Seasonal Variations of the Protein Fractions and the Mineral Contents of the Cheese Whey in the Parmigiano Reggiano Cheese Manufacture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling Procedure
2.2. Cheese-Making Process
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valdez Castillo, M.; Laxman Pachapur, V.; Brar, S.K.; Naghdi, M.; Arriaga, S.; Àvalos Ramirez, A. Yeast-driven whey biorefining to produce value-added aroma, flavor, and antioxidant compounds: Technologies, challenges, and alternatives. Crit. Rev. Biotechnol. 2020, 40, 930–950. [Google Scholar] [CrossRef] [PubMed]
- Dinika, I.; Nurhadi, B.; Masruchin, N.; Utama, G.L.; Balia, R.L. The roles of candida tropicalis toward peptide and amino acid changes in cheese whey fermentation. Int. J. Technol. 2019, 10, 1533–1540. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Gutiérrez, D.; Veillette, M.; Giroir-Fendler, A.; Àvalos Ramirez, A.; Faucheux, N.; Heitz, M. Biovalorization of saccharides derived fromindustrial wastes such as whey: A Review. Rev. Env. Sci. Biotechnol. 2017, 16, 147–174. [Google Scholar] [CrossRef]
- Barba, F.J. An integrated approach for the valorization of cheese whey. Foods 2021, 10, 564. [Google Scholar] [CrossRef] [PubMed]
- El-Tanboly, E.S.; El-Hofi, M.K. Recovery of cheese whey, a by-product from the dairy industry for use as an animal feed. J. Nutr. Health Food Eng. 2017, 6, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, N.; Forleo, M.B.; Salimei, E. Environmental impacts of a dairy cheese chain including whey feeding: An Italian case study. J. Clean. Prod. 2017, 140, 881–889. [Google Scholar] [CrossRef]
- Osorio-González, C.S.; Gómez-Falcon, N.; Brar, S.K.; Àvalos Ramirez, A. Cheese whey as a potential feedstock for producing renewable biofuels: A review. Energies 2022, 15, 6828. [Google Scholar] [CrossRef]
- Lappa, I.K.; Papadaki, A.; Kachrimanidou, V.; Terpou, A.; Koulougliotis, D.; Eriotou, E.; Kopsahelis, N. Cheese whey processing: Integrated biorefinery concepts and emerging food applications. Foods 2019, 8, 384. [Google Scholar] [CrossRef] [Green Version]
- Mangieri, N.; Ambrosini, D.; Baroffio, S.; Vigentini, I.; Foschino, R.; De Noni, I. Valorisation of bovine sweet whey and sunflower press cake blend through controlled fermentation as platform for innovative food materials. Foods 2022, 11, 1417. [Google Scholar] [CrossRef]
- Domingos, J.M.B.; Puccio, S.; Martinez, G.A.; Amaral, N.; Reis, M.A.M.; Bandini, S.; Fava, F.; Bertin, L. Cheese whey integrated valorisation: Production, concentration and exploitation of carboxylic acids for the production of polyhydroxyalkanoates by a fed-batch culture. Chem. Eng. J. 2018, 336, 47–53. [Google Scholar] [CrossRef]
- Yadav, J.S.S.; Yan, S.; Pilli, S.; Kumar, L.; Tyagi, R.D.; Surampalli, R.Y. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv. 2015, 33, 756–774. [Google Scholar] [CrossRef]
- Masotti, F.; Cattaneo, S.; Stuknyte, M.; De Noni, I. Technological tools to include whey proteins in cheese: Current status and perspectives. Trends Food Sci. Technol. 2017, 64, 102–114. [Google Scholar] [CrossRef]
- Domingos, J.M.B.; Martinez, G.A.; Scoma, A.; Fraraccio, S.; Kerckhof, F.-M.; Boon, N.; Reis, M.A.M.; Fava, F.; Bertin, L. Effect of operational parameters in the continuous anaerobic fermentation of cheese whey on titers, yields, productivities, and microbial community structures. ACS Sustain. Chem. Eng. 2017, 5, 1400–1407. [Google Scholar] [CrossRef]
- Franceschi, P.; Brasca, M.; Malacarne, M.; Formaggioni, P.; Faccia, M.; Natrella, G.; Summer, A. Effects of the cooling temperature at the farm on milk maturation and cheesemaking process in the manufacture of Parmigiano Reggiano PDO Cheese. Animals 2021, 11, 2835. [Google Scholar] [CrossRef]
- Franceschi, P.; Malacarne, M.; Formaggioni, P.; Cipolat-Gotet, C.; Stocco, G.; Summer, A. Effect of season and cheese-factory on cheesemaking efficiency in Parmigiano Reggiano manufacture. Foods 2019, 8, 315. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, P.; Malacarne, M.; Formaggioni, P.; Faccia, M.; Summer, A. Quantification of the effect of the cattle breed on milk cheese yield: Comparison between Italian Brown Swiss and Italian Friesian. Animals 2020, 10, 1331. [Google Scholar] [CrossRef]
- Coloretti, F.; Chiavari, C.; Nocetti, M.; Reverberi, P.; Bortolazzo, E.; Musi, V.; Grazia, L. Whey starter addition during maturation of evening milk: Effects on some characteristics of cheese milk and Parmigiano–Reggiano cheese. Dairy Sci. Technol. 2016, 96, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Emmons, D.B.; Dubé, C.; Modler, H.W. Transfer of protein from milk to cheese. J. Dairy Sci. 2003, 86, 469–485. [Google Scholar] [CrossRef]
- Franceschi, P.; Malacarne, M.; Faccia, M.; Rossoni, A.; Santus, E.; Formaggioni, P.; Summer, A. New insights of cheese yield capacity between Italian Brown and Italian Friesian milks in the production of high moisture mozzarella. Food Technol. Biotechnol. 2020, 58, 91–97. [Google Scholar] [CrossRef]
- Formaggioni, P.; Summer, A.; Malacarne, M.; Franceschi, P.; Mucchetti, G. Italian and Italian-style hard cooked cheeses: Predictive formulas for Parmigiano-Reggiano 24-h cheese yield. Int. Dairy J. 2015, 51, 52–58. [Google Scholar] [CrossRef]
- Chen, B.; Lewis, M.J.; Grandison, A.S. Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chem. 2014, 158, 216–223. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, A.; Mc Parland, S.; Ruegg, P.L.; O’Brien, B.; Gleeson, D. Seasonal trends in milk quality in Ireland between 2007 and 2011. J. Dairy Sci. 2015, 98, 3778–3790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwendel, B.H.; Wester, T.J.; Morel, P.C.H.; Tavendale, M.H.; Deadman, C.; Shadbolt, N.M.; Otte, D.E. Invited review: Organic and conventionally produced milk—An evaluation of factors influencing milk composition. J. Dairy Sci. 2015, 98, 721–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertocchi, L.; Vitali, A.; Lacetera, N.; Varisco, G.; Bernabucci, U. Seasonal variations in the composition of Holstein cow’s milk and temperature-humidity index relationship. Animal 2014, 8, 667–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summer, A.; Franceschi, P.; Formaggioni, P.; Malacarne, M. Characteristics of raw milk produced by free-stall or tie-stall cattle herds in the Parmigiano-Reggiano cheese production area. Dairy Sci. Technol. 2014, 94, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Council Regulation (EU) No PDO-IT-02202 of 14 November 2016. Off. J European Union of 13 April 2018, C132/17-19. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018XC0413(01) (accessed on 15 May 2022).
- International Dairy Federation Standard 50/ISO707; Milk and Milk Products, Guidance on Sampling. IDF: Brussels, Belgium, 2008.
- Association of Official Analytical Chemists [AOAC]. Nitrogen (total) in milk, method no. 991.20. In Official Methods of Analysis of AOAC International, 18th ed.; Horowitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2005; pp. 10–12. [Google Scholar]
- Association of Official Analytical Chemists [AOAC]. Non-casein nitrogen content of milk, method no. 998.05. In Official Methods of Analysis of AOAC International, 18th ed.; Horowitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2005; pp. 50–51. [Google Scholar]
- Association of Official Analytical Chemists [AOAC]. Nonprotein nitrogen in whole milk, method no. 991.21. In Official Methods of Analysis of AOAC International, 18th ed.; Horowitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2005; pp. 12–13. [Google Scholar]
- Malacarne, M.; Criscione, A.; Franceschi, P.; Bordonaro, S.; Formaggioni, P.; Marletta, D.; Summer, A. New insights into chemical and mineral composition of donkey milk throughout nine months of lactation. Animals 2019, 9, 1161. [Google Scholar] [CrossRef] [Green Version]
- International Dairy Federation Standard 141/ISO9622; Milk and Liquid Milk Products, Guidelines for the Application of Mid-Infrared Spectrometry. IDF: Brussels, Belgium, 2013.
- International Dairy Federation Standard 152/ISO11870; Milk and Milk Products, Determination of Fat Content, General Guidance on the Use of Butyrometric Methods. IDF Standard: Brussels, Belgium, 2009.
- ISO 6731:2010; Milk, Cream and Evaporated Milk e Determination of Total Solids Content. International Organisation for Standardisation: Geneva, Switzerland, 2010.
- International Dairy Federation Standard 27; Determination of Ash Content of Processed Cheese Products. IDF: Brussels, Belgium, 1964.
- Allen, R.J.L. The estimation of phosphorus. Biochem. J. 1940, 34, 858–865. [Google Scholar] [CrossRef] [Green Version]
- International Dairy Federation Standard 150/ISO11869; Milk and Milk Products—Determination of Titratable Acidity—Potentiometric Method. IDF Standard: Brussels, Belgium, 2012.
- Malacarne, M.; Franceschi, P.; Formaggioni, P.; Sandri, S.; Mariani, P.; Summer, A. Influence of micellar calcium and phosphorus on rennet coagulation properties of cows milk. J. Dairy Res. 2014, 81, 129–136. [Google Scholar] [CrossRef] [Green Version]
- International Dairy Federation Standard 148-2/ISO13366-2; Milk, Enumeration of Somatic Cells, Part 2: Guidance on the Operation of Fluoro-Opto-Electronic Counters. IDF: Brussels, Belgium, 2006.
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manage. 2012, 110, 48–68. [Google Scholar] [CrossRef]
- Malacarne, M.; Summer, A.; Fossa, E.; Formaggioni, P.; Franceschi, P.; Pecorari, M.; Mariani, P. Composition, coagulation properties and Parmigiano-Reggiano cheese yield of Italian Brown and Italian Friesian herd milks. J. Dairy Res. 2006, 73, 171–177. [Google Scholar] [CrossRef]
- Van Knegsel, A.T.M.; van den Brand, H.; Dijkstra, J.; van Straalen, W.M.; Heetkamp, M.J.W.; Tamminga, S.; Kemp, B. Dietary energy source in dairy cows in early lactation: Energy partitioning and milk composition. J. Dairy Sci. 2007, 90, 1467–1476. [Google Scholar] [CrossRef] [Green Version]
- Tsioulpas, A.; Grandison, A.S.; Lewis, M.J. Changes in physical properties of bovine milk from the colostrum period to early lactation. J. Dairy Sci. 2007, 90, 5012–5017. [Google Scholar] [CrossRef]
- Hagnestam-Nielsen, C.; Emanuelson, U.; Berglund, B.; Strandberg, E. Relationship between somatic cell count and milk yield in different stages of lactation. J. Dairy Sci. 2009, 92, 3124–3133. [Google Scholar] [CrossRef] [Green Version]
- Bernabucci, U.; Basiricò, L.; Morera, P.; Dipasquale, D.; Vitali, A.; Piccioli Cappelli, F.; Calamari, L. Effect of summer season on milk protein fractions in Holstein cows. J. Dairy Sci. 2015, 98, 1815–1827. [Google Scholar] [CrossRef] [Green Version]
- Summer, A.; Lora, I.; Formaggioni, P.; Gottardo, F. Impact of heat stress on milk and meat production. Anim. Front. 2019, 9, 39–46. [Google Scholar] [CrossRef]
- Cowley, F.C.; Barber, D.G.; Houlihan, A.V.; Poppi, D.P. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J. Dairy Sci. 2015, 98, 2356–2368. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, P.; Faccia, M.; Malacarne, M.; Formaggioni, P.; Summer, A. Quantification of cheese yield reduction in manufacturing Parmigiano Reggiano from milk with non-compliant somatic cells count. Foods 2020, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Urech, E.; Puhan, Z.; Schällibaum, M. Changes in milk protein fraction as affected by subclinical mastitis. J. Dairy Sci. 1999, 82, 2402–2411. [Google Scholar] [CrossRef]
- Shennan, D.B.; Peaker, M. Transport of milk constituents by the mammary gland. Physiol. Rev. 2000, 80, 925–951. [Google Scholar] [CrossRef] [Green Version]
- Summer, A.; Franceschi, P.; Malacarne, M.; Formaggioni, P.; Tosi, F.; Tedeschi, G.; Mariani, P. Influence of somatic cell count on mineral content and salt equilibria of milk. Ital. J. Anim. Sci. 2009, 8 (Suppl. S2), 435–437. [Google Scholar] [CrossRef]
- Somers, J.M.; O’Brien, B.; Meany, W.; Kelly, A.L. Heterogeneity of proteolytic enzyme activities in milk samples of different somatic cell count. J. Dairy Res. 2003, 70, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, P.; Summer, A.; Sandri, S.; Formaggioni, P.; Malacarne, M.; Mariani, P. Effects of the full cream milk somatic cell content on the characteristics of vat milk in the manufacture of Parmigiano-Reggiano cheese. Vet. Res. Commun. 2009, 33 (Suppl. S1), 281–283. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, P.; Malacarne, M.; Bortolazzo, E.; Coloretti, F.; Formaggioni, P.; Garavaldi, A.; Musi, V.; Summer, A. Automatic milking systems in the production of Parmigiano Reggiano cheese: Effects on the milk quality and on cheese characteristics. Agriculture 2022, 12, 104. [Google Scholar] [CrossRef]
- Franceschi, P.; Malacarne, M.; Formaggioni, P.; Faccia, M.; Summer, A. Effects of milk storage temperature at the farm on the characteristics of Parmigiano Reggiano cheese: Chemical composition and proteolysis. Animals 2021, 11, 879. [Google Scholar] [CrossRef]
Parameters | Winter n 1 = 72 | Spring n 1 = 72 | Summer n 1 = 72 | Autumn n 1 = 72 | Overall Mean n 1 = 288 | ES 2 | p 3 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry matter | g/100 g | 7.97 | c | 7.76 | b | 7.58 | a | 7.98 | c | 7.85 | 0.04 | *** |
Fat | g/100 g | 0.45 | a | 0.44 | a | 0.46 | a | 0.52 | b | 0.45 | 0.01 | *** |
Solids-not-fat | g/100 g | 7.52 | c | 7.31 | b | 7.12 | a | 7.46 | c | 7.39 | 0.04 | *** |
Crude protein | g/100 g | 0.87 | b | 0.83 | a | 0.84 | a | 0.89 | c | 0.86 | 0.01 | *** |
Crude whey protein | g/100 g | 0.85 | c | 0.81 | a | 0.83 | b | 0.88 | d | 0.84 | 0.01 | *** |
Casein | g/kg | 0.20 | b | 0.22 | b | 0.15 | a | 0.16 | a | 0.02 | 0.01 | ** |
NPNx6.38 | g/100 g | 0.24 | 0.24 | 0.23 | 0.23 | 0.24 | 0.01 | NS | ||||
True protein | g/100 g | 0.63 | b | 0.60 | a | 0.61 | a | 0.66 | c | 0.62 | 0.01 | *** |
True whey protein | g/100 g | 0.61 | b | 0.58 | a | 0.60 | a | 0.64 | c | 0.60 | 0.01 | *** |
Whey protein number | % | 97.68 | a | 97.42 | a | 98.12 | b | 98.28 | b | 97.96 | 0.18 | ** |
Casein number | % | 2.32 | bc | 2.58 | c | 1.88 | ab | 1.72 | a | 2.04 | 0.18 | ** |
Ash | g/100 g | 0.55 | b | 0.55 | b | 0.54 | a | 0.55 | b | 0.55 | 0.01 | * |
Ca | mg/100 g | 43.62 | 43.36 | 43.96 | 43.69 | 43.58 | 0.32 | NS | ||||
P | mg/100 g | 45.80 | c | 44.71 | b | 44.28 | a | 45.55 | c | 45.05 | 0.02 | *** |
Mg | mg/100 g | 8.22 | bc | 8.04 | b | 8.00 | a | 8.39 | c | 8.14 | 0.06 | *** |
Titratable acidity | °SH/50 mL | 2.62 | 2.63 | 2.63 | 2.63 | 2.63 | 0.01 | NS | ||||
pH | Value | 6.31 | 6.31 | 6.31 | 6.31 | 6.31 | 0.01 | NS |
Parameters | Winter n 1 = 72 | Spring n 1 = 72 | Summer n 1 = 72 | Autumn n 1 = 72 | Overall Mean n 1 = 288 | ES 2 | p 3 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry matter | g/100 g | 11.83 | c | 11.63 | b | 11.52 | a | 11.95 | d | 11.73 | 0.03 | *** |
Fat | g/100 g | 2.74 | b | 2.61 | a | 2.57 | a | 2.82 | c | 2.68 | 0.02 | *** |
Crude protein | g/100 g | 3.22 | b | 3.10 | a | 3.13 | a | 3.27 | c | 3.18 | 0.01 | *** |
Crude whey protein | g/100 g | 0.73 | c | 0.69 | a | 0.71 | b | 0.75 | d | 0.72 | 0.01 | *** |
Casein | g/100 g | 2.50 | b | 2.40 | a | 2.42 | a | 2.52 | c | 2.46 | 0.01 | *** |
Casein number | g/100 g | 77.39 | bc | 77.60 | c | 77.21 | ab | 77.11 | a | 77.33 | 0.09 | ** |
Fat-to-casein ratio | - | 1.10 | bc | 1.09 | ab | 1.06 | a | 1.12 | c | 1.09 | 0.01 | *** |
Ash | g/100 g | 0.73 | bc | 0.73 | ab | 0.72 | a | 0.73 | c | 0.73 | 0.01 | ** |
Ca | mg/100 g | 118.54 | ab | 117.24 | a | 119.90 | b | 122.55 | c | 119.59 | 0.73 | *** |
P | mg/100 g | 90.08 | b | 87.33 | a | 86.98 | a | 90.10 | b | 88.62 | 0.32 | *** |
Mg | mg/100 g | 10.77 | ab | 10.53 | a | 10.48 | a | 11.03 | b | 10.67 | 0.12 | *** |
Titratable acidity | °SH/50 m | 3.32 | b | 3.28 | a | 3.26 | a | 3.29 | ab | 3.29 | 0.01 | ** |
Clotting time (RCT) | minutes | 18.17 | ab | 17.84 | a | 19.49 | c | 18.59 | b | 18.52 | 0.23 | *** |
Curd firming time (k20) | minutes | 6.32 | a | 6.10 | a | 8.80 | b | 6.80 | a | 7.01 | 0.30 | *** |
Curd firmness (a30) | millimeters | 28.00 | bc | 28.41 | c | 22.27 | a | 26.37 | b | 26.25 | 0.62 | *** |
Somatic cell count | 103 Cells/mL | 136 | a | 162 | ab | 186 | b | 176 | b | 165 | 4.42 | *** |
Milk Parameters | Cooked Whey Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude Protein | Whey Protein | Fat | Ca | P | Mg | |||||||
r | p 1 | r | p 1 | r | p 1 | r | p 1 | r | p 1 | r | p 1 | |
Crude protein | 0.691 | *** | 0.711 | *** | 0.282 | *** | 0.334 | *** | 0.342 | *** | ||
Whey protein | 0.674 | *** | 0.688 | *** | 0.172 | *** | 0.306 | *** | ||||
Fat | 0.420 | *** | 0.406 | *** | 0.281 | *** | 0.277 | *** | 0.101 | ** | 0.298 | *** |
Ca | 0.280 | *** | 0.282 | *** | 0.210 | * | 0.308 | *** | ||||
P | 0.475 | *** | 0.491 | *** | 0.192 | *** | 0.471 | *** | 0.351 | *** | ||
Mg | 0.221 | ** | 0.229 | ** | 0.150 | * | 0.460 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franceschi, P.; Martuzzi, F.; Formaggioni, P.; Malacarne, M.; Summer, A. Seasonal Variations of the Protein Fractions and the Mineral Contents of the Cheese Whey in the Parmigiano Reggiano Cheese Manufacture. Agriculture 2023, 13, 165. https://doi.org/10.3390/agriculture13010165
Franceschi P, Martuzzi F, Formaggioni P, Malacarne M, Summer A. Seasonal Variations of the Protein Fractions and the Mineral Contents of the Cheese Whey in the Parmigiano Reggiano Cheese Manufacture. Agriculture. 2023; 13(1):165. https://doi.org/10.3390/agriculture13010165
Chicago/Turabian StyleFranceschi, Piero, Francesca Martuzzi, Paolo Formaggioni, Massimo Malacarne, and Andrea Summer. 2023. "Seasonal Variations of the Protein Fractions and the Mineral Contents of the Cheese Whey in the Parmigiano Reggiano Cheese Manufacture" Agriculture 13, no. 1: 165. https://doi.org/10.3390/agriculture13010165
APA StyleFranceschi, P., Martuzzi, F., Formaggioni, P., Malacarne, M., & Summer, A. (2023). Seasonal Variations of the Protein Fractions and the Mineral Contents of the Cheese Whey in the Parmigiano Reggiano Cheese Manufacture. Agriculture, 13(1), 165. https://doi.org/10.3390/agriculture13010165