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Abstract: It is important to propose the correct decision for culling and replenishing seedlings in
factory seedling nurseries to improve the quality of seedlings and save resources. To solve the
problems of inefficiency and subjectivity of the existing traditional manual culling and replenishment
of seeds, this paper proposes an automatic method to discriminate the early growth condition of
seedlings. Taking watermelon plug seedlings as an example, Azure Kinect was used to collect data
of its top view three times a day, at 9:00, 14:00, and 19:00. The data were collected from the time
of germination to the time of main leaf growth, and the seedlings were manually determined to be
strong or weak on the last day of collection. Pre-processing, image segmentation, and point cloud
processing methods were performed on the collected data to obtain the plant height and leaf area of
each seedling. The plant height and leaf area on the sixth day were predicted using an LSTM recurrent
neural network for the first three days. The R squared for plant height and leaf area prediction were
0.932 and 0.901, respectively. The dichotomous classification of normal and abnormal seedlings
was performed using six machine learning classification methods, such as random forest, SVM, and
XGBoost, for day six data. The experimental results proved that random forest had the highest
classification accuracy of 84%. Finally, the appropriate culling and replenishment decisions are given
based on the classification results. This method can provide some technical support and a theoretical
basis for factory seedling nurseries and transplanting robots.

Keywords: strong seedling model; phenotype measurement; machine learning; grow prediction

1. Introduction

China is recognized as a large vegetable producer and vegetable consumer. China’s
vegetable sown area and production account for 52.25% and 58.31% of the world’s total
planted area and production, respectively, ranking first in the world [1]. With the devel-
opment of modern facility agriculture, the scale of intensive vegetable production has
expanded. Centralized and factory nurseries have become an inevitable trend and are
widely used in agricultural production activities around the world [2]. However, in factory
nursery production, the seedling success rate ranges from 80% to 95%, and the reasons
for not emerging mainly include a lack of seedlings, diseased seedlings et al. [3]. The
transplant, culling, and replenishment of seedlings before leaving the factory are key steps
in determining the quality and yield of vegetable seedlings. There is still relatively little
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research on how to pick and replenish weak seedlings, and most of the related work is
performed manually. However, the high temperature, high humidity, and high degree of
confinement in the greenhouse make it extremely difficult for workers to pick and replenish
seedlings, and there are also disadvantages, such as high subjectivity, low efficiency, and
high costs in picking and replenishing seedlings manually [4]. It is not possible to accurately
predict the growth of seedlings and target replenishment by relying on experience alone.
In order to have a high neatness of seedlings at the factory, seedling factories often reduce
the loss caused by the lack of seedlings and diseased seedlings by increasing the number
of seeds sown, which leads to a great loss in the economy of factory seedlings. A reliable
early identification system for weak seedlings can help nursery plants quickly locate weak
and dead seedlings and target transplanting and replanting operations, greatly improving
the efficiency and economy of plant nurseries.

The gradual integration of computer technology and agricultural knowledge has
enabled the study of crop morphological structures and physiological functions to cross over
to the stage of digitalization and visualization [5]. Researchers have applied machine vision
and spectroscopy to high-throughput crop phenotyping to achieve autonomous monitoring,
analysis, and the application of crop physiological and ecological information [6–8]. Crop
phenotype detection technology is the basis for growth modeling. Three-dimensional
vision technology can store the 3D information of plant shapes and organs in the computer
to reproduce the morphological structure of crops. It can analyze and detect the dynamic
process of plant growth and plant–environment interactions, which accelerates the scholars’
quantitative research on the process and laws of crop growth and development [9,10]. A 3D
vision generally uses 3D imaging techniques such as depth cameras, binocular vision, and
depth estimation for phenotypic studies of crops. A large number of relevant studies have
been generated in recent years. For example, Jin proposed a low-damage transplanting
method for leafy vegetable seedlings based on machine vision and image processing to
solve the problem of high damage rates in seedling transplanting in horticultural facilities.
He used the Intel D415 camera to obtain the height and extreme edge points of seedlings
and performed path planning for the end-effector based on coordinated information to
achieve the low-damage transplantation of seedlings and improve the success rate of
seedling transplantation [11].

Three-dimensional vision technology can make up for the shortcomings of machine
vision and 3D vision can obtain the actual phenotype data of the research object, which is
excellent in crop growth quality monitoring. For example, Yang et al. proposed an RGB-D
camera-based method for in situ measurements of vegetable seedling height parameters in
greenhouse nursery trays. He combines 3D point cloud filtering with clustering technology,
which can effectively filter out the soil background point cloud set and realize in situ
point cloud segmentation, and the average relative error of its plant height measurement
is 7.69%; the accuracy can reach the standard for practical production applications and
scientific research needs [12]. Teng et al. used Azure Kinect for 3D reconstruction of the
seedling moss stage and proposed an improved point cloud alignment method based on ICP,
which aligns the point cloud of each viewpoint three times consecutively by continuously
decreasing the distance threshold between the grid size and the corresponding point
until the complete color point cloud information is obtained. This method increases the
accuracy to 92.5% and has the potential to be widely used for the non-destructive testing
of oilseed rape phenotypes with low cost and high accuracy [13]. Otoya et al. used the
RealSense D435 depth camera to grade artichokes. The leaf area estimation method based
on point cloud segmentation and the triangulation algorithm classified artichokes into
four grades: high-quality seedlings, medium-quality seedlings, poor-quality seedlings,
and no seedlings, and this method enabled the non-destructive assessment of seedling
quality [14]. Nguyen et al. performed the precise 3D reconstruction of cabbage, cucumber,
and tomato seedlings by using a structured light-based 3D reconstruction method and
accurately estimated plant phenotypic characteristics such as leaf number, plant height,
and leaf size without destroying any part of the plant [15]. Chen et al. used the structure
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from the motion method to obtain the point clouds of plants and proposed a fuzzy C-
mean clustering-based point cloud segmentation method for individual plants, which
finally realized the grid method to calculate the leaf area. This method improves the
accuracy of leaf area calculation for overlapping leaves and complex angle shots to a certain
extent [16]. Wang et al. proposed a KinectV2 camera-based nondestructive monitoring
method for the growth process of factory plug seedlings to achieve the nondestructive
measurement of plug seedlings. He obtained the germination rate of seedling trays by
threshold segmentation and the morphological processing of color images and completed
the analysis of plant height and leaf area for the seedlings by converting depth images into
point clouds, realizing nondestructive monitoring for germination rate, plant height, leaf
area, and the seedling index of cavity trays [17]. Zhang et al. took cucumber cavity tray
seedlings as the research object and proposed a point cloud processing-based automatic
detection method for late seedling emergence in cavity trays. The leaf area and plant height
were obtained by the α-shape algorithm; the method of locating the top of seedling stems
based on the principal curvature, and the product of leaf area and plant height was used as
the grading factor to achieve the automatic detection of late seedling emergence [18].

Crop phenotype data based on 3D vision technology can well describe the current
crop growth condition, and combined with machine learning or deep learning techniques,
can further predict the crop growth trend. For example, Zhang et al. proposed a method to
measure the 3D morphological characteristics of plants and established a plant time-series
growth equation and visualization model to present the growth process of Arabidopsis
dynamically, which facilitates the phenotype detection of Arabidopsis. However, due to
the method of generating point clouds as a structure and the need to rely on L-studio
software to fit the mathematical growth equations, the modeling speed is slow and cannot
achieve the speed and portability required for practical production [19]. An et al. designed
an automated high-throughput plant phenotype detection pipeline for monitoring the
growth of rosettes. This pipeline is topped with 18 cameras and is capable of holding 4 × 4
seedling trays for a total of 16 trays. With this device, images of rosettes can be taken
continuously, and the power-law distribution between the total leaf growth area and rosette
area can be analyzed from the time series. However, this device is complex, costly, and less
portable [20].

In summary, phenotypic characteristics, such as leaf area and plant height, are the main
parameters for evaluating and predicting plant growth [21,22]. Plant height determines
whether seedlings are spindling, while the leaf area is a determinant of seedling growth,
strengths, or weakness. The joint growth prediction of these two characteristics is expected
to achieve the discrimination of the seedlings’ strength and weakness indicators. Since
the growth model of seedlings carries time-series information, the growth status of one
day is necessarily highly correlated with the growth status of the next. The long and
short memory network (LSTM) has been superior in the analysis of time-series dynamical
systems in several fields [23]. LSTM can solve the situation of gradient disappearance
and explosion in traditional recurrent neural networks (RNN) and could trace back more
time-series information to make the model’s prediction more explanatory. In contrast,
traditional machine learning binary classification networks such as SVM, random forest,
and XGBoost can jointly model the two features obtained from the prediction with a strong
classification ability and less impact on discrete points. In order to solve the problem of early
identification and the location of weak seedlings, a phenotype-based growth prediction
and strong seedling discrimination model are proposed in this paper. The model has high
detection and prediction accuracy and can not only discriminate weak seedlings but also
locate weak seedlings, which can provide information on the number of seedlings and the
location of seedlings for the dividing and combining robot and has good practical value
and application prospects.
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2. Materials and Methods
2.1. Experimental Materials and Data Acquisition

The experiment was conducted in July 2022 in a small daylight greenhouse at the
vegetable improvement base of Huazhong Agricultural University with a north–south
layout and free control of shade curtains to control the temperature and humidity as well
as light in the greenhouse. The watermelon variety tested was the common variety “Zaojia
(84-24)”, with a total of 16 trays and 788 seedlings emerging. The growth cycle of seedlings
was 8–10 days. The cultivation substrate used for growing watermelon was grass charcoal,
vermiculite, and perlite, uniformly mixed according to a volume ratio of 3:1:1, while drip
irrigation was used.

Kinect 3D sensor real-time acquisition algorithms can meet the requirements of fast,
accurate, real-time crop growth pattern image information acquisition, which has become
a development trend and a necessary means of digital agricultural production manage-
ment [24]. The data acquisition device for this paper is Azure Kinect DK from Microsoft.
The platform for data acquisition is shown in Figure 1 and consists mainly of the Azure
Kinect sensor, a computer, and a shaded photo booth. The Kinect was mounted on a steel
mount, looking down 90◦ at a distance of about 0.45 m, with the camera plane parallel to
the shooting platform. The computer is used to acquire and process the images captured
by the Kinect. The data was collected from the time the seedlings sprouted to the time
they developed their true leaves, using Azure Kinect to take top views of the entire tray of
watermelon seedlings three times a day at 9:00, 14:00, and 19:00. Since the color camera
lens of the Azure Kinect sensor is extremely exposed, the data acquisition was chosen to
take place in a dark room.
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Figure 1. Plug seeding image data acquisition platform.

The color image contains the color information of plug seedlings, and the rich RGB
features in the color information have a better processing effect for seedling positioning
and image segmentation. The depth image contains information about the actual distance
from the camera lens to the seedlings in the cavity tray and has high accuracy in phenotype
detection. It can be used for the non-destructive detection of 3D phenotype data from the
seedlings. The joint analysis of color and depth images requires the alignment of the two
images. The depth image is aligned to the color image using the transformation depth
image to color camera function in the Kinect SDK during data acquisition, and the aligned
depth image has the same pixels as the color image so that the depth information can be
directly segmented and recognized based on the color information. Figure 2 shows the
continuously acquired color image with the aligned depth image.
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Figure 2. Continuous acquisition of color images with depth images.

The robustness of each seedling was assessed manually on the sixth day of data
acquisition. The assessment results were divided into two categories: normal seedlings
and abnormal seedlings. Abnormal seedlings were weak seedlings with dwarf plants and
smaller wilted leaves or spindling seedlings with thin stems and tall plants, while the rest
were normal seedlings. Table 1 shows the statistics of all the sample data.

Table 1. Sample data statistics.

Watermelon
Seedling
Varieties

Total Number
of Cavities

Total Seedling
Emergence

Sample

Seedling
Emergence

Rate

Normal
Seedlings

Abnormal
Seedlings

Normal
Seedlings’
Emergence

Rate

Zaojia84-24 800 788 98.5% 542 246 67.8%

2.2. Overall Flow Chart

The flow chart of the technical approach in this paper is shown in Figure 3. It includes
four parts: data acquisition, seedling location, phenotype detection, and weak seedling
identification. Data acquisition includes image data acquisition by the RGB-D camera
and manual acquisition of plant height and leaf area. Seedling location and phenotype
detection were performed by image processing and point cloud processing using the
collected data, and validation experiments were conducted simultaneously. The weak
seedling discrimination system uses LSTM and a random forest classification model to
jointly predict the dual features of plant height and leaf area to obtain the final weak
seedling discrimination model.
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2.3. Seedling Positioning and Indexing Methods in Cavity Trays
2.3.1. Plug-Hole Location and Indexing

The first step is to detect the plug holes of plug seedlings, and the most critical is to
determine the location of the plug boundary. Since the growth cycle of seedlings in this
experiment was the seedling stage, there was no problem with incomplete information
on the boundary of the plug due to the shading of seedlings. In order to obtain accurate
information about the location of the plug-hole boundaries, it is necessary to segment the
seedlings and soil information more precisely to leave the plug-hole boundaries that are
needed.

As shown in Figure 4, the information of seedlings can be removed by first Extra
Green and inverting the color image of the watermelon seedling tray taken. Threshold
segmentation is a typical algorithm for segmentation based on gray value features in image
processing. Since the boundary of the plug and the soil information have different gray level
ranges, the OTSU threshold segmentation of the color map with the seedling information
removed can obtain a binarized image containing only the boundary information of the
plug.
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Figure 4. Plug-hole identification process.

The binary image of plug seedlings after segmentation also contains noise, and if
the noise information cannot be accurately removed, it will interfere with the subsequent
processing and even affect the correctness of the results, so removing noise is a necessary
part of the image after binarization. The noise is formed by the fine pixel points of the soil,
and the boundary of the plug should be preserved, so a 3 × 3 kernel is used to open the
operation so that the boundary of each hole of the plug can be more clearly shown, and the
information of the plug seedings and the soil substrate can be divided. The subsequent
noise is mostly scattered in small areas and single-connected areas. To remove such noise,
calculate the area of all single-connected areas in the pixel points, then set the threshold
value and set the pixel values of all areas with area values less than this threshold value to
0. Until now, it has been possible to split off unwanted seedling and soil information more
precisely and keep the information we need about the boundary of the plug.

Since the plug holes have a standard structure and are arranged in a square matrix,
the boundaries are continuous in the horizontal and vertical directions, so the plug hole
boundaries can be determined using the pattern of the pixel statistics of the seeding plug
image with the change in horizontal and vertical coordinates. For each column and row of
the graph, the pixel values are counted separately from the trends.

The horizontal and vertical wave peaks correspond to the hole boundaries, and the
coordinates of the wave peaks are the coordinates of the pixel points corresponding to the
hole boundaries, which can accurately determine the location information of each hole
boundary to achieve the plug hole location. The red points in the boundary identification
part of Figure 4 are the results of peak point detection.
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2.3.2. Seedling Index

Watermelon seedlings may grow skewed during the germination period due to pho-
totropism and water control, which may cause the seedlings to be photographed outside
of the center of the hole. Even if the hole location is correctly located, accurate seedling
information is not obtained due to skewing. To address this problem, a seedling image
skew correction algorithm is proposed.

The first Extra Green is performed to retain only the seedling information, and the
localization range is expanded for the localized plug-hole images, as in Figure 5b. Use the
Moments function in the OpenCV to obtain the centroid coordinates of each connected do-
main, as in Figure 5c, and calculate the Euclidean distance between the centroid coordinates
and the center of the image, and the location of the seedling with the smallest centroid is
the location of the seedling in this hole. Figure 5e shows the effect of seedlings’ plug holes
after correction.
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2.4. Seedling Phenotype Detection Algorithm
2.4.1. Seeding Height Measurement

The seeding height H was defined as the vertical distance from the root of the seedling
stalk to the top of the leaf. As shown in Figure 6, the field of view of the camera is
parallelogram ABCD, h1 is the distance from the root of the main stalk of the seedling
measured by the camera, h2 is the distance from the top of the leaf measured by the camera,
and Equation (1) is the formula for calculating the seeding height H.

H = h1 − h2 (1)
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Since the soil plane is not a flat plane and the soil height varies for each seedling, it is
not possible to measure the seeding height with a uniform height, and each seedling needs
to be analyzed individually. To measure the height of each seedling, proceed as follows:

Step 1: The depth information in the unoperated depth image is cumbersome, and the
color image is the first Extra-Green first to remove the seedling information.

Step 2: The depth information of the soil can be removed by removing the depth
information of non-zero pixel locations in the corresponding depth image.

Step 3: Only the depth information of the seedlings is left in the depth image with the
soil information removed, and the difference between the maximum and minimum values
is the seeding height at this point.

2.4.2. Leaf Area Measurement

The leaf area of seedling leaves will occur by non-spreading, and the 2D image is no
longer able to accurately estimate the leaf area, which needs to be measured by converting
the depth image pixels into 3D spatial coordinates (3D point cloud). According to the Kinect
imaging principle, the conversion formula of depth image and 3D spatial coordinates is
shown in Equation (2). 

xw = zc·(u − u0)·dx/ f
yw = zc·(v − v0)·dy/ f

zw = zc

(2)

In Equation (2), (xw, yw, zw) is the 3D spatial coordinate corresponding to the point
(u, v), (u, v) is the pixel coordinate of any point of the depth image, zc is the depth of
information corresponding to the point (u, v), is the focal length of the IR camera, and (u0,
v0) is the optical center coordinate of the IR camera. Use PCL to generate an empty point
cloud, and then add the coordinate points converted to 3D spatial coordinates to the point
cloud file, and the RGB information contained in each point is the RGB information of the
coordinates corresponding to the color image in order to obtain the spatial point cloud map
containing color information, as shown in Figure 7a. The neighborhood extreme filtering
method [12] can eliminate the dragging problem caused by the depth camera shooting and
obtain a pure leaf point cloud.
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The greedy projection triangulation of the leaf corresponds to the noise reduction of
the leaf point cloud as the basis for the construction of a triangular network to obtain a
model containing some triangular slices, as shown in Figure 7b. Each of these triangular
slices contains real position information, and the area of each triangle can be calculated
based on the three sides of the triangle by indexing the original position and depth values
through the 3D point cloud, thus calculating the length of the three sides of each triangle.

The area of each triangle is found by using the three side lengths through the Helen
formula, and finally, the total area of the leaf can be obtained by adding up the areas of all
the triangular face pieces. The specific formula is as follows.

Pi = (ai + bi + ci)/2 (3)



Agriculture 2023, 13, 212 10 of 19

Sti =
√

Pi(Pi − ai)(Pi − bi)(Pi − ci) (4)

Sall = ∑n
i=0Sti (5)

In the above formula, ai, bi, and ci denote the side lengths of the three sides of the
ith triangle after greedy triangulation; Sti denotes the area of one of the triangles; Sall
denotes the sum of the areas of all the triangles, i.e., the total leaf area of the whole tray of
watermelon seedlings; and n denotes the number of triangles.

2.5. LSTM-Based Phenotype Prediction Model for Seedling

Long short-term memory (LSTM) is a special kind of recurrent neural network (RNN),
which is mainly designed to solve the gradient disappearance and gradient explosion
problems during the training of long series. LSTM can handle sequence-changing data and
has a better performance in longer series compared to general neural networks. Therefore,
LSTM is widely used in time series problems, such as time series, stock prediction, speech
recognition, and signal analysis problems. For the continuous time series of watermelon
seedling growth conditions, the growth conditions of the previous day are inevitably highly
related to the growth conditions of the following day and influence the growth conditions
of the latter day. The use of phenotypic features alone without considering the association
between different schedule types can lead to misclassification. The shifting of its cellular
state in the LSTM structure describes exactly that feature. For the phenotypic information
measured from continuously acquired image information, using LSTM networks can make
full use of the continuity between features to tap the temporal information carried between
images and maximize the accuracy of discrimination. Therefore, this paper selects the
LSTM neural network architecture to build a growth prediction model for watermelon
seedlings at the seedling stage.

The structure of the LSTM network is shown in Figure 8, which consists of multiple
neurons connected at the beginning and end, and each neuron consists of gating structures
and cell memory units inside, allowing it to handle data prediction tasks with long time
series comfortably. The gating structure contains the forget gate, input gate, and output
gate, which work together to determine the surrender and preservation of information.
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The forget gate ft determines the amount of information forgotten at the previous
moment. The input gate determines the amount of information updated to the cell memory
units at the current moment, including it which determines the degree of cellular memory
at the current moment versus and ct which controls the amount of information flowing into
the cell memory units. The cell memory unit ct stores the amount of information about the
cell at the current moment and can be updated at any time. The output gate ot determines
the amount of information flowing out at the current moment.
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All emerged seedlings were phenotypically examined for a total of 788 sets of data,
and seeding height and leaf area were used as the input information for LSTM, respectively.
The structure of the LSTM prediction model is shown in Figure 9, and the data structure
needs to be cleaned before training the LSTM network. The observed data set is first
converted to the form of a supervised learning set, i.e., from a set of time-series data to
the form of a data set with inputs and outputs. In this experiment, the time step is three
and each data set consists of six data sets, three input data, and three output data, for a
total of 13 data sets. Additionally, all the data sets are divided into 70% as the training set
and 30% as the testing set. Finally, the data are normalized and standardized to make the
gradient descent faster and the convergence more accurate. After training, data prediction
and inverse normalization are performed to predict the future schedule-type data and
obtain the predicted seeding height and leaf area.
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The data acquisition work cycle was 6 days, with three sets of data collected per day,
for a total of 18 sets of data. The prediction of growth using an LSTM neural network
requires sufficient antecedent data to improve the prediction accuracy and practical needs
in agronomic production. To ensure that replenishment decisions are available as close
to the three days before the seedling stage as possible, allowing time for replenishment
measures to keep the factory seedlings growing as evenly as possible and to ensure their
economy meant that the first three days of seedling growth data were chosen to be used
for prediction. The parameters of the LSTM network structure are shown in Table 2. The
data on days t, t − 1, and t − 2 were used to predict the data on days t + 1, t + 2, and t + 3
(t = 3) as the output, and the seedlings’ strengths and weaknesses were discriminated by
the subsequent discriminant method.
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Table 2. LSTM Network structure parameters.

Parameters Specification

Training 70%
Testing 30%

Input gate Sigmoid
Forget gate Sigmoid
Output gate Sigmoid

Hidden layer Tanh
Number of layers 1

Number of Hidden units 100
Input size 3
Time step 3

Loss function Cross-entropy
Epoch 300

Batch size 8

2.6. Machine Learning-Based Weak Seedling Discrimination Model

In the seedling period, there are only two categories to describe the strength and
weaknesses of seedlings, so the strong seedling model in this study is actually a binary
classification problem with supervised learning. To make the discriminations of strong and
weak seedlings predictable, the data predicted in the previous step were used as the input
phenotypic features. The predicted phenotype data of all emerged seedlings were cleaned
with a total of 788 sets of data, and the ratio of the training and testing sets were uniformly
divided into 70% and 30%.

In this study, logistic regression, support vector machine (SVM), random forest, and
the boosting algorithms GBDT, XGBoost, and LightGBM were used to build classification
prediction models, and the optimal prediction model was selected based on accuracy,
recall, precision, and F1 Score to achieve the strong and weak seedling discrimination of
watermelon seedlings.

For the dichotomous classification problem, there exists a situation analysis table
summarizing the predicted results of the classification model, called the confusion matrix,
as in Table 3.

Table 3. Confusion matrix for binary classification.

Actual Positive Actual Negative

Predicted positive TP FP
Predicted negative FN TN

Each parameter in the confusion matrix is TP (True Positive): predicting positive
classes to positive classes; FN (False Negative): predicting positive classes to negative
classes; FP (False Positive): predicting negative classes to positive classes; TN (True Neg-
ative): predicting negative classes to negative classes. The formula for calculating the
evaluation indicators is as follows:

accuracy = TP+TN
TP+FP+FN+TN

precision = TP
TP+FP

recall = TP
TP+FN

(6)

3. Results
3.1. Analysis of Seedling Positioning and Indexing Results

The correct hole positioning rate for the 16 plug seeding was counted at 9:00 on the
first day, 9:00 on the second day, and 9:00 on the third day, as shown in Table 4, and the
boundary of the first plug seeding was visualized; the detection effect is shown in Figure 10.
The detected boundary matches the actual boundary of the plug, and the requirement of
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positioning seedlings in a single plug hole can be achieved. Each hole is labeled using a
row-column naming rule, which provides information on the location of the hole for plug
seedling segmentation.

Table 4. The recognition accuracy of the plug hole.

Data Acquisition
Time

Total Number of
Plug Seeding

Identification
Accuracy Number

Identification
Accuracy

Day 1—9:00 16 15 93.75%
Day 2—9:00 16 14 87.5%
Day 3—9:00 16 14 87.5%
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Figure 10. Effect of plug hole positioning for plug seedlings.

Some of the seedlings were selected to correct the images. Figure 11a shows the image
before correction, where most of the seedlings are not in the central position of the hole,
resulting in a failure to obtain the accurate positioning of the seedlings. Figure 11b shows
the corrected effect, which to a certain extent, compensates for the shortcomings of skewed
seedling growth and can accurately locate the specific position of each seedling, realizing
the segmentation and positioning of a single seedling, thus greatly improving the accuracy
of the phenotyping measurement.
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3.2. Analysis of Seedling Phenotype Test Results

The phenotypic data were measured manually on the third day of the first plug seeding.
Seeding height was measured manually with a straightedge, and the leaf area was scanned
and measured using an Epson Expression 12000XL scanner (Epson) by spreading the hand-
picked leaves. The phenotypic parameters were obtained by the phenotypic measurement
algorithm proposed in this paper, and the results were compared and analyzed with
manual measurements. The coefficient of determination (R Squared), root mean square
error (RMSE), and mean absolute percentage error (MAPE) were used to measure the
accuracy of the method in this paper, as shown in Equation (7).

R2 =
∑n

i=1( fi− f )(yi−y)√
∑n

i=1(yi−y)2
√

∑n
i=1( fi − f )

2

MAPE = 1
n ∑n

i=1

∣∣∣ fi−yi
fi

∣∣∣
EMSE =

√
1
n ∑n

i=1( fi − yi)
2

(7)

In Equation (7), fi denotes the manual measurement value, f denotes the average
value of manual measurement, yi denotes the plant height algorithm measurement value, y
denotes the average value of plant height algorithm measurement value, and i denote the
ith group of data.

3.2.1. Seeding Height Detection

Figure 12 shows a comparison between the manual and algorithmic measurements
of the seeding height of 50 seedlings selected from the first plug seeding. The R squared
of the seeding height measured by the seeding height measurement method in this paper
was 0.901, RMSE was 1.428 × 10−3 m, and MAPE was 2.59%. In the seeding height
measurement, the 3D measurement and manual measurement are mostly consistent, but
there are some seedlings with large deviations, mainly because the point cloud in the soil
part is not completely removed when the background is removed by point cloud filtering,
thus leading to deviations.
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3.2.2. Leaf Area Detection

Figure 13 shows a comparison between the manual and algorithmic measurements
of the leaf area of 50 seedlings selected from the first plug seeding. The R squared of the
leaf area measured by the leaf area measurement method in this paper was 0.922, RMSE
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was 4.399 × 10−5 m2, and MAPE was 7.23%. Seedlings with deviations in 3D leaf area
measurements were mainly found in the margins of camera shots. With TOF camera
imaging, the closer the shooting object was to the edge of the camera, the more serious
distortion occurred in the picture, and the point cloud of the leaf was missing seriously,
resulting in the leaf area measurement being generally smaller than the real area.
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3.3. Network Model Fitting Effect
3.3.1. LSTM Performance Evaluation Metrics

Regression analysis is a statistical analysis method to determine the quantitative
interdependent relationship between two or more variables, which can reveal the degree of
correlation between phenomena. In this experiment, the performance of LSTM is evaluated
by selecting the one-dimensional linear regression analysis method. The true value was
the independent variable, and the predicted value was the dependent variable. A random
sample of 50 seedings was selected for linear regression analysis. Table 5 shows the
evaluation indicators of the LSTM predicted plant height and leaf area using regression
analysis, including the slope, intercept, Pearson’s r and R Squared at t + 1, t + 2 and t +
3. Figure 14 shows the linear regression analysis of the true values of seeding height and
leaf area of the 50 samples with the LSTM prediction at moments t + 1, t + 2, and t + 3,
respectively. Figure 14 shows the slope and intercept of the regression equation, Pearson’s
r, the R squared, and the coloring area is the 95% confidence band and the 95% prediction
band.

Table 5. Evaluation indicators of LSTM time series prediction.

Phenotype Evaluation
Indicators t + 1 t + 2 t + 3

Plant height

Slope 1.002 1.053 1.063
Intercept −1.27 × 10−3 −4.67 × 10−3 −4.98 × 10−3

Pearson’s r 0.972 0.971 0.965
R Squared 0.952 0.942 0.932

Leaf area

Slope 0.925 1.003 0.820
Intercept −7.31 × 10−7 −4.90 × 10−5 1.04 × 10−4

Pearson’s r 0.963 0.959 0.952
R Squared 0.926 0.919 0.901
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3.3.2. Performance Analysis of the Weak Seedling Discriminant Model

The accuracy, precision, recall, and F1 score of each model in the test set are shown in
Table 6.

Table 6. Evaluation results of each classification model.

Classification Model Accuracy Recall Precision F1 Score TP FP

Logistics Regression 0.748 0.796 0.901 0.845 164 18
SVM 0.765 0.765 1 0.867 182 0

Random Forest 0.840 0.883 0.912 0.897 166 16
GBDT 0.782 0.865 0.846 0.856 154 28

XGBoost 0.798 0.876 0.857 0.867 156 26
LightGBM 0.824 0.880 0.890 0.885 162 20

In the process of phenotype data detection, skewing, leaf wilting, and other reasons
cause the phenomenon of outliers, and the data is non-linear. The logistic regression and
SVM for the non-linear data classification ability are more general, and the accuracy rate is
lower. The gradient-boosting decision tree can handle multi-dimensional and multi-feature
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problems, but the performance is more general for data samples with more outliers. The
random forest is insensitive to outliers and performs better with an accuracy of 0.84. The
random forest classification model is selected to better discriminate the degree of strength
and weakness for the seedlings.

Since the data of classification samples are predicted by LSTM, errors are generated at
the prediction stage, which will be superimposed with the errors of the classification model
and increase the probability of misclassification. In the prediction stage, the prediction
step is positively correlated with prediction accuracy. In this study, the prediction step is
set to three days in order to balance the relationship between the actual production and
prediction accuracy. In the classification stage, the probability of misclassification can be
reduced by increasing the sample size to improve the fit of the model.

3.4. Weak Seedling Discrimination Results

The watermelon plug seedlings are subjected to continuous phenotype detection, and
the detected data are used as input values for the growth prediction model to obtain future
phenotype data, and then the phenotype data are input into the established random forest
binary classification model to obtain the future growth status of single seedlings, and the
growth status data can be indexed to the specific location of each seedling according to
the positioning of plug seedlings, i.e., the culling and replenishment decision for the plug
seedlings. Figure 15 shows the growth of seedlings on the third and sixth days and the
location of abnormal seedlings.
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4. Conclusions

To address the problem of the poor early identification of weak seedlings in factory
nurseries, this paper proposes a visual system for the early discrimination of weak water-
melon seedlings based on phenotype detection and machine learning, which uses two early
characteristics of the seedling height and leaf area to assess their growth status, mainly
including the following aspects:

First item. The color information and depth information of seedlings were obtained
using an RGB-D camera, and the seeding height and leaf area characteristics of the seedlings
were obtained based on a traditional image segmentation algorithm and 3D point cloud
processing method, and their MPAE were 2.59% and 7.23%, respectively, indicating that the
method has high reliability, and the consumer-grade camera Azure Kinect DK is low-cost,
simple to operate, stable, and reliable.

Second item. The two features are fed into LSTM for prediction, and then the predicted
information is fed into the random forest classification network to build a weak seedling
early discrimination model. The model achieved 84% discrimination accuracy on the test
set of early discrimination for the weak seedlings of watermelon seedlings, which can
realize the early prediction of weak seedlings, provide visual support for seedling dividing
and combining trays and seedling replenishment robots, realize the regulation and early
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warning for seedling factories, and greatly improve the seedling economy of factories, and
has good development potential.

This study can be used as a vision system for the seedling dividing and combining
robot. In the seedling production, Kinect is installed on the seedling dividing and combin-
ing robot, and the growth condition of the whole seedlings plug is obtained by monitoring
for three consecutive days, and the position of each seedling is matched with the growth
condition and fed to the robot, and the robot uses the robot arm to transplant and replen-
ishes seedlings according to the position of the weak seedlings to realize the regulation and
early warning of seedling plant production.

In conclusion, this paper presents a creative solution for seedling monitoring and
weak seedling prediction while combining traditional image processing and AI machine
learning methods, which is a useful example of digital research in a factory nursery and
can effectively promote the degree of automation and intelligence in factory nurseries.
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