual)” consumption
or subsistence demand for development and enjoyment demand, but also considers the
changes in the consumption subject and consumption activities in the process of con-
sumption upgrading and incorporates the changes in consumption patterns and concepts
into the comprehensive evaluation of consumption upgrading. In addition, the system
includes changes in consumption patterns and concepts in the comprehensive evaluation
of consumption upgrading to reflect the overall improvement in consumption objects,
consumption concepts and patterns, and consumption levels.
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Table 1. Comprehensive evaluation index system for consumption upgrading.

Guideline Level Specific Indicators Indicator
Attributes Guideline Level Specific Indicators Indicator

Attributes

Overall social
consumption

Consumption rate +

Consumer content

Per capita consumption
expenditure on household

equipment and services
+

Total social consumption +
Per capita consumption

expenditure on transport and
communications

+

Growth rate of total social
consumption + Health care consumption

expenditure per capita +

Number of workers in the
tertiary sector +

Per capita consumption
expenditure on education,
culture, and entertainment

+

Consumption level of
the population

Per capita consumption
expenditure + Other consumption

expenditure per capita +

Consumption growth rate + Developmental consumption
as a percentage +

Urban to rural
consumption ratio - Percentage of consumption

for enjoyment +

Consumption
patterns

Total postal and
telecommunications services + Consumer Upgrades +

Total express delivery
per capita + Engel’s coefficient -

Telephone penetration rate + Car ownership +

Total restaurant and
accommodation business +

Consumer
Philosophy

Low carbon consumption +

Service Levels in Catering
and Accommodation + Number of public transport

rides per capita +

Number of travel agents + Risk management awareness +

Note: Due to space constraints, the formulae (methods) for calculating specific indicators are not reported but are
kept on file for reference.

All specific indicators were standardized using the same min-max dimensionless
method as the aforementioned input-output indicators, considering the impact of the
difference in magnitude of each specific indicator in the comprehensive evaluation index
system. After the standardization process, the standardized indicators can be combined
using the simple arithmetic average method, principal component analysis method, and
entropy weighting method. Considering the degree of application of various methods
in calculating the evaluation index, this study weighs the indicators using the entropy
weighting method to obtain the comprehensive consumption upgrading index.

3.2.3. The Level of High-Quality Sustainable Economic Development (Real Economy)

Theory and practice have proven that the construction of a modern economic system
is inseparable from a high level of the real economy, which is not only the foundation
for China to achieve high-quality economic development and win the initiative in the
international economy but also the key to meeting people’s needs for a better life. Currently,
domestic scholars believe that the real economy is the production, sale, consumption, and
service of material and spiritual products in tangible materials and elements entering the
market in physical form. This also includes all economic activities in operations, including
manufacturing and other industries, construction, agriculture, and other tertiary industries,
except for the financial and real estate industries [29]. The Federal Reserve frequently
used the term “Real Economy” after the financial crisis in 2008 to include all other sectors,
excluding the real estate and financial sectors. Based on this, this study uses the growth
rate of the real economy, excluding the value added of the financial and real estate sectors
from GDP, to represent the level of quality and sustainable development of the economy.
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3.3. Study Sample and Data Sources

The empirical analysis of this study is based on provincial-level sample data with
390 samples from 30 provinces, municipalities, and autonomous regions in mainland China,
excluding Tibet, from 2008–2020. The data used are mainly from the China Statistical
Yearbook, China Environmental Statistical Yearbook, China Agricultural Yearbook, China
Rural Statistical Yearbook, and China Energy Statistical Yearbook from 2009 to 2021, as well
as some provincial statistical yearbooks, the website of the National Bureau of Statistics,
and other official authoritative data, in which some indicators such as years of education
per capita and industrial structure are collated from the original data and missing data are
supplemented by linear interpolation or extrapolation.

4. Analysis of the Benchmark Empirical Model

Based on the PVAR model and estimation method set out above, before testing the
impact of consumption upgrading on agricultural green total factor productivity, it is
necessary to check the smoothness of the series of variables in the model to prevent
problems such as “Pseudo-regression.” In addition, based on existing research and analysis
of the impact mechanism, this study ranks the variables in the PVAR model in the following
order: real economy (R_Eco), consumption upgrading (CSU), and agricultural green total
factor productivity (ML).

4.1. Smoothness Test

Based on robustness considerations, this study simultaneously uses three methods,
namely the LLC, Fisher ADF, and Fisher PP tests, to test the smoothness of the three
variables and judge the smoothness of the variables according to whether more than 50%
of the methods pass the significance test. The specific test results are shown in Table 2. The
original hypothesis of the existence of unit root can be rejected at the 1% significant level
for variables R_Eco, CSU, and ML, from which the original series of the three variables
can be judged to be smooth, indicating that there is a stable and long-run equilibrium
relationship between the three endogenous variables. The PVAR model can be constructed
and empirically analyzed based on the original series of each variable.

Table 2. Unit root test results for each variable.

Variables LLC Test Fisher ADF Test Fisher PP Test Conclusion

R_ECO −6.791 *** 110.292 *** 103.616 *** Stable
CSU −2.738 *** 82.266 ** 43.696 Stable
ML −8.241 *** 105.332 *** 107.332 *** Stable

Note: *** and ** denote significance at the 1% and 5% levels, respectively.

4.2. Baseline Model Analysis
4.2.1. PVAR Model Parameter Estimation Results

Regarding the choice of the optimal lag order of the PVAR model, by comparing the
values of the AIC, BIC, and HQIC criteria of the PVAR model with lags 1–5, this study
finds that the PVAR model with lag 1 has the smallest information criterion value; thus,
building the PVAR model with lag 1 is the better choice. Table 3 presents the model
estimation results.

Since PVAR, as an extended form of the VAR model, is a lack of a theoretical model,
resulting in an economic interpretation of the parameter estimates that do not have much
practical significance, it is difficult to evaluate the model by estimating the coefficients.
Thus, this paper only presents the results of the model parameter estimation and will
subsequently focus on the analysis by calculating the generalized impulse response function
and variance decomposition results of the PVAR model.
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Table 3. PVAR model optimal lag order and estimation results.

Panel A Results of the PVAR Model Based on GMM Estimation

h_R_Eco h_CSU h_ML

L.h_R_Eco
0.411

(0.121)
−0.001
(0.000)

0.008
(0.003)

−38.424
(12.127)

0.845
(0.048)

0.861
(0.345)

L.h_CSU
20.359

(10.517)
−0.105
(0.051)

0.009
(0.302)

0.411
(0.121)

−0.001
(0.000)

0.008
(0.003)

L.h_ML
−38.424
(12.127)

0.845
(0.048)

0.861
(0.345)

20.359
(10.517)

−0.105
(0.051)

0.009
(0.302)

Panel B Model Optimal Lag Order Selection

Lag order AIC BIC HQIC
1 −9.86758 * −8.64533 * −9.37843 *
2 −9.11283 −7.67346 −8.53484
3 −7.25131 −5.5545 −6.56762
4 −3.88979 −1.88153 −3.07792
5 −8.4517 −6.05698 −7.48074

Note: The standard deviation of the corresponding estimates is shown in parentheses; * denotes the optimal lag
order chosen for this criterion.

4.2.2. Impulse Response Analysis

Impulse response plots for the formation of each variable’s change on itself and other
variables’ shocks were obtained after applying unit positive standard deviation shocks to
each of the three variable random perturbation terms of the PVAR model and 1000 Monte
Carlo simulations (Figure 2). The horizontal coordinate is the number of response periods
for the shock effect, set at 20 periods; the vertical coordinate is the degree of impact of the
variable; the solid line in the middle represents the impulse response value; and the dashed
lines on either side indicate the confidence interval at the 5% significance level.

The impulse response of ML to a positive unit standard deviation shock to R_Eco
(Figure 2) shows that ML has a small negative value in the face of a positive unit shock
to R_Eco, then decreases rapidly and generates a maximum positive response in Period
1, then gradually decreases and converges to zero in Period 5, suggesting that R_Eco
is not conducive to ML improvement in the short term after a positive unit shock but
has a sustained positive effect in the long term. The reason for this is that, as national
policy adjustments, market pressure, and ecological environment regulations become
increasingly tight, the elimination of backward production capacity in the process of high-
quality economic development, competition, and restructuring within the industry and
the strengthening of technological innovation will break the stable relationship formed
between various factors and resources in the short term, bringing innovation pains to
producers. Furthermore, as industrial adjustment deepens and the pain disappears, the
application of various energy-saving and clean production processes will mature, the
consumption of resources and energy and the emission of pollutants will be reduced,
and the competitiveness of producers, the industrial structure, and the production and
economic efficiency will be gradually enhanced and optimized, thus showing a long-run
promotion effect.
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The dynamic response process of ML after a unit positive standard deviation shock
to the CSU is illustrated in Figure 2. After applying a positive unit standard deviation to
the CSU, the ML forms a smaller negative response in the current period. This is mainly
due to the upgrading of consumption as well as the renewal of producers’ products and
the emergence of substitutes, which require producers to adjust their production strategies
and innovate their production technologies, while it takes some time for production fac-
tors such as capital, technology, and talent to form a reasonable allocation. With a large
amount of investment and stock of assets entering the corresponding production areas,
their technological level, production efficiency, and the realization of batch production, the
response of ML to CSU shocks gradually appears and climbs, reaching a peak in Period 1.
Subsequently, the impulse response value of ML gradually decreases and finally converges
to a value around zero. Further, by comparing, we see that the dynamic effect of consump-
tion upgrading on ML is similar to R_Eco. Therefore, the trend of consumption upgrading
is ahead of the change in agricultural green total factor productivity, which has a strong
long-run boosting effect on agricultural green total factor productivity, but this boosting
mechanism has a specific time lag.

The dynamic response of ML to a positive shock to its unit standard deviation, given in
Figure 2, shows that ML responds more immediately to a positive unit standard deviation
shock in the current period. Then, the response level fluctuates gradually and converges
to zero in Period 4. There is a clear “Incumbency Advantage” in agricultural green total
factor productivity. The reason for this is the dynamic continuity of technological progress,
as it takes a relatively long time for new technologies to be invented, put into use, and
produce benefits. The rearrangement of real demand with existing technological tools can
also lead to new applications of existing technologies and broaden the scope of their use of
existing technologies. This, in turn, leads to an increase in agricultural green total factor
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productivity, which is influenced not only by its past level of development but also by its
past knowledge, technology, and creativity.

4.2.3. Analysis of Variance

Based on impulse response analysis, this study continues to use variance decompo-
sition to examine the strength of mutual explanations between variables more accurately
and to measure the relative importance of various shocks to agricultural green total factor
productivity. Table 4 shows the predicted variance decomposition for Periods 5, 10, 15,
and 20.

Table 4. Variance decomposition results of the PVAR model.

Period
R_Eco CSU ML

R_Eco CSU ML R_Eco CSU ML R_Eco CSU ML

5 69.173 36.154 5.034 1.813 25.972 1.057 29.014 37.874 93.910
10 66.914 39.48 5.110 2.240 20.160 1.117 30.846 40.361 93.773
15 66.507 40.049 5.157 2.331 19.208 1.124 31.163 40.743 93.719
20 66.422 40.164 5.168 2.350 19.017 1.126 31.228 40.819 93.706

Based on the results of the variance decomposition given in Table 4, it can be seen that
agricultural green total factor productivity is most affected by its shocks and is affected
by its fluctuating shocks of 93.910% in Period 5, after which it has been in a small decline
and drops to 93.706% in Period 20, which indicates that agricultural green total factor
productivity has continuity and has a strong dependence on its past development level;
thus, fluctuating shocks originate mainly from their development. The second is the shock
generated by the level of the real economy: the intensity of R_Eco’s shock to ML is 5.034%,
and the intensity of the shock generated by R_Eco gradually strengthens and tends to
be stable over time, reaching 5.168% in Period 20, indicating that the real economy can
continue to exert a promoting influence on agricultural green total factor productivity in the
long term, and the two can achieve a win-win effect of synergistic development, but there
is a lag in the impact effect. However, similar to R_Eco, CSU has an increasing impact on
ML, with the intensity of the impact increasing from 1.057% in Period 5 to 1.126% in Period
20, indicating that consumption upgrading also has a lagging, long-run, and sustained
impact on agricultural green total factor productivity and that CSU and ML development
can also achieve a win-win situation. On balance, the variance decomposition results are
consistent with the impulse response test results; that is, in addition to being influenced by
its own level of development, the green total factor productivity increase in agriculture is
also affected by shocks from the real economy and consumption upgrading.

4.3. Robustness Tests

The order of variables, selection of variables, and data processing methods in the
PVAR model may impact the empirical results. To ensure the reliability of the empirical
results, we refer to similar literature on the selection of consumption upgrading indicators
and the comprehensive evaluation index measurement methods for testing and changing
the order of variables in the model.

First, we compare the indicators of consumption upgrading used in the literature.
Although the impulse response functions and variance decomposition results of the two
models differ from those of the benchmark model, they both show a lagged and long-run
positive impact of consumption on agricultural green total factor productivity, which is
consistent with the findings of the benchmark. This is consistent with the findings of the
benchmark model.

Second, in constructing the comprehensive consumption upgrading index, the bench-
mark model in this study adopts the entropy weighting method, in which the simple
arithmetic average method and principal component analysis are common methods for
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summing up the comprehensive index system. For this reason, this study adopts the simple
arithmetic average method and the principal component analysis method to reconstruct
the consumption upgrading index and replace the consumption upgrading index in the
benchmark model. The main empirical analysis results are consistent with the benchmark
model measurement test findings.

Finally, all other things being equal, this study examines the impact of changing the
order of the three variables in the benchmark PVAR model on the impulse response and
variance decomposition and finds that the main empirical results do not differ from the
conclusions of the benchmark model econometric tests. On balance, the benchmark model
is robust and correctly reflects the intrinsic economic logic among the variables, and the
results of the empirical analysis of the model are reasonably reliable.

5. Analysis of the Mechanism of the Impact of Consumption Upgrading on
Agricultural Green Total Factor Productivity and Discussion of the Results

The analysis of the theoretical mechanism shows that consumption upgrading affects
agricultural green total factor productivity mainly through the channels of economies of
scale, agricultural technical efficiency, and technological progress. At the same time, agricul-
tural green total factor productivity can be decomposed into technical efficiency (AGPEC),
scale efficiency (AGSEC), and technical change (AGTC), which satisfy agricultural green
total factor productivity = AGPEC × AGSEC × AGTC. Therefore, this study takes AGPEC,
AGSEC, and AGTC as the proxy variables of the influence path and constructs PVAR mod-
els to test the relationship between consumption upgrading and the specific relationship
among the three, thus providing empirical evidence for the transmission mechanism of
consumption upgrading affecting agricultural green total factor productivity.

5.1. Basic Tests

The smoothness tests for AGPEC, AGSEC, and AGTC based on the three methods of
LLC, Fisher ADF, and Fisher PP tests revealed that all three are smooth at the 1% significance
level; that is, AGPEC, AGSEC, and AGTC are in stable equilibrium with R_Eco and CSU,
respectively, in the long run. Therefore, this section will examine how the real economy
and consumption upgrading affect agricultural green total factor productivity through
each pathway by constructing a lag-1 PVAR model and using impulse response plots and
variance decomposition as in the baseline model.

5.2. Impulse-Response Analysis

According to Figure 3, when a positive shock is applied to R_Eco, AGPEC produces
a positive effect in the immediate period and starts to gradually decline after reaching a
peak in the current period, but always fluctuates in a positive direction, and the shock
tends to level off and converge to zero from Period 6, indicating that R_Eco produces a
large positive effect on AGPEC in the short term, but the positive boosting effect gradually
weakens and tends to zero as time advances. However, given a positive unit standard
deviation shock to CSU, AGPEC rapidly weakens and shifts after a large negative effect in
the current period and gradually converges to zero after reaching a positive direction in
Period 1, indicating that CSU is detrimental to AGPEC development in the short term but
has a sustained pulling effect in the long term.

In terms of the AGSEC channel path (Figure 4), AGSEC initially develops a negative
response to a positive unit standard deviation shock to R_Eco and continues to grow in
Period 1, after which this negative effect gradually weakens and eventually converges to
zero, indicating that R_Eco not only develops an enhanced inhibitory effect on AGSEC in
the short term but that the negative shock utility is characterized by long-term development.
After a CSU unit standard deviation size shock, AGSEC initially generates a strong positive
response and peaks at the beginning; then, the impact effect rapidly weakens and reverses
to a negative value in Period 1, after which the negative impact effect rapidly decreases to a
value near 0. However, the overall impact of the shock is positive; that is, consumption
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upgrading will boost the formation of agricultural economies of scale and accelerate the
improvement of scale efficiency.
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Figure 4. (a) R_Eco to AGSEC impulse response (b) CSU to AGSEC impulse response.

For the AGTC channel path (Figure 5), applying one standard deviation shock to
R_Eco generates a positive shock that reaches its maximum in Period 1, after which the
positive shock gradually decreases and converges to zero, suggesting that R_Eco accelerates
agricultural technological progress in the short term and that the facilitation effect is
sustainable. In contrast to the above results, a unit standard deviation shock applied to the
CSU produced a large negative shock to the AGTC in the current period; then, the negative
effect shrank rapidly to zero in Period 1 before reversing and reaching a positive maximum
in Period 2, eventually stabilizing the response function from positive, suggesting that the
CSU is not conducive to innovation in agricultural technology in the short term but has a
sustained facilitative effect in the long term.
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5.3. Variance Decomposition

Based on impulse response analysis, the contributions of R_Eco and CSU in the change
process of the three impact path variables are given in Table 5. According to Panel A
data, AGPEC is most affected by its own fluctuation shock, which is still at 96.421% in
Period 20. The intensity of R_Eco’ and CSU shocks to AGPEC maintains a stable but
increasing trend in Period 20, at 2.998% and 0.582%, respectively, and the intensity of
R_Eco’s effect is significantly higher than that of CSU. Panel B shows that the CSU’s effect
on AGSEC is stronger than that of R_Eco’s, and both can reach the steady state level sooner.
The strengths of CSU and R_Eco on AGSEC are 4.321% and 3.369%, respectively, in the
steady state, indicating that CSU and R_Eco have a stable and continuous effect on AGSEC.
Panel C shows that the contribution levels of R_Eco and CSU to the channel path AGTC
further increase and reach steady-state levels of 24.043% and 5.264%, respectively, for shock
fluctuations in Period 10, indicating that R_Eco and CSU can produce a consistent, stable,
and relatively strong shock effect on AGTC.

Table 5. Results of the variance decomposition of the impact path PVAR model.

Panel A: Path AGPEC

Period
R_Eco CSU AGPEC

R_Eco CSU AGPEC R_Eco CSU AGPEC R_Eco CSU AGPEC

5 94.669 42.546 2.98 1.693 53.771 0.579 3.638 3.684 96.442
10 93.749 49.394 2.995 2.444 46.242 0.581 3.806 4.364 96.423
15 93.588 50.387 2.997 2.582 45.150 0.582 3.830 4.463 96.421
20 93.559 50.557 2.998 2.607 44.964 0.582 96.421 4.480 96.421

Panel B: Path AGSEC

Period
R_Eco CSU AGSEC

R_Eco CSU AGSEC R_Eco CSU AGSEC R_Eco CSU AGSEC

5 87.863 50.806 3.367 0.393 36.554 4.319 11.744 12.641 92.314
10 87.170 55.841 3.369 0.724 30.203 4.321 12.106 13.956 92.310
15 87.051 56.555 3.369 0.790 29.304 4.321 12.159 14.142 92.310
20 87.030 56.677 3.369 0.801 29.149 4.321 92.310 14.173 92.310

Panel C: Path AGTC

Period
R_Eco CSU AGTC

R_Eco CSU AGTC R_Eco CSU AGTC R_Eco CSU AGTC

5 89.926 39.125 23.931 3.962 38.933 5.265 6.111 21.942 70.804
10 86.664 46.133 24.043 5.329 31.669 5.264 8.006 22.197 70.693
15 85.983 47.418 24.043 5.618 30.418 5.264 8.399 22.165 70.693
20 85.825 47.701 24.043 5.685 30.143 5.264 70.693 22.156 70.693

5.4. Results Discussion

From the empirical results, R_Eco is not conducive to ML upgrading in the short-run
but can produce a continuous positive promotion impact in the long-run, and the impact
intensity gradually increases and tends to be stable. It can be seen that although R_Eco
develops faster than ML upgrading, strengthening R_Eco is conducive to continuously
promoting ML upgrading. As highlighted by Xie [21] and Asheim et al. [30], the severe
external environment brought by economic transformation will “Force” enterprises to
continuously improve their innovation capability, which is the so-called “Eel Effect”. With
the rapid improvement of the quality of real economy development in our country, the
“Eel Effect” in agricultural green innovation has already emerged. However, R_Eco has a
heterogeneous impact on ML in different paths, with positive impacts in both the AGPEC
and AGTC paths, and the strength of the latter’s impact is significantly higher than that of
the former, indicating that R_Eco has a stronger impact on the development and application
of advanced green technologies by stimulating agricultural operators to increase their
innovation inputs. In the AGSEC pathway, R_Eco has a stimulating impact on AGSEC in
the short-run but a persistently inhibiting impact in the long-run, indicating that R_Eco
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development is not conducive to the agglomeration of agricultural industries and the
realization of economies of scale.

Similar to R_Eco, CSU has a lagging and sustained positive contribution to ML,
indicating that although the level and quality of agricultural production are inadequate in
responding to CSU, CSU can effectively lead the innovation of agricultural green technology
and the improvement of production efficiency. Further, through the impact paths, CSU has
a suppressive impact on ML in the short-run through paths AGPEC and AGTC, while it
has a continuous promotion impact in the long-run, and the intensity of the impact on the
former is significantly higher than that on the latter; while in the AGSEC path, CSU has
a positive promotion impact on ML in both the short- and long-run, but the intensity of
the impact is lower than that on AGTC.In summary, CSU plays a positive role in all three
impact paths on ML in China, but the impact on AGPEC and AGSEC is relatively stronger,
indicating that CSU mainly promotes ML enhancement through promoting the application
of existing technological achievements and the formation of agricultural economies of scale.

The empirical results also show that in addition to being influenced by R_ECO and
CSU, ML not only has a direct inverse impact on R_ECO and CSU but also has an indirect
inverse impact on CSU or R_ECO through the mediating variable R_ECO or CSU. Moreover,
the development of R_Eco, CSU, and ML is all significantly correlated with their previous
levels, reflecting the inherited and cumulative nature of economic development.

Taken together, both R_Eco and CSU can promote ML improvement but have differen-
tial impacts through different paths. Specifically, R_Eco mainly produces positive impacts
through the AGTC and AGPEC paths, while it produces negative impacts through AGSEC;
CSU produces inhibitory impacts in the short-run through paths AGPEC and AGTC and
has facilitating impacts in the long-run, and the impact of path AGPEC is higher than that
of path AGTC, while the path AGSEC contributes to an overall stronger positive impact.

6. Conclusions and Insights

Based on the construction of a comprehensive evaluation index of consumption up-
grading and the calculation of agricultural green total factor productivity based on the
Malmquist index method of the non-expected output super-efficiency SBM-DEA model,
this study uses the PVAR model to analyze the impact effect of consumption upgrading
on agricultural green total factor productivity in the context of high-quality economic
development based on panel data from 30 provinces from 2008 to 2020 and further decom-
poses total factor productivity into agricultural technical efficiency, scale efficiency, and
agricultural technological progress to explore the impact of different paths of consumption
upgrading on agricultural green total factor productivity. The main findings are as follows:
agricultural green total factor productivity is characterized by a significant dependence
on its inertia, but the real economy and consumption upgrading also constitute important
influencing factors for its change, and both are ahead of agricultural green total factor
productivity change. Although it is not conducive to agricultural green total green factor
productivity growth in the short run, it has a continuous positive effect in the long run, and
the role of the real economy is stronger than that of consumption upgrading. In terms of
impact paths, the real economy and consumption upgrading show differential effects in the
three paths, with the development of the real economy promoting the commercialization
of scientific and research findings, the formation of economies of scale in agriculture, and
the improvement of technical efficiency with no change in the production frontier, but not
promoting technological innovation and breaking through the existing production frontier.
Consumption upgrading shows completely different impacts in different paths and stages,
with the short term only contributing to the expansion of the agricultural industry and the
formation of economies of scale, while in the long term, it mainly promotes the transforma-
tion of technological achievements and technological innovations that break through the
production frontier to enhance agricultural green total factor productivity.

The above results show that in the context of China’s high-quality economic develop-
ment, how to use the opportunity of consumption upgrading to promote the improvement
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of agricultural green total factor productivity needs more comprehensive consideration. It
is generally believed that the development of the real economy and consumption upgrading
may have an overall pulling effect on the increase of agricultural green total factor produc-
tivity, but this paper finds that the current real economy and consumption upgrading have
heterogeneous mechanisms of action in different paths and that there are some shortcom-
ings. Conditions need to be created to further exploit the positive effect of consumption
upgrading on the agricultural green total factor productivity in the context of high-quality
economic development. (1) Comply with the new trend of economic transformation and
consumption upgrading, especially the trend of green consumption; accelerate the green
and low-carbon upgrading of traditional agriculture; and build a green agricultural devel-
opment technology system to realize the circular connection between the green agricultural
production and living system, so as to better play the role of promoting green agriculture
through consumption upgrading and meet the requirements of high-quality economic
development. (2) Strengthen the protection of intellectual property rights, promote the
introduction and cooperation of international technology and the commercialization of
scientific and research findings, and take advantage of the opportunity of consumption up-
grading and China’s own advantages as a large country to steadily increase the agricultural
land output rate based on green technology, while significantly improving agricultural
labour productivity and resource utilization, and promoting the agricultural green total
factor productivity. (3) Actively build agricultural industry clusters of appropriate scale
and strong radiation capacity by relying on advantageous resources so as to fully stimulate
the vitality of agricultural business entities and enable them to better realize technological
innovation, transformation, and application in the context of consumption upgrading.
(4) Reasonably define the positioning of the government and enterprises in science and
technology innovation and give full play to the government’s leading and supporting roles
in basic and strategic science and technology innovation, while effectively stimulating
the independent innovation capacity of agricultural business entities under consumption
upgrading by taking market demand as the guide.

In addition, there are still some limitations in this study that need further analysis
and research. (1) This study does not analyze the regional differences in the mechanism of
the effect of consumption upgrading on agricultural green total factor productivity, which
may have some influence on the conclusions and insights. (2) This study assumes that
the research samples are independent of each other and does not consider the horizontal
spatial influence between samples brought about by the flow of people, logistics, and
information between samples. (3) Due to data availability, this study does not analyze in
depth the impact of the more micro-level city and county level consumption upgrading on
agricultural green total factor productivity, which is a direction that needs further analysis
in the future.
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