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Abstract: Photosynthetic rate prediction models can provide guidance for crop photosynthetic process
optimization, which has been widely used in the precise regulation of the protected environment. The
photosynthetic capacity of crops continuously changes during their whole growth process. Previous
studies on photosynthetic models mainly consider the interaction between a crop’s photosynthetic
rate and its outer environmental conditions and have been able to predict a crop’s photosynthetic
rate in a certain growth period. However, photosynthetic rate prediction models for whole growth
periods have not been proposed yet. To solve this question, this paper introduces growing time
into a variable set and proposes a method for building a cucumber photosynthetic rate prediction
model of whole growth periods. First, the photosynthetic rate of cucumber leaves under different
environmental conditions (light, temperature, and CO2 concentration) during the whole growth
period was obtained through a multi-gradient nested test. With the environmental data and the
cultivation time as the inputs, a photosynthetic rate prediction model was built using the Support
Vector Regression algorithm. In order to obtain better modeling results, multiple kernel functions
were used for pretraining, and the parameters of the Support Vector Regression algorithm were
optimized based on multiple population genetic algorithms. Compared with a Back Propagation
neural network and Non-linear Regression method, the Support Vector Regression model optimized
had the highest accuracy, with the coefficient of determination of the test set was 0.998, and the average
absolute error was 0.280 µmol·m−2·s−1, which provides a theoretical solution for the prediction of
the cucumber photosynthetic rate during the whole growth period.

Keywords: cucumber; photosynthetic rate; SVR algorithm optimization; the whole growth period

1. Introduction

Protected agriculture is a modern agricultural operation which provides the most
suitable environment and conditions for crop growth, thereby obtaining high-quality and
high-yield agricultural products [1]. Compared with traditional agriculture, protected
agriculture has the advantages of a high level of automation and production without
seasonal restrictions [2]. It has gradually developed into a pillar industry of China’s
agricultural economy [3]. Photosynthesis is an important chemical reaction for crops
undergoing metabolism and organic matter accumulation, and its rate directly reflects the
growth status of the crop [4], which in turn affects yield and quality. In recent years, in order
to meet the needs of crop photosynthesis in protected environments, crop growth models
have been constructed, and on this basis, greenhouse environments have been precisely
controlled. It has become a hot issue in the field of facility agriculture research. The
precise control of greenhouse environment has become a hotspot in the field of protected
agriculture research [5–7].
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Plant photosynthesis is affected by multiple external environmental conditions [8].
Among them, light irradiance, carbon dioxide (CO2) concentration, and temperature are
three environmental factors that significantly affect plants’ photosynthetic rate [9]. How-
ever, the photosynthetic rate of plants is not only affected by environmental factors. The
physiological conditions such as leaf structure and chlorophyll content have a continuous
change with the development process [10,11], and the photosynthetic rate in different
growth periods is greatly different [12]. Studies have shown that the growth rate of cu-
cumber varies significantly with growing time [13]. The growth rate of fruit cucumber
leaves in glasshouses was fast at first and then became slow, and the early stage was the
relatively rapid growth stage of the leaves [14]. The growth rate during the initial flowering
stage and the initial fruiting stage was about three times that of the harvesting stage [15].
This study explores the relationship between growing factors (including environmental
factors and growth periods) and plant photosynthetic rate, and establishes a corresponding
mathematical model, which can better guide agricultural production.

Previous studies have established photosynthetic rate models based on the interaction
between environmental factors and photosynthesis, which reflects the changes in pho-
tosynthetic rate to varying degrees. Based on a machine learning algorithm, the model
can accurately predict the effect of environmental factors on the photosynthetic rate of
the plants [16]. On this basis, it can also respond to the variation of plant photosynthetic
rates at the spatial scale by adding different leaf position information [17]. To improve
the convergence speed of the models, optimization algorithms for photosynthetic rate
modeling characteristics have also been proposed [18]. These studies simultaneously mod-
eled multiple types of environmental factors and had good applicability to the prediction
of photosynthetic rate under dynamic environmental conditions. To further investigate
the variation of the photosynthesis in cucumber, artificial neural networks were used to
simulate the photosynthetic rate changes of cucumber in different growth periods [19].
However, the study modeled the seedlings and flowering periods separately and did not
have continuity in growing days. The above photosynthetic rate models did not consider
the continuous changes in the growth state of the cucumber throughout its growth cy-
cle, which leads to a bias in its prediction of photosynthetic rate. Therefore, according
to the nested effects of growth period and environmental factors on photosynthetic rate,
the establishment of a photosynthetic rate model for the whole growth period to achieve
the accurate prediction of photosynthetic rate is of great significance for the facility of
environmental regulation.

In view of the above problems, this paper considers the differences in the photosyn-
thetic rates of cucumbers in different growth periods and the effects of different external
environments on cucumber photosynthesis to establish a model for predicting the photo-
synthetic rates of cucumber leaves during the whole growth period. Firstly, taking “Jinyou
35” cucumber as the research object, a multi-environmental factor nesting experiment in a
non-uniform sampling period was designed to obtain samples of the photosynthetic rate
of cucumber leaves corresponding to different photon flux densities, temperatures, and
CO2 concentrations during the whole growth period. On this basis, the modeling effects
of the four types of Support Vector Regression (SVR) algorithm kernel functions were
compared, and multiple population genetic algorithm (MPGA) was used to optimize the
parameters of the SVR algorithm. Based on the SVR algorithm, a cucumber photosynthetic
rate prediction model in a whole growth period with time parameters was constructed to
realize the accurate prediction of the photosynthetic rate of cucumbers in the greenhouse.
The flow chart of the model construction in this study is shown in Figure 1.
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Figure 1. The flow chart of the establishment of the cucumber photosynthetic rate prediction model
in whole growth period with time parameters.

2. Materials and Methods
2.1. Experimental Materials

The experiment was carried out at the Jingyang Vegetable Experiment Demonstration
Station (lat. 34◦07′39” N, long. 107◦59′50” E, elevation 648 m) of Northwest A&F University
in Xianyang City from September to December 2017. After hot-water-treatment in dark,
the seeds of “Jinyou 35” cucumber (Cucumis sativus L.) were sown in a 72-well tray. The
organic matter mass fraction contained in the nursery substrate was over 50%, the humic
acid mass fraction was over 20%, and the pH value was between 5.5 and 6.5. The seedlings
were cultured to three-leaf stage, and data were collected after the recovery stage.

2.2. Experimental Methods

In this paper, the photon flux density, temperature, and CO2 concentration in the fa-
cility environment were used as independent variables, and the photosynthetic rate value
under the corresponding conditions was used as the dependent variable. A non-uniform
sampling period was designed, and the growth parameters (light intensity, CO2 concentration,
temperature, and growing time) of cucumber were collected during this period.

The cucumber seedlings with luxuriant growth were randomly selected, and their
functional leaves were used as samples to collect photosynthetic rate. The LED light source
module, temperature and humidity control module, and CO2 injection module of LI-6400
Portable Photosynthesis Rate Instrument of American LI-COR company were set to provide
the required environment for the experiment. According to the general rule of cucumber
light response changes [20], the LED light source module was set to provide non-uniform
photon flux density sampling gradients of 0, 20, 50, 100, 200, 300, 500, 700, 1000, 1200, 1500,
1800 µmol·m−2·s−1, a total of 12 gradients. The flow rate of the LI-6400 control module
was set to 500 µmol·s−1 and the relative humidity of the moisture module was set to 50%.
The environmental factor parameter settings are shown in Table 1.

Table 1. Experimental environment parameter settings.

Photon Flux Density
(µmol·m−2·s−1)

Temperature
(◦C)

CO2 Concentration
(µmol·mol−1)

Range 0–1800 20–32 600–1500
Step size / 4 300

A total of 192 environmental conditions (12× 4× 4) were formed. In order to eliminate
accidental errors, the photosynthetic rate was measured three times in each group and the
average value was taken as the data collection result of one experiment. Therefore, the
response photosynthetic rates of cucumber under different environmental factors were
obtained. In order to obtain the regularity of the photosynthetic rate of cucumber in the
whole growth period, a non-uniform sampling period was designed according to the
growth cycle of cucumber and the difference in the development speed of each period. A



Agriculture 2023, 13, 204 4 of 14

total of 10 collection experiments were performed on the 5th, 10th, 15th, 20th, 25th, 30th,
35th, 50th, 65th, and 80th days after the cucumber seedlings were planted. At the end of
the experiment, a total of 30 leaves were measured. The collection period settings were
shown in Table 2. The growth status of cucumbers in different days is shown in Figure 2.

Table 2. Collection period setting of Full growth period.

Growth Stage Initial Flowering Stage to
Initial Fruiting Stage (Day)

Full Fruiting Stage to Final
Fruiting Stage (Day)

Time range 35 36–85
Sampling
interval 5 15

Figure 2. The growth status of cucumbers in different days.

2.3. Data Preprocessing Method

The growth parameters and environment variables of cucumber seedlings were set as
model inputs, and recorded as X. X = (x 1, x2, x3, x4)

T , where x1, x2, x3, x4 were light inten-
sity, CO2 concentration, temperature, and growing time, respectively. The photosynthetic
rate values were set as model output y, and the sample set P = (x 1, x2, x3, x4 , y)T was
obtained. Since the dimensions of each variable were different, it is necessary to eliminate
the influence of magnitude values for better model performance. A linear transformation
function was used to normalize the sample set:

t = (t max − tmin) × (s − smax)/(s max − smin) + tmin (1)

where smax and smin are the maximum and minimum value of the sample set before normal-
ization, tmax and tmin are the upper and lower limits of the sample set after normalization. s
and t are the sample data before and after normalization.

Finally, a set of 1920 (12 × 4 × 4 × 10) photosynthetic rate modeling sample set
P′= (x)T was obtained.
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2.4. Method of Photosynthetic Rate Prediction Model

In this paper, SVR algorithm was used to build a prediction model of photosynthetic
rates for cucumber in whole growth period. The SVR algorithm maps data vectors from
a low-dimension space to a high-dimension space, which enables models to transform a
non-linear problem into a very high dimensional linear problem, leading to more accurate
predictions [21]. The training set containing l samples was defined as (Xi, yi), i = 1,2, . . . ,l,
where Xi was the input vector of the i-th training sample, and yi was the corresponding
output value. The linear regression function established in the high-dimensional feature
space can be defined as

f (X) =WT ϕ(X) + b (2)

where,

W = an weight vector
ϕ(X) = a nonlinear mapping function
b = a constant.

Ignoring the fitting error less than ε, ∈-SVR can be expressed as the following con-
strained optimization problem:

min
W, b, ξ, ξ∗

1
2 WTW+ 1

2 C
l

∑
i=1

(ξ i+ξ∗i )}

s.t.


yi − WT ϕ(X i ) − b ≤ ε + ξ i
− yi+WT ϕ(X i) + b ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0, i = 1, 2, . . . , l

(3)

where,

C = the penalty factor
ξi and ξ∗i = a pair of relaxation factors.

By introducing the Lagrange function, the optimization problem of Equation (3) can
be transformed into a dual form, and the objective equation is shown in Equation (4):

f (X) =
l

∑
i=1

(a ∗i − ai)K(X i , X) + b (4)

where,

a∗i and ai = dual variables
K(Xi,Xj) = ϕ(Xi)T ϕ(Xj) = the kernel function.

In order to get better results, four kinds of kernel functions commonly used in SVR
algorithm were pre-trained. Then the C and gamma parameters of SVR algorithm were
optimized by using MPGA.

2.5. Data Preprocessing Method

The SVR kernel function is a mapping function from nonlinear space to linear space,
which determines the position of the hyperplane in the model and directly affects the
performance of the model. The frequently used SVR kernel functions include Linearity
function, Polynomial function, Radial basis function, and Sigmoid function. In order to
select the optimal kernel function, this paper randomly selected 30% samples from the
sample set P′, randomly divided them into a training set and a test set with a ratio of
4:1. Then, four kinds of kernel functions were used for pre-training. Furthermore, the
coefficient of determination (R2) and root-mean-square error (RMSE) were selected as
evaluation indicators.
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2.6. SVR Model Parameter Optimization

Model parameter is another key factor affecting SVR regression performance. Among
them, the kernel function parameter gamma and the penalty factor C are important parame-
ters for the SVR algorithm to optimize the target and the regression hyperplane, and directly
participate in the training of the regression model and the selection of support vectors. The
penalty factor C is used as an adjustment parameter of structural risk and empirical risk
in the optimization target, affecting the prediction accuracy of the SVR regression model.
When the C value is too large, the training accuracy would increase but it is easy to overfit;
when the C value is too small, the training accuracy would decrease and the problem of
under-fitting appears. The above situations would reduce the generalization ability of the
model. Different values of gamma would change the shape of the kernel function, which
would cause the regression hyperplane to change. As a result, some sample points would
be thrown out of the hyperplane band-shaped region, and could never achieve correct
prediction. For different datasets, the optimal parameter values of the SVR algorithm vary
greatly. In order to achieve the best model performance, this paper introduced MPGA into
the C and gamma parameter optimization.

MPGA, as a global optimization search method has the advantages of high efficiency
and rapid speed and is suitable for complex optimization problems [22,23]. MPGA consists
of standard genetic algorithm (SGA), immigration operator, artificial operator, and elite
population. Among them, each SGA uses different genetic parameters for crossover and
mutation operations to eliminate the parameter mismatch caused by the difference in
initialization parameters. Next, the immigration operators are used to connect the various
populations, and the worst individual in the target population is replaced with the best
individual to realize the information exchange between the populations. Finally, the
artificial algorithm is used to record the optimal individual of each generation in each
population and pass it to an elite population. The elite population does not perform cross
mutation operations to ensure that the outstanding individuals are not destroyed or lost
and can output consistent convergence results, thereby achieving a global optimal search.

2.7. Data Processing Methods

The procedures of the algorithms and the models were written in Matlab R2016a (The
MathWorks, Natick, MA, USA) based on LIBSVM toolbox (farutoUltimateVersion) [24] and
artificial neural networks toolbox.

3. Results and Discussion
3.1. Experimental Results
3.1.1. Effects of Environmental Factors on Photosynthetic Rate

In order to analyze the response of photosynthetic rate to the main environmental
factors, the photosynthetic rate data of cucumber on the 35th day after planting was taken
as an example, and its photon flux density–photosynthetic rate change curve was drawn.
When the temperature was 20, 24, 28, and 32 ◦C, and the CO2 concentration was 600, 900,
1200, and 1500 µmol·mol−1, the cucumber light response curves are shown in Figure 3.

The photosynthetic rate changed significantly under different photon flux densities.
The photoinhibition occurs when the increase in photo flux density cannot synchronously
rapidly increase (or even slightly decrease) the photosynthetic rate [25,26]. When the
ambient temperature was 20 and 24 ◦C, the photosynthetic rate decreased under the high
light intensity (1500–1800 µmol·m−2·s−1), and the photoinhibition phenomenon appeared,
as is shown in Figure 3b.
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Figure 3. (a). The response surface of photosynthetic rate to photon flux density and CO2 concentra-
tion at different temperatures (changing temperature). (b). The light response curve of cucumber
photosynthetic rate under different environmental conditions (changing CO2 concentration and
temperature). The photoinhibition points of the light response curve are marked with red boxes in
the subfigures of Figure 3b.
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There is difference in the photosynthetic rate of cucumber in relatively low CO2 concentra-
tions (600 µmol·mol−1·s−1) and relatively high CO2 concentrations (900–1500 µmol·mol−1·s−1).
However, the difference was not significant when the CO2 concentration is higher than
900 µmol·mol−1·s−1. Such a phenomenon shows that the effect of high CO2 concen-
tration will not further significantly increase the photosynthetic rate of cucumber. This
was due to the limitation of the regeneration ability of the phosphate of the crops’ pho-
tophosphorylation process [27]. In addition, we compared the photosynthetic rate curve
within different temperature ranges (Figure 3(b1–b4)). When the temperature rises to
the range of 28–32 ◦C, the photosynthetic rate of cucumber under high photon flux
density was greater than that of the range of 20–24 ◦C. In addition, under relatively
high temperatures, when the CO2 concentration is 900–1500 µmol·mol−1·s−1, the photo-
synthetic rate of cucumber under high photon flux density increased more than under
600 µmol·mol−1·s−1. This is because the sensitivity of C3 plants to CO2 will increase with
the increase in temperature [28], which is reflected in the increase in photosynthetic rate.

The four sub-graphs all revealed that the temperature increase caused a rapid increase
in photosynthetic rate. This is because temperature affects the activity of photosynthesis-
related enzymes, which accelerates the reaction process [29]. Moreover, as the temperature
rose, the inflection point of the light response curve gradually shifted to the right, and the
light saturation point gradually increased.

In summary, various environmental factors have a significant effect on photosyn-
thetic rate, and the above response law is consistent with the mechanism of plant photo-
synthesis [30,31]. Therefore, it is reasonable to introduce environmental factors into the
establishment of cucumber photosynthetic rate prediction models.

3.1.2. Effects of Growing Time on Photosynthetic Rate

In order to overcome the contingency of a single dataset, four sets of environmental
conditions were selected to analyze the effect of growing time on photosynthetic rate.
When the photon flux density was 1500 µmol·m−2·s−1 and the CO2 concentration was
1500 µmol·mol−1, the response curve of the photosynthetic rate with time factor at the
temperatures of 20 ◦C, 24 ◦C, 28 ◦C, and 32 ◦C was shown in Figure 4.

Figure 4. Changes of photosynthetic rate with growing time of cucumber under different environment.
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It can be seen from Figure 4 that in the above temperature range, the photosynthetic
rate of cucumber increased rapidly in the period from pumping to early fruiting (0–35 days).
During the fruit-harvest period (35–65 days), the photosynthetic rate slowly increased first
and then decreased, indicating that the leaves began to age. From the later stage of the
fruiting period to the end of fruiting (65–80 days), the photosynthetic rate of the leaves
showed a downward trend, and the leaves were completely into the stage of aging.

Similarly, numerous studies suggested that the leaf photosynthetic rate in most species
increased rapidly during leaf development [32]. When the leaves were fully expanded,
their areas and photosynthesis rates were 90–100% of maximum values [33]. As leaves age
further, photosynthetic capacity, stomatal conductance, leaf dry mass per area, nitrogen,
protein, and photosynthetic enzymes including Rubisco decreased [34]. However, their
growth process is continuous, and measuring the photosynthetic rate of plants in different
growing days could more accurately reflect their photosynthetic process, which would
improve the accuracy of prediction models.

Figure 4 indicated that the photosynthetic rate of cucumber varied significantly
over time, and was consistent with the characteristics of cucumber growth. Therefore,
it is necessary to incorporate time factor into the establishment of photosynthetic rate
prediction models.

3.2. SVR Algorithm Optimization Results
3.2.1. Optimal Kernel Function Acquisition

To select the optimal kernel function, this paper randomly selected 30% samples from
the dataset P′, and randomly divided them into a training set and a test set with a ratio of
4:1. Then, four kinds of kernel functions were used for pre-training. RMSE and R2 were
selected as the evaluation indexes and the pre-training results are shown in Table 3.

Table 3. Effect of four types of kernel function on model performance.

Kernel Function

Training Set Test Set

RMSE
(µmol·m−2·s−1) R2 RMSE

(µmol·m−2·s−1) R2

linearity 2.222 0.866 4.417 0.874
polynomial 1.138 0.934 1.801 0.860

RBF 0.428 0.997 0.851 0.995
Sigmoid 2.571 0.824 5.111 0.832

It can be seen from Table 3 that the test set R2 of the model using the RBF kernel
function was 0.995 and RMSE was 0.851 µmol·m−2·s−1, and its generalization ability was
the best. Because the RBF function had the best training efficiency and precision, it was
selected as the kernel function of photosynthetic rate prediction model.

3.2.2. Optimal C and Gamma Parameters Combination Acquisition

The C and gamma parameters of SVR algorithm were optimized by MPGA. Figure 4
showed the genetic evolution of multiple populations after five trainings.

It can be seen from Figure 5 that with the increase in the evolution algebra, the results
of MPGA algorithm in 5 trainings all converged to the same error value. Moreover, the
optimal solutions for the C and gamma parameters obtained from the 5 trainings are the
same, both are 79.268 and 0.937, respectively. MPGA algorithm avoided the problems of
low search efficiency and early convergence that were often found in standard genetic
algorithm, and was more suitable for parameter optimization [35,36]. At the same time, no
oscillation occurred after each training reached the optimal solution, which indicated that
the MPGA algorithm had good convergence.
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Figure 5. Multi-population genetic algorithm five evolution curves.

To verify the effect of MPGA for parameters optimization, this paper selected the
GridSearchCV method to compare the algorithm performance. The input sample set was
randomly divided into a training set and a test set with a ratio of 4:1. The RBF function
was selected as the kernel function, and two optimization algorithms were used to train the
SVR model respectively. The results were shown in Table 4.

Table 4. Comparison between Gridsearch CV and MPGA optimization results.

Optimization
Algorithms Optimal C Optimal

Gamma

E1
(µmol·m−2·s−1)

1

E2
(µmol·m−2·s−1)

2

GridsearchCV 64 1 0.284 0.407
MPGA 79.268 0.937 0.193 0.280

1 E1 means the absolute deviation of training set, 2 E2 means the absolute deviation of test set.

As can be seen from Table 4, in terms of accuracy, the mean absolute deviation (MAD)
of the prediction set and test set of the model optimized using the MPGA algorithm were
0.193 µmol·m−2·s−1 and 0.280 µmol·m−2·s−1. Both were lower than the corresponding
errors using the GridsearchCV method. Meanwhile, research shows that the grid search
method takes a long training time to reach a certain accuracy [37]. In summary, the
MPGA algorithm has good performance accuracy and could effectively optimize the
SVR algorithm.

3.3. Model Validation

In order to compare the performance of the models built by the SVR algorithm, this pa-
per used the same training set and test set to build the model based on the Gridsearch-SVR
(GS-SVR) algorithm, MPGA-SVR algorithm, Back Propagation Neural Network (BPNN),
and nonlinear regression (NLR) method. The BPNN adopted a single hidden layer struc-
ture, and the number of input nodes, hidden layer nodes, and output nodes were set to 4, 8,
and 1. The transfer functions were Tansig function and Purelin function, and the training
function was trainlm function. NLR used SPSS non-linear regression toolbox for model
analysis, and the quaternion cubic polynomial was used as the framework to train the
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model. The MAD, the maximum absolute error (MAE), R2 were chosen as the evaluation
indicators. The performance of each model on the testing set are shown in Table 5.

Table 5. Validation of the photosynthetic rate model for the whole growth period of cucumber on the
testing set.

Models

MAD (µmol·m−2·s−1) MAE (µmol·m−2·s−1) R2

Training
Set

Test
Set

Training
Set

Test
Set

Training
Set

Test
Set

NLR 1.923 2.307 8.798 10.115 0.824 0.707
BPNN 0.470 0.534 2.850 3.353 0.997 0.996

GS-SVR 0.335 0.407 2.354 2.809 0.996 0.997
MPGA-SVR 0.228 0.280 2.008 2.462 0.998 0.998

As can be seen from Table 5, the models built using the BPNN, GS-SVR algorithm, and
MPGA-SVR algorithm all performed well (R2 > 0.99), indicating that there was a strong
correlation between predicted and measured values, and the model could well reflect
samples’ data characteristics. In terms of prediction errors, the MAD of the GS-SVR and
MPGA-SVR algorithms were 0.407 µmol·m−2·s−1, 0.280 µmol·m−2·s−1, and the MAE were
2.809 µmol·m−2·s−1 and 2.462 µmol·m−2·s−1, which were smaller than BPNN algorithm.
This shows that the accuracy of the model using the SVR algorithm in this paper is higher
than that of the BP network with a single hidden layer. The MPGA-SVR model had the
highest accuracy among the above evaluation indicators, indicating that it could accurately
predict the photosynthetic rate of cucumber under different light densities, temperatures,
CO2 concentrations, and growing days. The plot of true response–predicted response of
the MPGA-SVR model on the test dataset is shown in Figure 6.

Figure 6. The true response vs. the predicted response of the MPGA-SVR model on the test set.
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In this study, the factor of growing days was used as the independent variable of
the model to refine the process of crop growth, which can dynamically describe the con-
tinuous change of photosynthetic rate. A previous study divided the growth process of
plants with different growth periods, and proposed a BPNN algorithm-based photosyn-
thetic rate prediction model [19]. In addition to environmental variables, the model also
used chlorophyll content and growth stage as inputs, with R2 of 0.9517 and RMSE of
1.622 µmol·m−2·s−1. The results indicate that the prediction accuracy is less than the model
established in this paper. As there are multiple days for a growth period of crops [38], it
may cause a large error to use one day of them to represent the photosynthetic rate level of
the entire growth period. Therefore, the model built in this paper could provide a more
accurate and effective way for the intelligent regulation of protected agriculture.

4. Conclusions

In this study, cucumber was used as the research object. The photosynthetic rate data
set of cucumbers with different growing times and environmental factors was obtained
by the photosynthetic rate experiment during the whole growth period. The optimal SVR
algorithm parameter combination was obtained by MPGA, and a cucumber photosynthetic
rate prediction model in a whole growth period with time parameters was constructed.
The main conclusions are as follows:

(1) In terms of parameter optimization of SVR algorithm, MPGA algorithm overcomes
the premature convergence phenomenon commonly seen in standard genetic al-
gorithm through global optimization, and can obtain higher model accuracy than
GridSearchCV algorithm;

(2) Model verification results show that the R2 of the test set of the MPGA-SVR model is
0.998, and the MAD is 0.280 µmol·m−2·s−1. Its evaluation results are better than the
models built by GridsearchCV-SVR algorithm, BPNN, and NLR method. At the same
time, it shows that the modeling with growing days could well reflect the change of
photosynthetic rate under different growth stages in the whole growth period, and
the accuracy of the model could meet the needs of practical application.
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