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Abstract: Caladiums are promising colorful foliage plants due to their unique leaf shapes and
dazzling colors. Until now, over 2000 varieties of Caladium have been cultivated worldwide. The long-
term natural variation and artificial selection have enriched the germplasm resources of Caladium
in the market, yet have blurred its genetic background. In this study, 16 informative EST-SSR
markers were used to screen 144 Caladium accessions, indicating that 16 EST-SSRs could distinguish
all genotypes with a minimum cumulative identity probability (PI) of 2.0 2 × 10−15. Using the
simulated annealing method, the richest genetic information was acquired at the same compression
ratio. A final core of 44 accessions was selected, comprising 30.6% of the individuals and retraining
more than 95% of the total genetic information. No significant differences were observed in allele
frequency distributions or genetic diversity parameters between the core collection and the entire
population. Cluster analysis roughly divided the core collections into four populations, where
66.7% of the private alleles were detected in Pop2. Finally, DNA molecular fingerprints of 44 core
accessions were established, including barcodes and quick response (QR) code molecular identities
(ID). The results will lay a theoretical foundation for identifying, preserving, and utilizing Caladium
germplasm resources.

Keywords: Caladium; EST-SSR markers; cumulative identity probability; core collection; molecular
fingerprint

1. Introduction

Caladium, a foliage plant belonging to the Araceae family, is native to the tropical
regions of South America [1,2]. It is often used for potted ornamental and flower garden
cultivation due to its unique leaf shape, dazzling color, and excellent effects on urban
beautification [3–5]. Driven by the diversified ornamental demands in leaf shape and
color of Caladium, the University of Florida in the United States has been committed
to the development and selection of Caladium accessions for years, aiming to make its
germplasm resources more abundant [6–9]. Now, molecular markers are gradually being
applied to breed new Caladium cultivars [10–12]. In China, there is little related research
on Caladium, and significant efforts have been made for its introduction. The varieties of
Caladium introduced include C. pieturatum, C. bicolor, and C. humboldtii [13]. However, the
increasing number of introduced varieties has contributed to the confusion of different
Caladium varieties [14]. Under such circumstances, identification work is pressing. It will
be conducive to better explore the kinships and offer technological support for molecular
marker-assisted breeding and molecular genetic fingerprinting of Caladium [15].

Over 2000 varieties of Caladium have been cultivated worldwide, with 100 available in
the market after more than a century’s efforts in breeding [16–18]. The long-term natural
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variation and artificial selection have enriched the germplasm resources of Caladium in the
market, yet blurred their genetic backgrounds [19,20]. Hence, it is of the utmost importance
to determine whether the same varieties are named differently or if different varieties
share the same name, causing more redundancy for germplasm resources and increasing
pressure on resource beds for preservation [21]. Additionally, as new varieties continue to
be updated, some traditional representative varieties of Caladium have gradually withdrawn
from the market due to their low prices, resulting in a loss of resources [22,23]. Therefore,
establishing a Caladium core collection is necessary to achieve better management and
conservation system of Caladium germplasm resources [24]. The construction of molecular
fingerprints of Caladium germplasm resources is also required to realize efficient utilization
and rapid molecular identification of Caladium germplasm resources. With these efforts, it
will be achievable to lay a solid foundation for finding the superior genes of Caladium.

In the 1980s, Frankel (1984) and Brown (1989) proposed the concept of core collection to
maximize the genetic information of a population with a small number of resources [25,26].
Genetic diversity is enriched, and the number of resources and management costs are
reduced in this concept [27,28]. The construction of core resource banks at an early stage is
based on phenotypic trait evaluation, which is simple and operable, but low in accuracy
due to its vulnerability to environmental influences [29]. The use of molecular markers
is increasingly mainstream in core collection construction [30]. This is because they can
provide genetic information on all plant materials in a brief time and reveal the phylogenetic
relationship among individuals steadily and efficiently [31]. Simple repeat sequence (SSR),
an ideal genetic marker method among most molecular marker techniques, outperforms
others for its high polymorphism, abundant quantity, and good reproducibility [32,33].

A growing number of researchers are using molecular markers to construct deoxyri-
bonucleic acid (DNA) fingerprints in order to identify the differences between core col-
lections [34]. The current methods of fingerprint construction include polyacrylamide gel
electrophoresis (PAGE), capillary electrophoresis with fluorescence detection, etc. [35–37].
With the rapid development of capillary electrophoresis with fluorescent SSR markers to
construct DNA fingerprints, the obtained results can be converted into strings, barcodes,
and quick response (QR) codes with the help of fingerprints [38,39]. All of these can be
regarded as components of DNA molecular identity (ID) independent of environmental
impacts, and can identify germplasm resources of different varieties precisely and con-
cisely [40,41]. However, there are currently only a few studies on the DNA molecular ID
construction of fingerprints of Caladium germplasm resources.

A total of 144 Caladium accessions were used in this study as the materials, followed
by amplification using 16 pairs of fluorescent SSR primers. Next, Caladium core collections
were established based on the allele maximization method. Their molecular fingerprints
were constructed, laying a theoretical foundation for identifying, preserving, and utilizing
Caladium germplasm resources.

2. Results
2.1. Polymorphic Information of EST-SSR Markers

A total of 144 Caladium germplasm resources were PCR amplified using 16 pairs of
EST-SSR primers, with their polymorphic information calculated. It was shown in the
results that the 16 pairs of primers were rich in polymorphism. The minimum cumulative
identity probability (PI) was 2 × 10−15, indicating that these 16 pairs of markers could
distinguish all genotypes of the 144 identified Caladium samples. Among all the markers,
CAL86 achieved the highest identity probability (4 × 10−2), while CAL79 had the poorest
identity probability (2.4 × 10−1) (Table 1).
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Table 1. Observed probability of identity calculated from 144 accessions using GenAlex 6.5 on
16 EST-SSR loci.

SSR Marker Number of Identical
Pairs of Genotypes

Probability of
Identity

Cumulative Probability of
Identity

CAL86 1123 4 × 10−2 4 × 10−2

CAL106 674 4.2 × 10−2 1.6 × 10−3

CAL16 535 6.8 × 10−2 1.1 × 10−4

CAL81 398 9.8 × 10−2 1.1 × 10−5

CAL180 242 9.9 × 10−2 1.1 × 10−6

CAL181 136 1 × 10−1 1.1 × 10−7

CAL135 120 1.2 × 10−1 1.3 × 10−8

CAL77 90 1.3 × 10−1 1.7 × 10−9

CAL90 46 1.3 × 10−1 2.2 × 10−10

CAL96 33 1.6 × 10−1 3.6 × 10−11

CAL156 21 1.6 × 10−1 5.6 × 10−12

CAL143 15 1.8 × 10−1 1.0 × 10−12

CAL52 2 1.8 × 10−1 1.8 × 10−13

CAL188 2 2 × 10−1 3.6 × 10−14

CAL162 2 2.3 × 10−1 8.3 × 10−15

CAL79 1 2.4 × 10−1 2 × 10−15

2.2. Confirmation and Evaluation of Core Collection Resources

It could be found by comparing the three search methods that the simulated annealing
method could acquire richer genetic information at the same compression ratio (Figure 1).
Based on the genetic diversity analysis results, the resources possessing richer polymorphic
loci were selected with greater priority. A total of 13 core resource populations were
constructed, accounting for about 9.7–34.7% of the original germplasms. The genetic
diversity parameters of each core resource population at different compression ratios are
listed in Table S1. It was revealed in the results that Na grew with the increase in the
compression ratio. The Ne value increased and then declined, while other parameters
fluctuated wildly without evident variation tendency. A compression ratio of 30.6% could
be the optimal ratio for Caladium core collections through a comprehensive analysis of
all core resource populations. The retaining ratios of Na, Ne, I, Ho, He, and PIC were
95.2%, 109.9%, 108.8%, 100%, 104.1%, and 98.9%, respectively. The genetic parameters
of original germplasms (144) and core collections (44) were subjected to t-tests, with no
significant differences observed between them (p < 0.05), indicating that core collections
can sufficiently represent the genetic diversity of the entire population (Figure 2).

2.3. Cluster and Allelic Analyses of Core Collections

The established resource bank of core collections included 44 Caladium materials, which
were clustered into four major populations for analysis (Figure 3). The allelic patterns
across populations were investigated, revealing that the genetic parameters including
Na, Ne, and I were highest in Pop2 and the lowest values were found in Pop1 (Figure 4).
At the population level, 45 private alleles were detected in the four populations among
16 loci, with frequencies ranging from 0 to 0.583. Notably, seven private alleles were found
in CAL90, followed by CAL162 (n = 6). Ten private alleles were observed in C. lindenii,
followed by C. humboldtii, “Mini White,’” (n = 4) and C. praetermissum, “Hilo Beauty,” (n = 3).
Overall, 66.7% of the private alleles were detected in Pop2, suggesting that the accessions
in this group possess informative genetic diversity and may have undergone a unique
evolutionary process.
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2.4. Establishment of Molecular ID for Core Collections

The 16 pairs of core priers were adopted to perform capillary electrophoresis with
fluorescent SSR markers for the established core collections. Band data were read using
a sequencing analyzer (3730XL). The total number of polymorphic bands and the size of
polymorphic fragments obtained by amplifying all primers and their codes are shown in
Table S2. It can be seen that CAL86 and CAL106 harvested the most considerable number
of bands (32), while CAL188 obtained the fewest bands (8). Subsequently, digit + English
letter coding was performed according to the amplification results. The permutation and
combination of the 16 pairs of markers were used to establish molecular IDs for the 44 core
collections. For example, the DNA molecular ID of Caladium praetermissum, “Hilo Beauty,”
(germplasm C99) was coded as M8H59UH89731EK6R, where the first letter, M, indicates
the amplified fragment 189/201 of CAL16 in the germplasm C99 (Figure 5a,b). The second
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digit, eight, denotes the amplified fragment 190/199 of CAL152 in the germplasm C99. The
other codes stand for corresponding information based on the same definition. Finally,
the codes were imported into the online barcode generator to generate barcode-type DNA
molecular IDs. Meanwhile, the primary descriptions of the Caladium core collections were
imported into the quick response (QR) code generator to generate QR code-type DNA
molecular IDs (Figure 5c,d). On this basis, the DNA molecular IDs of 44 Caladium core
collections were successfully established in the form of character strings, barcodes, and
QR codes. The DNA molecular IDs of the core collections in the form of barcodes and QR
codes are demonstrated in Table S3.
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3. Discussion

As the natural environment is excessively destroyed, many precious germplasm
resources have been gradually reduced, accompanied by an increase in land costs and
a decline in the land utilization rate, all of which affect the preservation of germplasm
resources [42]. This problem has been effectively solved, to some extent, due to the proposal
of the concept of core collection resources. The screening of plant-based phenotypic
characteristics is easily susceptible to environmental factors. When used, molecular markers
can acquire the genetic information of all plant materials in the short term, and can stably
and efficiently reflect the kinships between individuals, providing a new direction for
constructing core collection resources [43]. A resource bank of Caladium core collections
was established in this study using 44 materials, with a genetic diversity of over 95%
retained in the original population. According to the construction requirements for core
collections, a significantly favorable sampling scale can be achieved if the core collection
retains 70–80% of the genetic information of the original population [44]. Hence, the core
collection of Caladium in this study preserved much of the genetic information of the
original population and could be rendered representative of its genetic diversity.

Generally, specific requirements exist for the proportion of core collection samples to
be selected. With a too-large sample size, it would be meaningless to construct the core
collection. However, the size and genetic diversity covered may not be satisfactory in the
case of too-small samples. Based on previous research structures, it is reasonable to set the
sample size at 5–40%, under which the genetic diversity covered cannot be lower than 70%,
and the number of selected germplasms should be no less than 20 [45]. The proportion can
be reduced to 5–15% in the case of quality core collections [46]. Alternative germplasms
with 13 compression ratios (9.7–34.7%) were constructed through stepwise clustering in
this study. After comparisons and evaluations, a compression ratio of 30.6% was selected
as the optimal sampling ratio, thus establishing a Caladium core collection of 44 materials
and retaining 95.2% of the alleles. This could fully represent the genetic diversity of the
original germplasm.

Among the 44 core collections, 19 accessions originated from the United States, 18 from
Thailand, and only 7 from China. The largest proportion belonging to the United States
reflects that the United States is still the breeding center of caladium, which is consistent
with previous reports [11,12,15]. The number of core germplasms from Thailand also
accounted for a large proportion, mainly because Thailand’s research institutions have
devoted themselves to the cultivation of new varieties of caladium in recent decades, and
they have bred some excellent cultivars with specific leaf vein colors, such as C12, C18,
C98, C104 and C127, whose leaf vein colors are gray-purple, while the United States lacks
such varieties [24,47]. The number of core germplasms in China was the lowest, which
indicated that the breeding process of caladium in China is still in the development stages.
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However, there exist broad prospects for efficient utilization and rapid molecular breeding
of Caladium germplasm resources on the basis of this final core collection.

Plants must have rich genetic diversity to better adapt to the environment and increase
their survival rate. Only in this way can their advantageous positions in evolution and
reproduction be ensured [48]. Thus, it is indispensable to establish resource banks for
Caladium core collections, which, to some extent, can reduce the labor force, materials, and
financial resources put into the protection of the original germplasms. Resource banks of
core collections can be established by collecting essential materials for which the required
protective measures should be formulated. Such materials will be selected as superior
gene banks for breeding if they are utilized [28]. Core collections are established in a
dynamic fashion, which will be continuously perfected by further expanding the collection
of germplasm resources in subsequent research work [32].

Differences in breeding materials or varieties cannot be identified only through tradi-
tional distinctness, uniformity, and stability (DUS) detection. The DNA molecular marker
technique, which develops rapidly, has become a necessary means of compensating for
the traditional identification method and, thus, has been included as a component of DUS
detection [49]. SSR markers have developed into an ideal tool for variety identification
under high resolution and codominance [50,51]. The fluorescence sequencing technique
can be combined with the SSR detection technique to efficiently construct crop variety
fingerprints and perform genetic diversity analysis [52]. Thus, it is possible to overcome the
difficulty of electrophoresis in band reading and mass data analysis with high efficiency.

DNA molecular IDs, which feature uniqueness and identifiability, serve as effective
proof to verify and distinguish between different materials [34]. The established character
strings, barcodes, and QR code-type DNA molecular IDs for the 44 core collections were
exclusive to each variety (line), with unique codes, in this study [53]. Based on character
strings, barcode-type DNA molecular IDs that could be rapidly identified by electronic
devices were established [54,55]. However, they could not save much effective information,
such as characters. Nowadays, the QR code technique can effectively accommodate digital
information, character information, graphical information, etc., and can be identified by
electronic devices, such as computers and cellphones, in an all-around way, thus substan-
tially expanding the range of its application [39]. Thanks to such techniques, the DNA
molecular IDs established for the Caladium core collections in this study can play a signifi-
cant role in identifying and protecting germplasms [40,41]. Moreover, they apply to the
perfection and intelligent management of resource banks of Caladium germplasms, laying
an essential technical foundation for constructing standard DNA molecular ID libraries for
Caladium germplasms. This study takes the lead, at home and abroad, in establishing DNA
molecular IDs for Caladium germplasms, with broad application prospects in the research
on the preservation and utilization of Caladium germplasm resources.

4. Materials and Methods
4.1. Plant Materials

Fresh leaves taken from 144 Caladium accessions collected from China and overseas
were placed in dry silica gels, numbered, and preserved at 4 ◦C. Such preservation was
made for later use (see the information of all samples in the Table S4) [47].

4.2. DNA Extraction and Detection

The dried leaves were ground in liquid nitrogen. Their DNA was extracted using
a new-type plant genomic DNA extraction kit (Tiangen Biotechnology Co., Ltd., Beijing,
China). Subsequently, DNA purity was detected in 1% agarose gel electrophoresis. Its
concentration was determined using an ultramicro-spectrophotometer (P360). Then, the
extracted DNA was preserved at −20 ◦C with the concentration regulated to 20 ng/µL.
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4.3. Expressed Sequence Tag (EST)-SSR Amplification and Sequencing

EST-SSR markers were derived from primers developed through high-throughput sequenc-
ing, among which 16 highly polymorphic markers were selected [47]. In the method proposed
by Schuelke et al., a primer fragment sequenced as TGTAAAACGACGGCCAGT was adapted
to the 3′ terminal of the forward primer [56]. In contrast, the reverse primer sequence remained
unchanged; the primer information is listed in Table S5. The polymerase chain reaction (PCR)
system (15 µL) included 7.5 µL of 2× Taq PCR Master Mix, 0.2 µL of TP-M13 primers (1 µM),
1.2 µL of reverse primers (1 µM), 1.2 µL of M13 fluorescent primers (1 µM), 2.5 µL of DNA
templates (20 ng/µL), and 2.4 µL of ddH2O. The PCR amplification procedure was as follows:
unwinding at 94 ◦C for 5 min; 30 cycles at 94 ◦C for 30 s, at 56 ◦C for 30 s, and at 72 ◦C for 1 min;
13 cycles at 94 ◦C for 30 s, at 53 ◦C for 30 s, and at 72 ◦C for 1 min; extension at 72 ◦C for 10 min;
and final preservation at 16 ◦C. Next, four different fluorescent PCR products were blended
and detected with a DNA analyzer (ABI 3730 XL), followed by the collection and analysis of
sequencing data via FlexiBin v2 and GeneMarker v2.20.

4.4. Genetic Diversity Analysis

The number of alleles and the polymorphic information content (PIC) were calculated
by GenAlEx v6.0 to evaluate the polymorphism of each marker locus [57]. Next, POPGENE
v1.31 was employed to calculate various genetic diversity indices, including the expected
heterozygosity (He), the observed heterozygosity (Ho), the observed number of alleles (Na),
the effective number of alleles (Ne), and the Shannon Diversity Index (I) [58]. Moreover, the
genetic distance was calculated and the cluster analysis was performed in PowerMarker
v3.25, with the cluster analysis diagram displayed in MEGA v4.0 [59].

4.5. Construction of Core Collections

According to the cluster analysis results, a core resource bank was established through
a progressive sampling strategy. A total of 14 compression ratios were set to determine the
number of optimal accessions (9.7%, 11.8%, 13.9%, 16.0%, 18.1%, 20.1%, 22.2%, 24.3%, 26.4%,
28.5%, 30.6%, 32.6%, and 34.7%). Additionally, 10 repeats were operated each time through
3 different search methods in PowerMarker 3.25. Then, the genetic parameter information
of different methods under 13 compression ratios was comparatively analyzed, and the
primary core collections were screened out. The genetic parameters and retaining ratios of
the primary core collections and original germplasms were compared and combined with
the t-test to determine the final core collections.

4.6. Establishment of DNA Molecular Identification

Based on SSR sequencing analysis results, the band patterns of all primers in different
individuals were coded with digits + English letters. Different band patterns such as
this were numbered from one to nine in descending order based on fragment length.
Those band patterns exceeding nine were expressed with English letters from A to Z to
establish DNA molecular identification in the form of character strings. Subsequently, the
corresponding character strings were imported into an online barcode generator (http://
barcode.cnaidc.com/html/BCGcode128b.php (accessed on 17 November 2022) to generate
barcode-type DNA molecular IDs available for scanning. Next, text information, such
as basic information, morphological characteristics and traits, quality data, and the DNA
molecular ID of core collections, was input into an online QR code generator (https://cli.im/
(accessed on 17 November 2022)) to generate QR code-type DNA molecular IDs available
for scanning.

5. Conclusions

Based on the phenotypic traits of 144 Caladium accessions, 16 informative EST-SSR
markers were employed to screen their genetic relationships. Subsequently, a core collection
of 44 individuals was constructed, comprising 30.6% of the accessions and representing
the greatest genetic diversity. Among the four populations of core collections, 66.7% of the

http://barcode.cnaidc.com/html/BCGcode128b.php
http://barcode.cnaidc.com/html/BCGcode128b.php
https://cli.im/
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private alleles were detected in Pop2. Finally, precise DNA molecular fingerprints of 44 core
accessions were established, including barcodes and quick response (QR) code molecular
identities (ID). The results could be beneficial to increasing the application efficiency and
rapid molecular identification in Caladium germplasm resources.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture13010200/s1, Table S1: Comparison of the genetic
diversity among different sampling groups; Table S2: Amplification results and code typing of
12 pairs of core primers detected with capillary electrophoresis; Table S3: The bar code and QR
code of 44 core collections; Table S4: Information of 144 Caladium accessions; Table S5: The basic
information of 16 EST-SSR loci used in this study.
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