Use of Portable Devices and an Innovative and Non-Destructive Index for In-Field Monitoring of Olive Fruit Ripeness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Fruit Characteristics
2.3. Spectrometric Measurements
2.4. Statistical Analysis
3. Results
3.1. Physical and Chemical Parameter Variations of Olive Fruits
3.2. Correlations among Variables
3.3. Relationships between IAD by Kiwi-Meter® Device and the Olive Ripeness Indexes
3.4. Relationships between IAD by Standard DA-Meter® and Olive Ripeness Indices
3.5. Linear Regression Models and Statistical Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beltrán, G.; Aguilera, M.P.; Del Rio, C.; Sanchez, S.; Martinez, L. Influence of fruit ripening process on the natural antioxidant content of Hojiblanca virgin olive oils. Food Chem. 2005, 89, 207–215. [Google Scholar] [CrossRef]
- Portarena, S.; Leonardi, L.; Scartazza, A.; Lauteri, M.; Baldacchini, C.; Farinelli, D.; Famiani, F.; Ciolfi, M.; Brugnoli, E. Combining analysis of fatty acid composition and δ13C in extra-virgin olive oils as affected by harvest period and cultivar: Possible use in traceability studies. Food Control. 2019, 105, 151–158. [Google Scholar] [CrossRef]
- Famiani, F.; Farinelli, D.; Urbani, S.; Al Hariri, R.; Paoletti, A.; Rosati, A.; Esposto, S.; Selvaggini, R.; Taticchi, A.; Servili, M. Harvesting system and fruit storage affect basic quality parameters and phenolic and volatile compounds of oils from intensive and super-intensive olive orchards. Sci. Hortic. 2020, 263, 109045. [Google Scholar] [CrossRef]
- Famiani, F.; Gucci, R. La raccolta delle olive. In Edagricole; Edizioni Agricole di New Business Media: Bologna, Italy, 2022; p. 240. [Google Scholar]
- Farinelli, D.; Boco, M.; Tombesi, A. Intensity and growth period of the fruit components of olive varieties. Acta Hortic. 2002, 586, 607–610. [Google Scholar] [CrossRef]
- Bellincontro, A.; Taticchi, A.; Servili, M.; Esposto, S.; Farinelli, D.; Mencarelli, F. Feasible Application of a Portable NIR-AOTF Tool for On-Field Prediction of Phenolic Compounds during the Ripening of Olives for Oil Production. J. Agric. Food Chem. 2012, 60, 2665–2673. [Google Scholar] [CrossRef]
- Fernández-Espinosa, A.J. Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time. Talanta 2016, 148, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Tugnolo, A.; Giovenzana, V.; Beghi, R.; Grassi, S.; Alamprese, C.; Casson, A.; Casiraghi, E.; Guidetti, R. A diagnostic visible/near infrared tool for a fully automated olive ripeness evaluation in a view of a simplified optical system. Comput. Electron. Agric. 2021, 180, 105887. [Google Scholar] [CrossRef]
- Moyano, M.; Meléndez-Martínez, A.J.; Alba, J.; Heredia, F.J. A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (I): CIEXYZ non-uniform colour space. Food Res. Int. 2008, 41, 505–512. [Google Scholar] [CrossRef]
- Aparicio-Ruiz, R.; Aparicio, R. 1—Olive oil. In Gourmet and Health-Promoting Specialty Oils; Moreau, R.A., Kamal-Eldin, A., Eds.; AOCS Press: Urbana, IL, USA, 2009; pp. 33–72. ISBN 978-1-893997-97-4. [Google Scholar]
- Jiménez, A.; Rodríguez, R.; Fernández-Caro, I.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A. Olive Fruit Cell Wall: Degradation of Pectic Polysaccharides during Ripening. J. Agric. Food Chem. 2000, 49, 409–415. [Google Scholar] [CrossRef]
- Portarena, S.; Farinelli, D.; Lauteri, M.; Famiani, F.; Esti, M.; Brugnoli, E. Stable isotope and fatty acid compositions of monovarietal olive oils: Implications of ripening stage and climate effects as determinants in traceability studies. Food Control. 2015, 57, 129–135. [Google Scholar] [CrossRef]
- Farinelli, D.; Tombesi, S. Performance and oil quality of ‘Arbequina’ and four Italian olive cultivars under super high density hedgerow planting system cultivated in central Italy. Sci. Hortic. 2015, 192, 97–107. [Google Scholar] [CrossRef]
- Yousfi, K.; Cert, R.M.; García, J.M. Changes in quality and phenolic compounds of virgin olive oils during objectively described fruit maturation. Eur. Food Res. Technol. 2006, 223, 117–124. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G.A.; Gattullo, C.E. Ripening indices and harvesting times of different olive cultivars for continuous harvest. Sci. Hortic. 2013, 151, 1–10. [Google Scholar] [CrossRef]
- Famiani, F.; Alfei, B.; D’Ambrosio, A.; Rosati, S.; Pannelli, G. Biologia fiorale e di fruttificazione delle principali varietà locali di olivo in Umbria. In Proceedings of the V Convegno Nazionale “Biodiversità: Biodiversità e Sistemi Ecocompatibili”, Caserta, Italia, 9–10 September 1999; pp. 204–213. [Google Scholar]
- Famiani, F.; Proietti, P.; Farinelli, D.; Tombesi, A. Oil quality in relation to olive ripening. Acta Hortic. 2002, 586, 671–674. [Google Scholar] [CrossRef]
- Beltran, G.; Uceda, M.; Hermoso, M.; Frias, L. Maduracion. In El Cultivo del Olivo, 7th ed.; Mundi-Prensa: Madrid, Spain, 2017; pp. 187–212. [Google Scholar]
- Inglese, P.; Famiani, F.; Galvano, F.; Servili, M.; Esposto, S.; Urbani, S. 3 factors affecting extra-virgin olive oil composition. Hortic. Rev. 2011, 38, 83. [Google Scholar]
- Uceda, M.; Hermoso, M. La calidad del aceite de oliva. In El Cultivo Olivo; Barranco, D., Fernàndez-Escobar, R., Rallo, L., Eds.; Junta de Andalucìa Ediciones, Mundi-Prensa: Madrid, Spain, 1998; pp. 547–572. [Google Scholar]
- Beltrán, G.; Del Río, C.; Sánchez, S.; Martínez, L. Seasonal changes in olive fruit characteristics and oil accumulation during ripening process. J. Sci. Food Agric. 2004, 84, 1783–1790. [Google Scholar] [CrossRef]
- Beltrán, G.; Jiménez, A.; del Rio, C.; Sánchez, S.; Martínez, L.; Uceda, M.; Aguilera, M.P. Variability of vitamin E in virgin olive oil by agronomical and genetic factors. J. Food Compos. Anal. 2010, 23, 633–639. [Google Scholar] [CrossRef]
- Farinelli, D.; Ruffolo, M.; Boco, M.; Tombesi, A. Yield efficiency and mechanical harvesting with trunk shaker of some international olive cultivars. Acta Hortic. 2012, 949, 379–384. [Google Scholar] [CrossRef]
- Gamlı, F.; Eker, T. Determination of harvest time of Gemlik olive cultivars by using physical and chemical properties. J. Food Meas. Charact. 2017, 11, 2022–2030. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Vivaldi, G.A.; Nicolás, E.N.; Paduano, A.; Salcedo, F.P.; Camposeo, S. Ripening Indices, Olive Yield and Oil Quality in Response to Irrigation with Saline Reclaimed Water and Deficit Strategies. Front. Plant Sci. 2019, 10, 1243. [Google Scholar] [CrossRef]
- Di Vaio, C.; Graziani, G.; Gaspari, A.; De Luca, L.; Aiello, A.; Cirillo, A.; Bruno, A.; Romano, R.; Ritieni, A. Drupe Characters, Fatty Acids, Polyphenolic and Aromatic Profile of Olive Oil Obtained from “Oliva Bianca”, Minor Autochthonous Cultivar of Campania. Plants 2021, 10, 1119. [Google Scholar] [CrossRef] [PubMed]
- Mínguez-Mosquera, I.; Gallardo-Guerrero, L. Disappearance of chlorophylls and carotenoids during the ripening of the olive. J. Sci. Food Agric. 1995, 69, 1–6. [Google Scholar] [CrossRef]
- Cirilli, M.; Bellincontro, A.; Urbani, S.; Servili, M.; Esposto, S.; Mencarelli, F.; Muleo, R. On-field monitoring of fruit ripening evolution and quality parameters in olive mutants using a portable NIR-AOTF device. Food Chem. 2016, 199, 96–104. [Google Scholar] [CrossRef]
- Emmanouilidou, M.G.; Koukourikou-Petridou, M.; Gerasopoulos, D.; Kyriacou, M.C. Evolution of physicochemical constitution and cultivar-differential maturity configuration in olive (Olea europaea L.) fruit. Sci. Hortic. 2020, 272, 109516. [Google Scholar] [CrossRef]
- García, J.M.; Seller, S.; Pérez-Camino, M.C. Influence of Fruit Ripening on Olive Oil Quality. J. Agric. Food Chem. 1996, 44, 3516–3520. [Google Scholar] [CrossRef]
- Giovenzana, V.; Beghi, R.; Civelli, R.; Marai, S.; Guidetti, R. Postharvest characterization of olive oil fruits texture by nir and vis/nir spectroscopy. Chem. Eng Trans. 2015, 44, 61–66. [Google Scholar] [CrossRef]
- Giovenzana, V.; Beghi, R.; Civelli, R.; Trapani, S.; Migliorini, M.; Cini, E.; Zanoni, B.; Guidetti, R. Rapid Determination of crucial parameters for the optimization of milling process by using visible/near infrared spectroscopy on intact olives and olive paste. Ital. J. Food Sci. 2017, 29, 357–369. [Google Scholar]
- Farinelli, D.; Portarena, S.; da Silva, D.F.; Traini, C.; da Silva, G.M.; da Silva, E.C.; da Veiga, J.F.; Pollegioni, P.; Villa, F. Variability of Fruit Quality among 103 Acerola (Malpighia emarginata D. C.) Phenotypes from the Subtropical Region of Brazil. Agriculture 2021, 11, 1078. [Google Scholar] [CrossRef]
- Galal, H.; Elsayed, S.; Allam, A.; Farouk, M. Indirect Quantitative Analysis of Biochemical Parameters in Banana Using Spectral Reflectance Indices Combined with Machine Learning Modeling. Horticulturae 2022, 8, 438. [Google Scholar] [CrossRef]
- Galal, H.; Elsayed, S.; Elsherbiny, O.; Allam, A.; Farouk, M. Using RGB Imaging, Optimized Three-Band Spectral Indices, and a Decision Tree Model to Assess Orange Fruit Quality. Agriculture 2022, 12, 1558. [Google Scholar] [CrossRef]
- Cayuela, J.A.; Camino, M.D.C.P. Prediction of quality of intact olives by near infrared spectroscopy. Eur. J. Lipid Sci. Technol. 2010, 112, 1209–1217. [Google Scholar] [CrossRef]
- Lee, C.; Polari, J.J.; Kramer, K.E.; Wang, S.C. Near-Infrared (NIR) Spectrometry as a Fast and Reliable Tool for Fat and Moisture Analyses in Olives. ACS Omega 2018, 3, 16081–16088. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, L.; Amalfitano, C.; Di Vaio, C.; Adamo, P. Use of near-infrared spectroscopy combined with chemometrics for authentication and traceability of intact lemon fruits. Food Chem. 2022, 375, 131822. [Google Scholar] [CrossRef] [PubMed]
- Leon, L.; Gracia, A. Non-destructive assessment of olive fruit ripening by portable near infrared spectroscopy. Grasas Aceites 2011, 62, 268–274. [Google Scholar] [CrossRef]
- Salguero-Chaparro, L.; Baeten, V.; Abbas, O.; Peña-Rodríguez, F. On-line analysis of intact olive fruits by vis–NIR spectroscopy: Optimisation of the acquisition parameters. J. Food Eng. 2012, 112, 152–157. [Google Scholar] [CrossRef]
- Costa, G.; Noferini, M.; Fiori, G.; Torrigiani, P. Use of VIS/NIR spectroscopy to assess fruit ripening stage and improve management in post-harvest chain. Fresh Prod. 2009, 1, 35–41. [Google Scholar]
- Costa, G.; Rocchi, L.; Farneti, B.; Busatto, N.; Spinelli, F.; Vidoni, S. Use of Nondestructive Devices to Support Pre- and Postharvest Fruit Management. Horticulturae 2017, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Salguero-Chaparro, L.; Baeten, V.; Fernández-Pierna, J.A.; Peña-Rodríguez, F. Near infrared spectroscopy (NIRS) for on-line determination of quality parameters in intact olives. Food Chem. 2013, 139, 1121–1126. [Google Scholar] [CrossRef]
- Ziosi, V.; Noferini, M.; Fiori, G.; Tadiello, A.; Trainotti, L.; Casadoro, G.; Costa, G. A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biol. Technol. 2008, 49, 319–329. [Google Scholar] [CrossRef]
- Noferini, M.; Fiori, G.; Cious, V.; Gottardi, F.; Brasina, M.; Mazzini, C.; Costa, G. DA-Meter. Easier Control of Fruit Quality from Farm to Distribution. J. Fruit Hortic. 2009, 71, 74–80. [Google Scholar]
- Knutsen, I.; Vangdal, E.; Børve, J. Effect of different maturity (measured as iad index) on storability of apples in cabags. Acta Hortic. 2015, 1071, 647–650. [Google Scholar] [CrossRef]
- Costa, G.; Vidoni, S.; Rocchi, L.; Cellini, A.; Buriani, G.; Donati, I.; Spinelli, F. Innovative non-destructive device for fruit quality assessment and early disease diagnosis. Acta Hortic. 2015, 1096, 69–78. [Google Scholar] [CrossRef]
- Costa, G.; Bonora, E.; Fiori, G.; Noferini, M. Innovative non-destructive device for fruit quality assessment. Acta Hortic. 2011, 913, 575–581. [Google Scholar] [CrossRef]
- Portarena, S.; Anselmi, C.; Zadra, C.; Farinelli, D.; Famiani, F.; Baldacchini, C.; Brugnoli, E. Cultivar discrimination, fatty acid profile and carotenoid characterization of monovarietal olive oils by Raman spectroscopy at a single glance. Food Control. 2019, 96, 137–145. [Google Scholar] [CrossRef]
- Ortega, J.B.; Gila, D.M.M.; Puerto, D.A.; García, J.G.; Ortega, J.G. Novel technologies for monitoring the in-line quality of virgin olive oil during manufacturing and storage. J. Sci. Food Agric. 2016, 96, 4644–4662. [Google Scholar] [CrossRef]
- Hernández-Sánchez, N.; Gómez-Del-Campo, M. From NIR spectra to singular wavelengths for the estimation of the oil and water contents in olive fruits. Grasas Aceites 2018, 69, 278. [Google Scholar] [CrossRef] [Green Version]
- Ivancic, T.; Jakopic, J.; Veberic, R.; Vesel, V.; Hudina, M. Effect of Ripening on the Phenolic and Sugar Contents in the Meso- and Epicarp of Olive Fruits (Olea europaea L.) Cultivar ‘Leccino’. Agriculture 2022, 12, 1347. [Google Scholar] [CrossRef]
- Rocchi, L.; Vidoni, S.; Ceccarelli, A.; Fiori, G.; Costa, G. Use of the DAindexTM for monitoring fruit ripening evolution in A. chinensis to precisely assess harvesting time “in planta”. J. Berry Res. 2016, 6, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Infante, R. Harvest maturity indicators in the stone fruit industry. Stewart Postharvest Rev. 2012, 8, 1–6. [Google Scholar] [CrossRef]
- Kavdir, I.; Buyukcan, M.B.; Lu, R.; Kocabiyik, H.; Seker, M. Prediction of olive quality using FT-NIR spectroscopy in reflectance and transmittance modes. Biosyst. Eng. 2009, 103, 304–312. [Google Scholar] [CrossRef]
- Almeida, D.; Gonçalves, R.; Couto, J. Relationship between the index of absorbance difference (IAD) and firmness in peach and nectarine cultivars: Implications for harvest date decisions. Acta Hortic. 2018, 1194, 1093–1098. [Google Scholar] [CrossRef]
- Beghi, R.; Giovenzana, V.; Civelli, R.; Cini, E.; Guidetti, R. Characterization of olive fruit for the milling process by using visible/near infrared spectroscopy. J. Agric. Eng. 2013, 44, 56–61. [Google Scholar] [CrossRef]
- Kashiwagi, A.; Kominami, R.; Nakayama, S.; Kishimoto, N. Nondestructive Prediction of Oil Yield through Direct Near Infrared Spectroscopy Measurements of Fresh Olives. In Proceedings of the 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukouka, Japan, 26–29 May 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Fredes, C.; Valero, C.; Diezma, B.; Mora, M.; Naranjo-Torres, J.; Wilson, M.; Delgadillo, G. A Model Based on Clusters of Similar Color and NIR to Estimate Oil Content of Single Olives. Foods 2021, 10, 609. [Google Scholar] [CrossRef] [PubMed]
Sampling Date (DOY) | Statistic | Fruit Weight | Color Index | Fruit Oil Content | Pulp Oil Content | Pulp Firmness | Water Content |
---|---|---|---|---|---|---|---|
272 | Mean | 1.72 d | 1.04 e | 0.14 e | 0.10 e | 3.82 b | 1.08 e |
Maximum | 2.75 | 3.0 | 0.24 | 0.16 | 4.61 | 1.71 | |
Minimum | 1.05 | 0.0 | 0.08 | 0.06 | 3.14 | 0.68 | |
SD | 0.30 | 0.63 | 0.03 | 0.02 | 0.29 | 0.19 | |
279 | Mean | 1.73 d | 1.63 d | 0.15 d | 0.11 d | 3.95 a | 1.15 d |
Maximum | 2.86 | 3.0 | 0.25 | 0.19 | 5.2 | 1.88 | |
Minimum | 0.83 | 0.0 | 0.07 | 0.05 | 2.94 | 0.55 | |
SD | 0.30 | 0.72 | 0.03 | 0.02 | 0.41 | 0.21 | |
286 | Mean | 1.79 c | 1.92 c | 0.17 c | 0.12 c | 3.54 c | 1.21 c |
Maximum | 3.12 | 3.0 | 0.29 | 0.21 | 4.12 | 2.09 | |
Minimum | 0.80 | 1.0 | 0.07 | 0.05 | 2.65 | 0.54 | |
SD | 0.33 | 0.52 | 0.03 | 0.02 | 0.28 | 0.22 | |
292 | Mean | 1.94 b | 2.58 b | 0.22 b | 0.17 b | 2.82 e | 1.28 b |
Maximum | 2.94 | 3.0 | 0.33 | 0.26 | 3.82 | 1.91 | |
Minimum | 1.31 | 1.0 | 0.15 | 0.11 | 1.67 | 0.85 | |
SD | 0.28 | 0.51 | 0.03 | 0.02 | 0.38 | 0.19 | |
301 | Mean | 2.14 a | 2.76 a | 0.27 a | 0.21 a | 2.97 d | 1.38 a |
Maximum | 3.35 | 3.0 | 0.41 | 0.34 | 3.82 | 2.13 | |
Minimum | 1.32 | 2.0 | 0.16 | 0.12 | 2.06 | 0.88 | |
SD | 0.39 | 0.43 | 0.05 | 0.04 | 0.36 | 0.25 |
Color Index | Fruit Oil Content | Pulp Firmness | Fruit Water Content | Pulp Oil Content | |
---|---|---|---|---|---|
Color index | r = 1 | ||||
p < 0.001 | |||||
Fruit oil content | r = 0.91 | r = 1 | |||
p < 0.001 | p < 0.001 | ||||
Pulp firmness | r = −0.86 | r = −0.79 | r = 1 | ||
p < 0.001 | p < 0.001 | p < 0.001 | |||
Fruit water content | r = 0.83 | r = 0.92 | r = −0.61 | r = 1 | |
p < 0.001 | p < 0.001 | p = 0.005 | p < 0.001 | ||
Pulp oil content | r = 0.92 | r = 0.99 | r = −0.80 | r = 0.92 | r = 1 |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|
I AD | Variables | R2 | DRMSEC | RPIQ | R2 | DRMSECV | RPIQ |
Kiwi-Meter® device | color index | 0.817 | 0.404 | 3.863 | 0.752 | 0.574 | 3.244 |
pulp oil content | 0.691 | 0.556 | 2.882 | 0.519 | 0.810 | 2.254 | |
fruit oil content | 0.666 | 0.557 | 2.854 | 0.513 | 0.804 | 2.051 | |
pulp firmness | 0.597 | 0.607 | 2.283 | 0.497 | 0.804 | 2.018 | |
fruit water content | 0.639 | 0.571 | 2.406 | 0.500 | 0.807 | 2.023 | |
Standard DA-Meter® device | color index | 0.743 | 0.515 | 2.930 | 0.661 | 0.622 | 2.827 |
pulp oil content | 0.387 | 0.884 | 1.387 | 0.384 | 0.780 | 1.216 | |
fruit oil content | 0.482 | 0.709 | 1.731 | 0.311 | 0.861 | 1.068 | |
pulp firmness | 0.515 | 0.726 | 2.221 | 0.514 | 0.732 | 2.127 | |
fruit water content | 0.541 | 0.691 | 2.274 | 0.400 | 0.793 | 1.728 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinosi, N.; Portarena, S.; Almadi, L.; Berrettini, A.; Torres, M.; Pierantozzi, P.; Villa, F.; Galletti, A.; Famiani, F.; Farinelli, D. Use of Portable Devices and an Innovative and Non-Destructive Index for In-Field Monitoring of Olive Fruit Ripeness. Agriculture 2023, 13, 194. https://doi.org/10.3390/agriculture13010194
Cinosi N, Portarena S, Almadi L, Berrettini A, Torres M, Pierantozzi P, Villa F, Galletti A, Famiani F, Farinelli D. Use of Portable Devices and an Innovative and Non-Destructive Index for In-Field Monitoring of Olive Fruit Ripeness. Agriculture. 2023; 13(1):194. https://doi.org/10.3390/agriculture13010194
Chicago/Turabian StyleCinosi, Nicola, Silvia Portarena, Leen Almadi, Annalisa Berrettini, Mariela Torres, Pierluigi Pierantozzi, Fabiola Villa, Andrea Galletti, Franco Famiani, and Daniela Farinelli. 2023. "Use of Portable Devices and an Innovative and Non-Destructive Index for In-Field Monitoring of Olive Fruit Ripeness" Agriculture 13, no. 1: 194. https://doi.org/10.3390/agriculture13010194
APA StyleCinosi, N., Portarena, S., Almadi, L., Berrettini, A., Torres, M., Pierantozzi, P., Villa, F., Galletti, A., Famiani, F., & Farinelli, D. (2023). Use of Portable Devices and an Innovative and Non-Destructive Index for In-Field Monitoring of Olive Fruit Ripeness. Agriculture, 13(1), 194. https://doi.org/10.3390/agriculture13010194