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Abstract: Currently, an agricultural method called SynecocultureTM has been receiving attention as
a means for multiple crop production and recovering from environmental degradation; it helps in
regreening the environment and establishing an augmented ecosystem with high biodiversity. In this
method, several types of plants are grown densely, and their management relies mainly on manual
labor, since conventional agricultural machines and robots cannot be applied in complex vegetation.
To improve work efficiency and boost regreening by scaling-up Synecoculture, we developed a robot
that can sow, prune, and harvest in dense and diverse vegetation that grows under solar panels,
towards the achievement of compatibility between food and energy production on a large scale.
We adopted a four-wheel mechanism with sufficient ability to move on uneven terrain, and a two
orthogonal axes mechanism with adjusted tool positioning while performing management tasks. In
the field experiment, the robot could move straight on shelving slopes and overcome obstacles, such
as small steps and weeds, and succeeded in harvesting and weeding with human operation, using
the tool maneuver mechanism based on the recognition of the field situation through camera image.

Keywords: agricultural robots; sowing; pruning; harvesting

1. Introduction

The destruction of the environment and ecosystems by conventional farming methods
has been worsening in recent years, and questions have been raised regarding the sustain-
ability of the primary industry and food production in terms of maintaining material and
energy resources, human health, and ecosystem health [1]. Therefore, a farming method
called SynecocultureTM [2], which aims to break away from the trade-off between produc-
tivity and environmental destruction, has garnered attention. This farming method does
not involve any tillage, fertilization, or spraying of agrochemicals; instead, it achieves food
production by constructing an augmented ecosystem with highly enhanced biodiversity.
Multiple species of plants and fruit trees with varying growth rates are mixed and grown
densely; therefore, sowing, pruning of dominant plants, and harvesting tasks should be per-
formed at all times. Furthermore, cultivation in half-shaded conditions is recommended to
prevent grounds from drying out and harbor the coexistence of multiple crops. Meanwhile,
even though solar power generation is becoming widespread to overcome the problems of
energy shortages, the space under solar panels in solar power plants remains unutilized,
and it is believed that conducting Synecoculture by utilizing this space would be effective.
Developing an augmented ecosystem with Synecoculture is advantageous to producing
food even in dry lands where conventional agriculture is not suitable. At the same time,
since many types of crops are densely mixed in Synecoculture, it is difficult to handle the
sowing, pruning, and harvesting with existing agricultural machinery. Manual work is ba-
sically required for the practical management of Synecoculture, which becomes highly time-
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and labor-intensive as the scale expands. Most existing agricultural robots have focused on
the automation of a single task in simplified monoculture production, and none of them
have realized the above three tasks as a unified system working in the complex vegetation.
Moreover, contact with and damage to plants in the vicinity of the target area can lead
to poor growth and a decrease in the value of the harvested product. Thus, unnecessary
contact with plants other than the work target should be avoided as much as possible.
Because performing multiple tasks in a dense plant environment requires recognition of the
environment at various points, autonomous recognition of the environment and sensitive
operation of the robot are the major issues to resolve. Therefore, we aimed to develop a
robot that has the power and functions to perform various tasks while having a small and
flexible structure that reduces contact with the environment.

In this paper, we presented a new robot for the management of Synecoculture compat-
ible with the complex vegetation and spatial constraint under solar panels. We developed
a mechanism that was capable of movement where there were no paved road surfaces
and could perform the three tasks of sowing, pruning, and harvesting in a Synecoculture
farmland environment where varieties of plants were densely mixed. We specifically de-
veloped a four-wheel-drive gate-type mobile robot equipped with an XY table that could
move in the horizontal direction, passing under solar panels and straddling the ridges.
We then developed a robotic arm attached to a gate-type mobile robot that could avoid
obstacles on the ground within certain height limits by expanding and contracting. We
also developed a mechanism for sowing individual seeds coated in the soil as a “seed
ball”, a pruning and harvesting mechanism that griped and cut the harvest. Moreover, an
operation system of the robot to conduct the three tasks was also developed. An integrated
controller by implementing tool coordinate-based operating, automatic sowing, and task
switching via a menu interface were implemented. The system employed a 360◦ camera
in equirectangular format as the tool’s viewpoint, enabling wide-area recognition of the
environment surrounding the tool.

The two main contributions of this study are as follows. First, we developed a
robot that could perform multiple tasks to implement a special farming method called
Synecoculture. Most of the existing studies have only performed harvesting tasks for a
single species, but if the robot can perform multiple tasks, it will be possible to automate
the practices of complex farming, such as Synecoculture, using mainly the robot. However,
simply combining robotic mechanisms specific to each task will increase the size of the
robot, which will increase its costs and undesirable contacts with other plants. Therefore,
our main contribution was to establish a simple unified mechanism to go beyond the
trade-off between multi-functionality and robot size. In particular, for seed planting, we
utilized the seed ball method in order to treat multiple sizes and shapes of seeds. By placing
a single seed instead of multiple seeds in a single ball, we were able to simplify the sowing
mechanism, because different seeds could be operated in a unified way.

Second, we proposed an operation system that facilitated the operation of the robot in
complex farming environments. Existing agricultural robots mainly aimed at automation
to save manpower in monoculture environment, but mixed polyculture situations subject
to this study were too complex to fully automate. In particular, automatic recognition
of the environment and work objects that coexisted with a large number of plants in
close proximity was the technical burden. Therefore, we proposed the human-operated
control as the previous stage of automation and developed an easy-to-operate controller.
We proposed an effective user interface that provided sufficient visibility even in dense
vegetation, which was revealed to be effective in performing the tasks. The control system
could be applied to other existing farming methods which would enable remote-operated
farming. As experience with operational results is accumulated over multiple situations, it
will be possible to automate the processes.
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2. Materials and Methods
2.1. Relevant Research

Existing agricultural robots include those by FarmBot [3], which move on rails installed
in the field and perform multiple tasks by exchanging tools; or by Thorvald II [4], which
move through fields with tires to perform work. However, most agricultural robots were
designed for conventional farming methods with regular arrangements. Even among
agricultural robots that are supposed to run on rough terrain and perform a single task [5],
there are no examples of agricultural robots yet that could perform several complex tasks
such as sowing, pruning, and harvesting in a mixed and dense environment of plants
such as that of Synecoculture. Most studies have been on harvesting [6–13]. Jun et al.
proposed a robot that recognized tomatoes by image analysis and automatically harvested
them [14]. Arad et al. proposed a sweet pepper harvesting robot in the green house [15].
Megalingam et al. proposed an unmanned robotic coconut tree climber and harvester [16].
A number of grippers have also been proposed for efficient harvesting [17–19].

Many studies verified the application of robots using simple plants produced in the
laboratory; however, trials are beginning to be conducted in field environments where
the problem is more complex. Birrell et al. verified a system for automatic lettuce har-
vesting at lettuce plantations [20]. Leu et al. developed a mobile robot that automatically
recognized and harvested asparagus [21]. Denarda et al. designed a low-cost mechatronic
device for semi-automatic saffron harvesting and performed field tests for further design
optimization [22]. Such studies also have targeted only a single plant species to automate
conventional farming and targeted only harvesting operations. Various image recognition
technologies for automatic harvesting have been proposed for the farm environment and
crops [23–31]. However, most of these technologies are targeted at conventional farm-
ing methods in which a single species is grown, thus lowering the recognition rate in
environments where a variety of plants exist in small areas.

Of the three tasks, sowing of one individual seed has not been realized, especially in a
dense plant environment [32–36]. The ideal farm conditions for Synecoculture are those
where the topsoil is not exposed, and various vegetation is always overgrown. Therefore,
sowing is performed at the point where the crops are harvested or dominant vegetation
that may reduce diversity is pruned. Plant species that can easily grow depend on the kinds
and densities of surrounding plants, thus the species to be planted should be selected in
areas where they can easily grow. In case there are crops and shrubs nearby, these must be
avoided. Furthermore, since the land is not tilled, it must be assumed that the soil is hard.
Previously, most of sowing mechanisms could be used on cultivated land. A no-till sowing
machine [37] was also developed to sow on land that is not tilled. However, in previous
research, it was not possible to sow only in the targeted space, and the prerequisites of
the study were having an environment without any large obstacles on the ground surface
and also certain height restrictions. Meanwhile, the target environment in this study may
include interference from obstacles such as solar panels, crops, and shrubs. Additionally,
no-till sowing machines require a large amount of force to create a groove in hard soil.

2.2. Required Specifications

The developed robot should be able to move in uneven or sloping agricultural fields.
The ground surface roughness was set to 50 mm and inclination angle to 5◦ by examining
the specifications based on the design standards of land improvement businesses, which
serve as the standard of the introduction site, and by taking measurements in the agricul-
tural field in which the robot will be tested. The walking speed of humans on a farm is
45 m/min, so this value was used as the required specification. The solar panel was set up
on the farmland at a height of 1800 mm, and the robotic arm was mounted at a height of
1500 mm above the ground surface to avoid contact with solar panels. Additionally, the
maximum extendable length to work at the ground surface was set over 1500 mm, and the
maximum contraction length for avoiding crops and shrubs was set below 550 mm. Various
plant species could be considered, but in this study, common fruit and leafy vegetable



Agriculture 2023, 13, 18 4 of 22

species were targeted. The force required for pruning leaves and stems was measured in
the field, and a value of 117 N was the highest force needed to cut the stem of an eggplant.
This force value was set as the required specification. Various plants were chosen for the
seeds, but to cover all the commonly available seed sizes, the seed size was set in a way that
it covers baby leaves (1 mm) to cucumber (max. length at 9 mm). The target operation time
for continuous 3-task operation was set at 150 s, based on the current operational scenario.
The required specifications are summarized in Table 1.

Table 1. Requirements and specifications.

Req. Spec.

Velocity (m/min) 45 45

Slope of the field (deg) 5 7.5

Roughness of the field (mm) 50 56

Size at contraction (mm) 200 × 320 × 520 200 × 320 × 520

Total stroke of arm (mm) 950 1000

Pitch axis movable angle (deg) +135, −90 +135, −90

Roll axis movable angle (deg) ±180 ±180

Yaw axis movable angle (deg) ±180 ±180

2.3. Development Policy

We configured the robot in such a way that it would be able to move in an agricultural
field and perform tasks in a Synecoculture environment where multiple plants, including
tall plants, are densely mixed. First, there are two methods of movement in fields, as
shown in previous studies: moving on rails and running on the ground. Solar panels were
installed in the upper section of the agricultural field, so the robots could be moved on
installed rails by using their columns when operating on a large scale. However, laying
large rails in experiments is cost intensive. Therefore, in this study, we set up a structure
where a running unit was set up on a small rail so that it can run on its own and facilitate
introduction into a temporary farm; the scale of the farms on which the robot works can be
subsequently increased by increasing only the length of the rail, and the running unit does
not need to be used. To execute its tasks, the robot needs to approach the target objects
by avoiding dense plants; hence, the robot was given translational degrees of freedom in
the X, Y, and Z directions and rotational degrees of freedom in terms of roll, pitch, and
yaw. The degree of freedom in the X direction can be supplemented by directly running
with the running unit, but tire-based running decreases positional accuracy due to slippage.
Therefore, in this study, the rail movement in the X direction was used as is. The degrees of
freedom that the robot developed in this study has is as shown in Figure 1; its structure
includes a running unit that moves the robot itself on the soil, the rail movement unit that
assists horizontal movement, and a vertical arm unit that assists in vertical movement
of the work tool and positional changes. The vertical arm unit has a telescopic structure,
which can execute multiple tasks as the work tools related to each task are installed on
the tip of the vertical arm unit. Furthermore, each unit of the robot was designed for easy
assembly/disassembly during transportation. Details of each unit are given later in the
text, but the appearance of the developed robot is shown in Figure 2.
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2.4. Design of the Running Unit

The drive/steering configuration was set as a four-wheel drive/zero-wheel steering
configuration that required relatively little space for turning, was capable of turning on
the spot, and was low-cost. Tires and crawlers can be considered for running on rough
terrain; however, they are not only expensive, but their maintenance cost is also high. As
crawlers would be inferior to tires in this scenario, we decided to use tires for running.
There are multiple patterns during tire-based running depending on the drive/steering
configuration. The work lines in the agricultural field were separated by solar panels, so
the robot will need to be able to switch between work lines to be able to work on all of
them. Taking into account the roughness of the road surface, we considered installing a
suspension; however, the use of low-pressure tires helped achieve the effect of suspension
because of tire deformation. The distance between the tires that enables in situ turning was
calculated. During turning, driving force and lateral force act between each tire and the
ground. To prevent tires from slipping, the combined driving force Rd and lateral force Fl
of each tire must be less than the maximum static friction force, as shown in Equation (1):√

Rd
2 + Fl

2 ≤ µMg
4

(1)

where µ is the friction coefficient, M is the mass of the robot, and g is the gravitational
acceleration. For turning, the counterclockwise moment of the center of rotation must be
positive as in Equation (2). Therefore, the turning condition is expressed as in Equation (3):

RdDrl > Fl D f b (2)
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tanθ =
D f b

Drl
<

Rd√(
µMg

4

)2
− Rd

2

(3)

where θ is slip angle, D f b and Drl are the distance between the tires in front–back and right–
left directions. The driving force Rd required for driving on a slope angle ϕ is obtained by
Equation (4):

Rd =
µMg

4
cosϕ +

Mg
4

sinϕ (4)

The coefficient of friction was considered as 0.15, since the nominal value of the
agricultural tires used is from 0.07 to 0.16. Based on the driving force and the required
rotation speed ω, the required motor power was calculated by Equation (5):

P =
Rdrω

η
(5)

where r is the radius of a tire of 0.2 m and η is the power transmission efficiency from a
motor to a tire of 0.85. The required motor output was calculated to be approximately
325 W; thus, a 400 W motor was installed. A brushless DC motor BLV640N100F (Oriental
Motor Co., Ltd., Tokyo, Japan) was used, and the power was transmitted by a chain that
could handle high torque levels and had excellent environmental resistance (Figure 3a).
The distance between the tires in front–back and right–left directions D f b and Drl were
determined at 1.8 m and 2.3 m. Overall, we used the finite element method to design the
structure with sufficient strength (Figure 3b).
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2.5. Rail Movement Unit Design

This robot was assembled and disassembled during transportation, so it is desirable to
have a low assembly accuracy when integrating the robot. Additionally, as the robot must
operate outdoors, environmental resistance is necessary. Therefore, it was decided that
the linear motion in the X and Y directions of the rail movement unit would be conducted
by the pin gear and wheels, respectively. The pin gear drive is a method of driving using
a rack with a pin mechanism and a gear with a special tooth profile. The rail movement
unit runs on rails; thus, the required output of the drive motor was calculated by the same
mathematical formula as for the running unit described above. Additionally, a guide roller
was attached to prevent the robot from coming off the rail or rack due to external forces or
vibrations while performing tasks, thereby restricting the direction of movement (Figure 4).
The rails on which the rail movement unit moves and the robot frame that connects the
running unit were composed of an aluminum frame. The size was determined not only
by considering the width of the work line but also the conditions for not tipping over
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during sudden acceleration or sudden halt; the wheelbase that could turn and tread width
was also considered. Furthermore, strength analysis was performed when there was an
external force on the robot during a collision with plants and twisting when one of its
wheels is locked.

Agriculture 2023, 13, x FOR PEER REVIEW 7 of 22 
 

 

forces or vibrations while performing tasks, thereby restricting the direction of movement 
(Figure 4). The rails on which the rail movement unit moves and the robot frame that 
connects the running unit were composed of an aluminum frame. The size was deter-
mined not only by considering the width of the work line but also the conditions for not 
tipping over during sudden acceleration or sudden halt; the wheelbase that could turn 
and tread width was also considered. Furthermore, strength analysis was performed 
when there was an external force on the robot during a collision with plants and twisting 
when one of its wheels is locked. 

  
(a) (b) 

Figure 4. (a) Y-direction, (b) X-direction. CAD of the developed rail mechanism. 

2.6. Telescopic ARM 
We designed a high stretch ratio arm that can perform various tasks and exert large 

force (Figure 5). In this study, as the robot is designed for outdoor environments, it is 
assumed that raindrops would drip on the robot from the gap of solar panels. There is a 
need to devise ways that do not expose its mechanical or electronic parts. Rigidity is also 
required for accidental contact with obstacles such as shrubs. Therefore, we used a tele-
scopic structure in which a nested rectangular parallelepiped housing was used for its 
ability to enclose the entire arm drive unit and obtain high rigidity. Four stages were used 
to achieve the contracted and fully extended lengths, and the posture of the end effector 
was determined by arranging the yaw, pitch, and roll axes at the tip. Crops could be har-
vested, and weeds could be pruned by changing the tools. 

The drive unit of the telescopic arm had a motor in the first and fourth stages, with 
the motor in the first stage interlocking the second and third stages and extending the 
arm, and the motor in the fourth stage independently driving only the fourth stage. The 
second and third stages were connected to the higher stage with a chain. The motor rota-
tion was transmitted to the sprocket, and the second stage expanded and contracted as 
the chain moved. The rack was placed between the first and second stages, and the gear 
was placed in the second stage, so that it latched with the rack and rotated with the exten-
sion of the second stage. The mechanism used was such that the gear rotation rotated the 
coaxial sprocket, which then interlocked with the third stage and extended it (henceforth, 
referred to as the interlocking unit) (Figure 6). Regarding the chain interlocking mecha-
nism, the force 𝐹ଶ and the torque 𝜏௦௧ଶ applied to the second sprocket can be ex-
pressed by the following equations: 𝐹ଶ ൌ 𝑚ଷ𝑔  𝑓ଷ (6)𝜏௦௧ଶ ൌ 𝑅𝐹ଶ (7)

where the mass of parts below the third-stage housing is 𝑚ଷ, the frictional forces applied 
between the second-stage and third-stage housing is 𝑓ଷ, and 𝑅 is the pitch circle radius 
of the sprocket. The force 𝐹ଵ and torque 𝜏௦௧ଵ applied to the first-stage sprocket can 
be expressed by Equations (8) and (9): 

Figure 4. (a) Y-direction, (b) X-direction. CAD of the developed rail mechanism.

2.6. Telescopic ARM

We designed a high stretch ratio arm that can perform various tasks and exert large
force (Figure 5). In this study, as the robot is designed for outdoor environments, it is
assumed that raindrops would drip on the robot from the gap of solar panels. There is
a need to devise ways that do not expose its mechanical or electronic parts. Rigidity is
also required for accidental contact with obstacles such as shrubs. Therefore, we used a
telescopic structure in which a nested rectangular parallelepiped housing was used for
its ability to enclose the entire arm drive unit and obtain high rigidity. Four stages were
used to achieve the contracted and fully extended lengths, and the posture of the end
effector was determined by arranging the yaw, pitch, and roll axes at the tip. Crops could
be harvested, and weeds could be pruned by changing the tools.
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The drive unit of the telescopic arm had a motor in the first and fourth stages, with
the motor in the first stage interlocking the second and third stages and extending the arm,
and the motor in the fourth stage independently driving only the fourth stage. The second
and third stages were connected to the higher stage with a chain. The motor rotation was
transmitted to the sprocket, and the second stage expanded and contracted as the chain
moved. The rack was placed between the first and second stages, and the gear was placed
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in the second stage, so that it latched with the rack and rotated with the extension of the
second stage. The mechanism used was such that the gear rotation rotated the coaxial
sprocket, which then interlocked with the third stage and extended it (henceforth, referred
to as the interlocking unit) (Figure 6). Regarding the chain interlocking mechanism, the
force F2 and the torque τsprocket2 applied to the second sprocket can be expressed by the
following equations:

F2 = m3g + f3 (6)

τsprocket2 = RF2 (7)

where the mass of parts below the third-stage housing is m3, the frictional forces applied
between the second-stage and third-stage housing is f3, and R is the pitch circle radius of
the sprocket. The force F1 and torque τsprocket1 applied to the first-stage sprocket can be
expressed by Equations (8) and (9):

F1 = (m2 + m3)g + f2 +
τsprocket2

r2
(8)

τsprocket1 = RF1 (9)

where the mass of the second-stage housing is m2, the frictional forces applied between the
first-stage and second-stage housing is f2, and r2 is the pitch circle radius of the gear. This
mechanism enabled expansion and contraction without having an actuator in the central
stage, allowing for the robot to be stored compactly. Moreover, the mechanism would not
be exposed to the environment. The use of a worm gear with an advanced angle of less than
4◦ for the reducer of the motor that drives the arm enables the posture to be maintained
due to friction between the worm wheel and worm gear even when power is cut. The
power required for the motor was calculated as 166 W with the required torque τsprocket1,
the required speed and the power transmission efficiency of the gears and belts between
the motor and the sprocket of 0.45 with almost the same calculation as Equation (5).
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With this mechanism, the total stroke of the second and third stages was 600 mm, and
the stroke of the fourth stage was 420 mm. A nylon plate was sandwiched between the
housing of each stage to reduce friction during sliding. The pitch and roll axes used wave
gears for the reducer, because of which they could obtain a high reduction ratio; hence,
even large crops could be harvested and transported (Figure 7). The yaw axis used a hollow
structure to allow the wiring of the pitch and roll axes to pass through the fourth stage; a
motor driver (Maxon Co., Ltd., Sachseln, Switzerland) for driving the yaw, pitch, and roll
axes of the fourth stage was placed in the fourth stage. The wiring that connected the PC,
power supply, and motor driver passed through the housing and extended from the top of
the robot to the outside.
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2.7. Pruning/Harvesting Tool

Figure 8 shows the design and manufacture of a pruning/harvest tool. Assuming
that the harvest of vegetables that mature hang down from branches, the structure was
designed in such a way that the grip unit was at the bottom, the sensor unit was at the
center, and another grip unit was at the top. A pruning scissor blade, DC motor, and worm
gear were used for the cutting unit because the required cutting force and stroke were large.
In the pruning pre-test with scissors in the field, it took the cutting force Fcutting of max. 53
N for spinach and max. 120 N for an eggplant. A mechanical model of a pruning scissor is
shown in Figure 9. The required torque of the cutting scissor τscissor was calculated with
the cutting force Fcutting of 120 N and a blade length Lblade of 0.07 m in Equation (10):

τscissor = Fcutting · Lblade (10)
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Since it was assumed that the cross-sectional shape of the objects will mostly be circular,
the grip unit structure was such that the position could be determined by two points on the
fixed side, which then enabled three-point support, with a claw on the movable side that
can be fixed as the third point. The movable side of the grip was driven by a servomotor
AX-18A (ROBOTIS Co., Ltd., Gangseo-gu, Seoul, Republic of Korea). Additionally, the
cutting unit was equipped with a slide rail that could be adjusted back and forth, and the
grip unit was equipped with a slide rail that could be adjusted left and right. This was
for adjusting the positional relationship between the cutting unit and grip unit to enable
a three-point grip with a narrower width for other types of fruit/leafy vegetables or a
two-side grip increasing the contact area. Additionally, the sensor unit does not require
front–back adjustment, so a similar slide rail that could adjust the left and right positions
was adopted, and a ZED mini [38] (Stereolabs Inc., San Francisco, CA, USA) was installed
so that the operator could visually recognize the harvested material and sense the distance
to the harvested material.

2.8. Seed Ball Sowing Mechanism

As various crops are cultivated in Synecoculture, the shape and size of seeds also vary.
Therefore, the shape and size were made uniform by covering the seeds with soil, thereby
allowing for sowing with the same machine regardless of the type of seed (henceforth
referred to as a “seed ball”). The shape was made spherical so that it could easily pass
through the pipe of the sowing mechanism described in the following sections. The balls
were molded by compressing and hardening the soil that contained the seed. The particle
size was set to 10 mm to accommodate the seeds of multiple crops (Figure 10a). The seed
balls were stored in a tank for each seed of the same species, and the tank was mounted on
top of the sowing mechanism of the robot. The tank mechanism was rotated back and forth
to move the seed balls inside, and a spring-loaded partition plate was used to discharge
each seed ball (Figure 10b).
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Figure 10. (a) a bell pepper seed and a seed ball, (b) CAD of a tank. A seed ball and a tank.

We decided to use anchors instead of drills to make holes in the ground, as that will
not disturb the roots and leaves of several plants already existent in the Synecoculture
environment. Figure 11 shows the sowing mechanism that was manufactured. A φ10 mm
anchor was attached to the arm tip according to the particle size of the seed ball. When a
hole was dug with the anchor using the arm extension, the discharge outlet was blocked by
the separator, so the seed ball that moved in the pipe during this time stayed in front of the
discharge outlet. Simultaneously, the separator also prevented the intrusion of excavated
soil into the pipe. The pipe through which the seed ball passes then slides in the Z-axis
direction and connects to the arm with a compression coil spring (Figure 11a,b). When the
arm was extended, the compression coil spring was compressed between the robot and
the ground surface; as a result, only the anchor was inserted into the ground, making a
hole (Figure 12a). After the seed ball is put into the pipe, the arm contracts and the anchor
are pulled out. At this time, the pipe stays pressed against the ground as a result of the
compression coil spring and gravity. Like the pipe, the separator is also connected by a
compression coil spring, but because the natural length is different, the discharge outlet is
released by contraction, discharging the seed ball (Figure 12b). Therefore, this enabled the
seed ball to be accurately dropped in the position of the hole opened by the anchor. The
seed ball can then be buried in the ground by pressing the anchor to the ground surface
by extending the arm a second time so that the seed ball does not remain on the ground
surface or partially in the hole.
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sometimes difficult to recognize harvested products and obstacles in the shade. Therefore, 
we considered that the use of a 360° camera and parallel presentation of the tool’s view-
point image and bird’s-eye viewpoint image would enable recognition of a wide area of 
the environment surrounding the tool. And we aim to achieve recognition of dark areas 
by adjusting the brightness of the camera image. For ease of adaptation to the operation 
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operation. In addition, we considered that simple tasks could be automated to shorten the 
work time and reduce the burden on the operator, rather than having the operator give 
detailed control instructions. 

Figure 12. (a) Hole-opening, (b) Seed ball discharge. Sowing action.

2.9. Robot System Configuration

The system configuration of the robot is shown in Figure 13. Each component in the
robot was integrated using ROS (Robot Operating System). Modbus communication was
used between the main computer and running units and USB communication for the rail
moving unit, tools, and cameras. As a motor driver, BLVD40NM (Oriental Motor Co., Ltd.,
Tokyo, Japan) is used in the running unit and EPOS4 Compact 50/5 and EPOS4 Compact
50/8 (Maxon Co., Ltd., Sachseln, Switzerland) in the rail moving unit and a telescopic arm.
The output voltage to the motor is controlled by a velocity proportional derivative control
in each motor driver. An operator operates tasks using a game controller based on multiple
camera images installed on the robot.
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2.10. Operation UI for Densely Vegetated Areas

As a simple operation system, it is possible to monitor the scene by presenting an
overhead view and using a commercially available controller. However, in dense plant
environments, the bird’s-eye viewpoint is easily blocked by dense vegetation, and it is
sometimes difficult to recognize harvested products and obstacles in the shade. Therefore,
we considered that the use of a 360◦ camera and parallel presentation of the tool’s viewpoint
image and bird’s-eye viewpoint image would enable recognition of a wide area of the
environment surrounding the tool. And we aim to achieve recognition of dark areas by
adjusting the brightness of the camera image. For ease of adaptation to the operation
system, we considered simplification of operation by developing a tool coordinate-based
operation. In addition, we considered that simple tasks could be automated to shorten the
work time and reduce the burden on the operator, rather than having the operator give
detailed control instructions.
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The 360◦ camera used for the tool viewpoint was the Ricoh Theta V, which can be
linked to the ROS used in the current system and has a shooting distance of at least 100 mm.
The system was constructed to present FHD/30 fps images via USB connection to a PC,
and the delay was approximately 230 ms. In an environment with dense vegetation, the
shadows of branches and leaves of other plants were very dark, and visibility was greatly
reduced. Therefore, we decided to correct the luminance histogram of the camera image
using gamma correction, which can enhance the luminance of dark areas (Figure 14).
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In order to realize the control command input while viewing the tool’s camera, the
joystick input by the operator assuming the tool camera coordinate system was transformed
to the robot coordinate system by the transformation in Equation (11) to match the tool
camera coordinate system and the operator’s control coordinate system.

Vrobot = qt2rVtoolqt2r (11)

Vtool is the velocity input vector in the tool camera coordinate system, and Vrobot is the ve-
locity input vector in the robot coordinate system, and qt2r is the quaternion that represents
the rotation from the tool coordinate vector to the robot coordinate vector. Correspon-
dence between controller operation and robot movement is presented at both ends of the
lower side of the monitor, which is considered not to interfere with the user’s field of view
during operation.

In addition, a radial menu, which can be easily selected with a joystick, is used to
display the menu for switching tasks during operation. By providing the coordinates of
the sowing target point, the system automatically moves the sowing tool to the target
point, rotates the sowing tool, inserts the sowing tool into the ground, and discharges the
seed dumplings.

3. Results
3.1. Rough Terrain Running Ability Test

In a laboratory, we first verified whether the robot was able to climb a slope with
an inclination angle of 5◦ and overcome a step of 50 mm in height, as per the required
specifications. A concrete block, jack, and wooden board were placed to prepare a sloping
environment. The steps were prepared by placing the wooden board on the floor for the
rough environment. The robot succeeded in traversing a 7.5◦ slope (Figure 15) and 5.6 cm
step. The tire rotation command value and measured value when overcoming a step that
requires instantaneous power and the load factor concerning the allowable current are
shown in Figure 16. The maximum load factor at the moment of overcoming the step
was 34% of the power of an actuator of the running unit; hence, it was concluded that
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sufficient torque was secured. Furthermore, we ran the robot at a speed of 45 m per minute
in an actual agricultural field to confirm its ability to run on a farm where Synecoculture
is being conducted. Given that there was a slope of around 0–5◦ in the direction of the
movement of the robot in the agricultural field, it can be said that there was a sufficient
torque margin even when the robot was running in an actual field. The agricultural field
in which experiments were conducted had rough terrain, as expected, in addition to the
previously mentioned slopes, and some weeds were densely growing on the running
surface. It was confirmed in this experiment that the robot was able to run in a straight line
even when the ground was not maintained for the operation of the robot.
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3.2. Arm Extension Force Measurement Experiment

To confirm whether the telescopic arm manufactured in this experiment meets the
required specification of the extension force and could operate normally in hard soils, we
measured the load when holes were made in the compact soil. A bucket filled with the
same soil as that in the field was placed on a load cell platform scale, and holes were made
by the sowing mechanism by arm extension. The load at the time of hole opening was
measured from the difference between the measured values of the platform scale. A total
of 12 trials were conducted, and the maximum and average values are shown in Table 2. It
was confirmed from the experiment that holes could be made in soils harder than those
expected in the field.

Table 2. Sowing force measurement result.

Required specification (N) 140

Average force (N) 170

Maximum force (N) 210
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3.3. Arm Extension-Based Sowing Operation Experiment

It was tested in this experiment that the seed balls could be buried in the soil using the
arm and sowing mechanism. Holes were made in the ground using the anchor with the
extension of the interlocking unit of the arm. The insertion depth was 30 mm. The arm was
contracted and then extended a second time to bury the seed ball. A series of operations
were conducted until the seed balls were buried, with a total of 12 trials conducted.

We succeeded in burying seven out of 12 seed balls. Arm extension-based hole opening
was successfully conducted in all trials. Additionally, it was confirmed that when the seed
ball was discharged, all of them were either inside the hole or in the upper section of the
hole. Cases where the robot failed in its sowing action were those where the seed ball was
stuck inside the pipe or near the discharge outlet even if the discharge outlet was released.
This was thought to be due to the small inclination of the pipe near the discharge outlet.

3.4. Evaluation of the Pruning Time of Leafy Vegetables on the Agricultural Fields

We conducted pruning of leaves in the farm to confirm whether pruning was possible
with the current system and to verify the required time. The operator only used information
from the cameras installed on the robot to prune a lettuce stalk at a point approximately
300 mm away from the arm. During this process, the tool was moved by operating the
controller without seeing the actual object. This pruning trial was conducted six times. Out
of the six trials, three were conducted where the XY table movement speed was twice that
of its upper limit. The time required for the experiments is summarized in Table 3. Korean
lettuce was pruned several times. The video information presented to the operator during
the task is shown in Figure 17. It can be seen from the presented video that the camera
was far away from an object, and the object was small in the video; the video information
presentation was not sufficient, and the visible range was narrow. One of the problems was
the interference between the robot and plant, due to which visual recognition could not be
achieved, which in turn increased the work time, as shown in Table 3.

Table 3. Time of pruning experiment.

Trial Approaching s Adjusting s Weeding s Total s

1 21 49 6 76

2 19 51 10 80

3 12 20 7 39

4 7 67 10 84

5 7 30 7 44

6 5 284 6 295

Average 12 84 7.7 104
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3.5. Eggplant Harvesting Experiment on Farmland

The rail moving unit and vertical arm unit were used in a Synecoculture farm to
approach the eggplant for harvesting using the harvest tool. As shown in Figure 18, the
robot successfully harvested the eggplant several times during the experiment. It was
confirmed in this experiment that crops could be harvested in a Synecoculture environment,
but the eggplant branches interfered with the harvest tool during the execution of the task,
and, because the entire eggplant crop was pressed, the distance could not be shortened,
which extended the work time. In the future, we must change the harvest tool settings or
develop a sub-arm that grips the subject crop itself and fixes it.
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3.6. Operation System Evaluation in a 3-Task Sequential Operation Experiments

In order to confirm the improvement in operability of sequential operation of weed
pruning, sowing, and harvesting in a densely vegetated area, we conducted an evaluation
experiment using two control systems: the general control system A, which presents a
bird’s-eye view and gives operation commands based on the robot coordinate system,
and our proposed system B. In particular, we verified the control system in a complex
environment in which another plant exists in front of the target plant and interferes with
the robot’s work. The subjects were six healthy adults, three of whom performed the
experiment on system B after the experiment on system A. The remaining three subjects
performed the experiment with system A after the experiment with system B. First, after
explaining the operation method to the subject, the subject performs a test run for a few
minutes. Then, the subjects were asked to repeat the three-task sequence using operation
system A three times in the same environment. Then, the subject repeated the operation
using operation system B three times in the same environment. Reproducing the relative
positions of plants in Synecoculture farm, an experimental environment was prepared in
which the distance between plants was approximately 10 cm, which was too close compared
to the conventional agriculture plants (Figure 19). Examples of the video images presented
to the subjects during the experiment are shown in Figure 20. In order to maintain the
same experimental environment for multiple experiments conducted by multiple subjects,
the grasping and cutting motions were not performed, and the subjects worked until the
tool came into contact with weeds or harvested targets. Before the start of the experiment,
the subjects were informed that the evaluation items were operation time and the rate
of interference with obstacles and that they were required to operate the robot as fast
as possible while avoiding obstacles as much as possible. The total time required for
three sequential tasks, the interference rate with obstacles, and the results of subjective
evaluation by a questionnaire after the operation were compared as the evaluation items
in the experiment. For the interference rate with obstacles, we checked the interference
time with plants (obstacles) other than the target object by checking the experimental
video taken from outside the experimental system. The interference time was used to
calculate the interference rate as the ratio of the interference time to the total operation time.
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For the subjective evaluation, we used the NASA-TLX [39] questionnaire method, which
quantitatively evaluates the load index in a task subjectively. Parameters of 0 (BAD)—100
(GOOD) was used as the score. This experiment was approved by the ethical review
committee of our institution (2019-163).
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Figure 20. (a) Presented image with system A, (b) Presented image with system B. Presented images
at the completion of harvesting in the three-task continuous operation. Red characters were not
shown to an operator.

Tables 4 and 5, Figures 21 and 22, show the operation time and interference rate with
obstacles for each trial. In the task sequence, the operation time was reduced by 49%, and
the interference rate with obstacles was reduced by 26%. The results of the NASA-TLX
questionnaire survey are shown in Figure 23. In all items, system B was rated higher than
system A.

Table 4. Average operating time and interference rate with obstacles.

Used Systems Average Operating Time s Interference Rate %

A 301 (S.D. 51) 51 (S.D. 12)

B 152 (S.D. 21) 25 (S.D. 9)
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Table 5. Average operating time and interference time and interference rate with obstacles for two
groups of subjects.

Tasks
System A to B System B to A

A B A B

Pruning

Operation time s 54 35 48 47

Interference time s 33 6 21 9

Interference rate % 61 17 45 19

Sowing

Operation time s 116 34 134 33

Interference time s 1 0 0 0

Interference rate % 1 1 0 1

Harvesting

Operation time s 70 49 90 64

Interference time s 36 11 50 17

Interference rate % 51 23 55 26

Transition

Operation time s 50 19 39 22

Interference time s 16 5 9 7

Interference rate % 34 26 23 32

Total

Operation time s 290 138 312 166

Interference time s 86 22 80 33

Interference rate % 30 17 26 20
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4. Discussion

Significant differences (p < 0.05) between system A and system B were confirmed for
the first, second, and third trials of the three-task sequential operation experiment. Thus,
the use of the developed system B reduced the operation time and the rate of interference
with obstacles. In Figure 21, the operation time of system A decreased as the number of
trials increased. On the other hand, the operation time of system B remained stable at
around 150 s from the first to the third trial. The smaller standard deviation of the operation
time for system B than for system A indicates that there are fewer individual differences in
operation time. When comparing the group of subjects who experimented with systems A
and B in that order with the group of subjects who experimented with systems B and A
in that order, both groups had lower operation times and interference rates when using
system B. From the above points, system B is considered to be easier to learn and easier to
adapt for beginners than system A.

Although the interference rate with obstacles is reduced by system B, the value is not
0%. Ideally, the interference rate with obstacles should be 0%, but in reality, the distance
between plants is often smaller than the size of the robot’s arm and tools in an environment
where plants are as dense as in an actual farm environment. In this experiment, the obstacles
were placed at a distance of approximately 10 cm from the target object, making it difficult
to achieve a 0% interference rate in this experiment. In such an environment, if the robot
can intentionally contact and slightly shift the obstacle, as a human farmer carefully does,
it is thought that unexpected contact will be reduced, and both the target and the obstacle
will be less likely to be damaged. In the future, we will also consider the use of an assistive
arm for obstacle removal work.

The developed robot has been in operation for about six months in the field, and we
were able to confirm new operational issues. Since the robot is operated outdoors, dustproof
and waterproof structures of the robot were considered from the design stage. However, in
practice, not only dust and rainwater but also insects’ contact and invasion with a robot
were observed. The waterproof structure was designed assuming there are gaps in the solar
panel and rainwater from the side, but insects can invade from all directions. Therefore,
it is necessary to adopt a cover structure. Next, because the experiment was performed
in winter, it was frosty on the farm. Therefore, it was confirmed that water droplets were
generated inside the robot. There is a high possibility that it will break down due to water
droplets, so it is necessary to provide protection for electrical materials and structures. In
addition, heat dissipation must be taken into consideration in actual long-term operation
in summer.
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5. Conclusions

In this study, we developed an agricultural robot that could work in an environment
where different types of plants were densely mixed, which conventional robots could
not handle. We greatly improved the versatility of the robot by using various tools and
standardizing seeds in the form of a “seed ball”. We showed that this robot was able to
move in an actual agricultural field under solar panels and achieve the three main tasks
of sowing, pruning, and harvesting. Using the developed operation system, we achieved
a 49% reduction in operation time and a 26% reduction in the rate of interference with
obstacles in a three-task continuous operation, compared to a simple controller.

The perspective of this study profoundly differed from those of conventional farming
methods in terms of the high level of biodiversity and combination of solar panels. Further
studies should be conducted to achieve an autonomous agricultural robot for practical
and large-scale application in Synecoculture. Existing challenges include, automatic envi-
ronmental recognition, assurance of sufficient battery power, robustness for long activity
periods, improvement of operability, automation combined with image analysis, and re-
duction in the overall cycle time and costs. We plan to further advance our research and
development, as well as to verify the effectiveness of Synecoculture operation methods
on biodiversity and regreening effects in the field, and to develop this into a social imple-
mentation that contributes food production to the recovery of global ecosystems and the
prevention of climate change.
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