Symbiotic Performance and Characterization of Pigeonpea (Cajanus cajan L. Millsp.) Rhizobia Occurring in South African Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pigeonpea Genotypes and Rhizobial Strains
2.2. Glasshouse Trial Establishment
2.3. Experimental Design, Measurements and Statistical Analysis
2.4. DNA-Based Identification of Rhizobial Strains
3. Results
3.1. Glasshouse Nodulation Test Experiment
3.2. DNA-Based Identification of Rhizobial Strains
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Legume Phylogeny Working Group (LPWG). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 2017, 66, 44–77. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, J.; Zhu, H. Genetic and Molecular mechanism underlying symbiotic specificity in legume-rhizobium interactions. Front. Plant Sci. 2018, 9, 313. [Google Scholar] [CrossRef] [PubMed]
- Zahran, H.H. Rhizobium-Legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egbe, O.M. Assessment of biological nitrogen fixing potentials of pigeonpea genotypes intercropped with sorghum for soil fertility improvement in Southern Guinea savanna of Nigeria. J. Trop. Agric. Food Environ. Ext. 2007, 6, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Mhango, W.G.; Snapp, S.; Kanyama-Phiri, G.Y. Biological nitrogen fixation and yield of pigeonpea and groundnut: Quantifying response on smallholder farms in northern Malawi. Afr. J. Agric. Res. 2017, 12, 1385–1394. [Google Scholar]
- Amarteifio, J.O.; Muthali, D.C.; Karikari, S.K.; Morake, T.K. The composition of pigeonpea (Cajanus cajan (L.) Millsp.) grown in Botswana. Plant Foods Hum. Nutr. 2002, 57, 173–177. [Google Scholar] [CrossRef]
- Rao, S.C.; Coleman, S.W.; Mayeux, H.S. Forage production and nutritive value of selected pigeonpea ecotypes in the southern Great Plains. Crop Sci. 2002, 42, 1259–1263. [Google Scholar] [CrossRef]
- Mapfumo, P.; Giller, K.E.; Mpepereki, S.; Mafongoya, P.L. Dinitrogen fixation by pigeonpea of different maturity types on granitic sandy soils in Zimbabwe. Symbiosis 1999, 27, 305–318. [Google Scholar]
- Hillocks, R.J.; Minja, E.; Nahdy, M.S.; Subrahmanyam, P. Diseases and pests of pigeonpea in eastern Africa. Int. J. Pest Man. 2000, 46, 7–18. [Google Scholar] [CrossRef]
- Gwata, E.T.; Shimelis, H. Evaluation of pigeonpea germplasm for important agronomic traits in Southern Africa. In Crop Production, 26th ed.; Goyal, A., Asif, M., Eds.; Intech Open Limited: London, UK, 2013; pp. 1–15. [Google Scholar]
- Gwata, E.T.; Siambi, M. Genetic enhancement of pigeonpea for high latitude areas in Southern Africa. Afr. J. Biotechnol. 2009, 8, 4413–4417. [Google Scholar]
- Myaka, F.A.; Sakala, W.D.; Adu-Gyamfi, J.J.; Kamalongo, D.; Ngwira, A.; Odgaard, R.; Nielsen, N.E.; Høgh-Jensen, H. Yields and accumulations of N and P in farmer-managed maize-pigeonpea intercrops in semi-arid Africa. Plant Soil 2006, 285, 207–220. [Google Scholar] [CrossRef]
- Ayenan, M.A.T.; Ofori, K.; Ahoton, L.E.; Danguah, A. Pigeonpea [(Cajanus cajan (L.) Millsp)] production systems, farmers’ preferred traits and implications for variety development and introduction in Benin. J. Agric. Food Secur. 2017, 6, 48. [Google Scholar] [CrossRef]
- Abaidoo, R.C.; Dashiell, K.E.; Sanginga, N.; Keyser, H.H.; Singleton, P.W. Time course of dinitrogen fixation of promiscuous soybean genotypes measured by the isotope dilution method. Biol. Fert. Soils. 1999, 30, 187–192. [Google Scholar] [CrossRef]
- Thies, J.E.; Bohlool, B.B.; Singleton, P.W. Subgroups of the Cowpea Miscellany: Symbiotic Specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea and Macroptilium atropurpureum. Appl. Environ. Microbiol. 1991, 57, 1540–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, K.B. Genetic improvement of pigeonpea—A review. Trop. Plant Biol. 2008, 1, 159–178. [Google Scholar] [CrossRef]
- Gronemeyer, J.L.; Reinhod-Huren, B. Diversity of Bradyrhizobia in subsahara Africa: A rich resource. Front. Microbiol. 2018, 9, 2194. [Google Scholar] [CrossRef]
- Pandya, S.; Uchil, P.; Subramanian, M.; Desai, A. Determination of Host specificity of Cowpea Miscellany Rhizobium spp. by nod ABC-lacZ fusion. Curr. Microbiol. 1998, 36, 361–364. [Google Scholar] [CrossRef]
- Mpepereki, S.; Wollum, A.G., II; Makonese, F. Diversity in symbiotic specificity of cowpea rhizobia indigenous to Zimbabwean soils. Plant Soil 1996, 186, 167–171. [Google Scholar] [CrossRef]
- Law, I.J.; Botha, W.J.; Majaule, U.C.; Phalane, F.L. Symbiotic and genomic diversity of “Cowpea” bradyrhizobia from soils in Botswana and South Africa. Biol. Fert. Soils 2007, 43, 653–663. [Google Scholar] [CrossRef]
- Steenkamp, E.T.; Stepkowski, T.; Prymusiak, A.; Botha, W.J.; Law, I.J. Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol. Phylogen. Evol. 2008, 48, 1131–1144. [Google Scholar] [CrossRef]
- Pule-Meulenberg, F.; Belane, A.K.; Krasova-Wade, T.; Dakora, F.D. Symbiotic functioning and bradyrhizobial biodiversity of cowpea (Vigna unguiculata L. Walp.) in Africa. BMC Microbiol. 2010, 10, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odeny, D.A. The potential of pigeonpea (Cajanus cajan (L.) Millsp.) in Africa. Nat. Resour. Forum 2007, 31, 297–305. [Google Scholar] [CrossRef]
- Grain, S.A. Pigeonpea—A Potential Crop for Food and Health Security. 2020. Available online: https://www.grainsa.co.za/pigeon-pea-a-potential-crop-for-food-and-health-security (accessed on 12 February 2022).
- Mathews, C.; Saxena, K.B. Prospects for pigeonpea cultivation in drought-prone areas of South Africa. In Proceedings of the First International Edible Legume Conference, Durban, South Africa, 17–21 April 2005; pp. 1–11. [Google Scholar]
- Bopape, F.L.; Gwata, E.T.; Hassen, A.I.; Zhou, M.M. Symbiotic efficiency of pigeonpea (Cajanus cajan) with different sources of nitrogen. Plant Gen. Resour. 2021, 19, 312–315. [Google Scholar] [CrossRef]
- Gwata, E.T. Potential impact of edible tropical legumes on crop productivity in the small-holder sector in sub-Saharan Africa. J. Food Agric. Environ. 2010, 8, 939–944. [Google Scholar]
- Beukes, C.W.; Palmer, M.; Manyaka, P.; Chan, W.Y.; Avontuur, J.R.; van Zyl, E.; Huntemann, M.; Clum, A.; Pillay, M.; Palaniappan, K.; et al. Genome data provides high support for generic boundaries in Burkholderia sensu lato. Front. Microbiol. 2017, 8, 1154. [Google Scholar] [CrossRef] [Green Version]
- Poole, P.; Ramachandran, V.; Terpolilli, J. Rhizobia: From saprophytes to endosymbionts. Nat. Rev. Microbiol. 2018, 16, 291–303. [Google Scholar] [CrossRef]
- Nautiyal, C.S.; Hegde, S.V.; van Berkum, P. Nodulation, nitrogen fixation, and hydrogen oxidation by pigeonpea Bradyrhizobium spp. in symbiotic association with pigeonpea, cowpea, and soybean. Appl. Environ. Microbiol. 1988, 54, 94–97. [Google Scholar] [CrossRef] [Green Version]
- Jain, D.; Kumari, A.; Saheewala, H.; Sanadhya, S.; Maheshwari, D.; Meena, R.H.; Singh, A.; Gera, R.; Mohanty, S.R. Biochemical, functional and molecular characterization of pigeonpea rhizobia isolated from semi-arid regions of India. Arch. Microbiol. 2020, 202, 1809–1816. [Google Scholar] [CrossRef]
- Rajendran, G.; Sing, F.; Desai, A.J.; Archana, G. Enhanced growth and nodulation of pigeonpea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour. Technol. 2008, 99, 4544–4550. [Google Scholar] [CrossRef]
- Singh, K.; Dhull, S.; Gera, R. Genetic diversity of diazotrophs nodulating pigeonpea in arid and semi-arid zones of Haryana, India. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 3447–3467. [Google Scholar] [CrossRef]
- Gosai, J.; Anandhan, S.; Bhattacharjee, A.; Archana, G. Elucidation of quorum sensing components and their role in regulation of symbiotically important traits in Ensifer nodulating pigeonpea. Microbiol. Res. 2020, 231, 126354. [Google Scholar] [CrossRef] [PubMed]
- Dubey, R.C.; Maheshwari, D.K.; Kumar, H.; Choure, K. Assessment of diversity and plant growth promoting attributes of rhizobia isolated from Cajanus cajan L. Afric. J. Biotechnol. 2010, 9, 8619–8629. [Google Scholar]
- Bellés-Sancho, P.; Lardi, M.; Liu, Y.; Hug, S.; Pinto-Carbó, M.A.; Zamboni, N.; Pessi, G. Paraburkholderia phymatum homocitrate synthase NifV plays a key role for nitrogenase activity during symbiosis with papilionoids and in free-living growth conditions. Cells 2021, 10, 952. [Google Scholar] [CrossRef] [PubMed]
- Beukes, C.W.; Boshoff, F.S.; Phalane, F.L.; Hassen, A.I.; le Roux, M.M.; Stepkowski, T.; Venter, S.N.; Steenkamp, E.T. Both alpha and beta-rhizobia occupy the root nodules of Vachellia karroo in South Africa. Front. Microbiol. 2019, 10, 1195. [Google Scholar] [CrossRef]
- Silva, V.C.; Alves, P.A.C.; Rhem, M.F.K.; dos Santos, J.M.F.; James, E.K.; Gross, E. Brazilian species of Calliandra Benth. (tribe Ingeae) are nodulated by diverse strains of Paraburkholderia. Syst. Appl. Microbiol. 2018, 41, 241–250. [Google Scholar] [CrossRef]
- Somasegaran, P.; Hoben, H.J. Hand Book for Rhizobia; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Gwata, E.T.; Wofford, D.S. Potential of RAPD analysis of the promiscuous nodulation trait in soybean (Glycine max L.). Biol. Fert. Soils 2013, 49, 241–244. [Google Scholar] [CrossRef]
- Dakora, F.D. A functional relationship between leghaemoglobin and nitrogenase based on novel measurements of the two proteins in legume root nodules. Ann. Bot. 1995, 75, 49–54. [Google Scholar] [CrossRef] [Green Version]
- SAS. Statistical Analysis System User’s Guide: Statistical Version, 8th ed.; SAS Institute: Cary, NC, USA, 2003. [Google Scholar]
- De Castro Pires, R.; dos Reis Junior, F.B.; Zilli, J.E.; Fischer, D.; Hofmann, A.; James, E.K.; Simon, M.F. Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil. Plant Soil 2018, 423, 411–428. [Google Scholar] [CrossRef] [Green Version]
- Dabo, M.; Sanjay, K.J.; Dakora, F.D. Phylogenetic evidence of allopatric speciation of bradyrhizobia nodulating cowpea (Vigna unguiculata L. walp) in South African and Mozambican soils. FEMS Microbiol. Ecol. 2019, 95, fiz067. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Beukes, C.W.; Venter, S.N.; Law, I.J.; Phalane, F.L.; Steenkamp, E.T. South African Papilionoid legumes are nodulated by diverse Burkholderia with unique nodulation and nitrogen fixation loci. PLoS ONE. 2013, 8, 7. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Toh, H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinform. 2008, 9, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. In Some Mathematical Questions in Biology—DNA Sequence Analysis; Miura, R.M., Ed.; American Mathematical Society: Providence, RI, USA, 1986; pp. 57–86. [Google Scholar]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar]
- Hassen, A.I.; Bopape, F.L.; Trytsman, M. Nodulation study and characterization of rhizobial microsymbionts of forage and pasture legumes in South Africa. World J. Agric. Res. 2014, 2, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Dhole, A.; Shelat, H.; Vyas, R.; Jhala, Y.; Bhange, M. Endophytic occupation of legume root nodules by nifH-positive non-rhizobial bacteria and their efficacy in the groundnut (Arachis hypogaea). Ann. Microbiol. 2016, 66, 1397–1407. [Google Scholar] [CrossRef]
- Hassen, A.I.; Khambani, L.S.; Swanevelder, Z.H.; Mtshweni, N.P.; Bopape, F.L.; Van Vuuren, A.; Van Der Linde, E.J.; Morey, L. Elucidating key plant growth-promoting (PGPR) traits in Burkholderia sp. Nafp2/4-1b(=SARCC-3049) using gnotobiotic assays and whole-genome-sequence analysis. Lett. Microbiol. 2021, 73, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Degefu, T.; Wolde-Meskel, E.; Adem, M.; Fikre, A.; Amede, T.; Ijiewo, C. Morphophysiological diversity of rhizobia nodulating pigeonpea (Cajanus cajan L. Millsp.) growing in Ethiopia. Afr. J. Biotechnol. 2018, 17, 167–177. [Google Scholar]
- Mapfumo, P.; Mpepereki, S.; Mafongoya, P.L. Pigeonpea rhizobia prevalence and crop response to inoculation in Zimbabwean smallholder-managed soils. Exper. Agric. 2000, 36, 423–434. [Google Scholar] [CrossRef]
- Fossou, R.K.; Ziegler, D.; Zeze, A.; Barja, F.; Perret, X. Two major clades of bradyrhizobia dominate symbiotic interactions with pigeonpea in fields of Côte d’Ivoire. Front. Microbiol. 2016, 7, 1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botha, W.J.; Bloem, J.F.; Law, I.J. Bradyrhizobium sp. (Lupinus) in the winter rainfall region of South Africa. Biol. Fert. Soils 2002, 36, 335–343. [Google Scholar] [CrossRef]
- Bind, M.; Nema, S. Isolation and molecular characterization of endophytic bacteria from pigeonpea along with antimicrobial evaluation against Fusarium udum. Appl. Microbiol. 2019, 5, 163. [Google Scholar] [CrossRef]
- Gwata, E.T.; Silim, S.N. Utilization of landraces for the genetic enhancement of pigeonpea in eastern and southern Africa. J. Food Agric. Environ. 2009, 7, 803–806. [Google Scholar]
Genotype | Seed Colour | Status (Source) |
---|---|---|
PP1-3018 | Grey | Unimproved landrace (locally sourced) |
PP5-3021 | White/Cream | Improved germplasm, (International Crops Research Institute for the Semi-Arid Tropic) |
Rhizobial Strain | Rhizobial Species | |
---|---|---|
Code | Designated Name | |
R1 | 8b2p1 | Rhizobium sp. |
R2 | 8a2p3 | Bradyrhizobium sp. |
R3 | 32b2p5 | Rhizobium sp. |
R4 | 32b1p5 | Rhizobium sp. |
R5 | 6bp3 | Bradyrhizobium sp. |
R6 | 7a2p3 | Bradyrhizobium sp. |
R7 | 30bp3 | Rhizobium sp. |
R8 | 30a2p3 | Paraburkholderia sp. |
R9 | 11a2p3 | Bradyrhizobium sp. |
R10 | 10ap3 | Rhizobium sp. |
R11 | 39a3p3 | Rhizobium sp. |
R12 | 16a2p1 | Rhizobium sp. |
R13 | 15ap1 | Rhizobium sp. |
R14 | 18ap3 | Rhizobium sp. |
R15 | 35ap3 | Rhizobium sp. |
R16 | 35bp1 | Rhizobium sp. |
R17 | 37ap4 | Rhizobium sp. |
R18 | 5b2p1 | Rhizobium sp. |
R19 | 27b2p5 | Bradyrhizobium sp. |
R20 | 31b1p5 | Rhizobium sp. |
R21 | 31b2p3 | Rhizobium sp. |
R22 | 31b1p3 | Rhizobium sp. |
R23 | 31ap4 | Phyllobacteriumsp. |
R24 | 38a1p5 | Rhizobium sp. |
R25 | 33ap4 | Bradyrhizobium sp. |
R26 | 17ap1 | Rhizobium sp. |
R27 | 17a1p3 | Rhizobium sp. |
R28 | 14a1p5 | Rhizobium sp. |
R29 | 13b1p4 | Rhizobium sp. |
R30 | 13bp3 | Bradyrhizobium sp. |
R31 | 23ap5 | Rhizobium sp. |
R32 | 19bp5 | Bradyrhizobium sp. |
R33 | 36ap5 | Rhizobium sp. |
R34 | 34a2p5 | Rhizobium sp. |
R35 | 22ap1 | Rhizobium sp. |
R36 | 29ap1 | Rhizobium sp. |
R37 | 29a1p2 | Rhizobium sp. |
R38 | 29a2p2 | Rhizobium sp. |
R39 | 26bp3 | Rhizobium sp. |
R40 | Control | water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bopape, F.L.; Beukes, C.W.; Katlego, K.; Hassen, A.I.; Steenkamp, E.T.; Gwata, E.T. Symbiotic Performance and Characterization of Pigeonpea (Cajanus cajan L. Millsp.) Rhizobia Occurring in South African Soils. Agriculture 2023, 13, 30. https://doi.org/10.3390/agriculture13010030
Bopape FL, Beukes CW, Katlego K, Hassen AI, Steenkamp ET, Gwata ET. Symbiotic Performance and Characterization of Pigeonpea (Cajanus cajan L. Millsp.) Rhizobia Occurring in South African Soils. Agriculture. 2023; 13(1):30. https://doi.org/10.3390/agriculture13010030
Chicago/Turabian StyleBopape, Francina L., Chrizelle W. Beukes, Kopotsa Katlego, Ahmed I. Hassen, Emma T. Steenkamp, and Eastonce T. Gwata. 2023. "Symbiotic Performance and Characterization of Pigeonpea (Cajanus cajan L. Millsp.) Rhizobia Occurring in South African Soils" Agriculture 13, no. 1: 30. https://doi.org/10.3390/agriculture13010030
APA StyleBopape, F. L., Beukes, C. W., Katlego, K., Hassen, A. I., Steenkamp, E. T., & Gwata, E. T. (2023). Symbiotic Performance and Characterization of Pigeonpea (Cajanus cajan L. Millsp.) Rhizobia Occurring in South African Soils. Agriculture, 13(1), 30. https://doi.org/10.3390/agriculture13010030