Design and Test of Duckbill Welding Robot for Cotton Seeder
Abstract
:1. Introduction
2. Welding Object Characteristics
2.1. Assembly Structure of Duckbill Welding Parts
2.2. Material Properties of Duckbill Welding Parts
2.3. Weld and Welding Requirements Analysis
3. Simulation and Analysis of the Welding Process
3.1. Heat Source Model
3.2. Establishment of Welding Model
3.3. Welding Simulation Results and Analysis
3.3.1. Effect of the Unilateral Single Welding Torch and Bilateral Symmetrical Double Welding Torch on Welding Deformation and Stress
3.3.2. Effect of Welding Form on Welding Deformation and Stress
3.3.3. Effect of Welding Process Parameters on Welding Deformation and Stress
4. Design of Duckbill Welding Robot for Cotton Seeder
4.1. Structure Composition and Working Principle
4.2. Design of Girdle Feeding Mechanism
4.3. Design of Static Duckbill and Hinge Feeding Mechanism
4.4. Design of Welding Fixture
4.5. Welding Actuator
4.6. Control System Design
5. Results and Discussion
5.1. Cotton Seeder Duckbill Welding Robot Test Results and Analysis
5.2. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, Z.K.; Wang, Y.J.; Li, F.M. Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agric. Water Manag. 2005, 75, 71–83. [Google Scholar] [CrossRef]
- Han, J.; Jia, Z.K.; Han, Q.F.; Zhang, J. Application of Mulching Materials of Rainfall Harvesting System for Improving Soil Water and Corn Growth in Northwest of China. J. Integr. Agric. 2013, 12, 1712–1721. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.J.; Zhang, H.T.; Shi, Z.L.; Jin, W.; Cheng, Y.; Yu, Y.L. Design and experiments of seed pickup status monitoring system for cotton precision dibblers. Trans. Chin. Soc. Agric. Eng. 2022, 38, 9–19. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, M.; Dong, W.; Li, W.; He, J.; Han, C.; Jiang, Z. Design and Parameter Optimization of a Soil Mulching Device for an Ultra-Wide Film Seeder Based on the Discrete Element Method. Processes 2022, 10, 2115. [Google Scholar] [CrossRef]
- Xiang, Y.; Kang, J.M.; Zhang, C.Y.; Peng, Q.J.; Zhang, N.N.; Wang, X.Y. Analysis and Optimization Test of the Peanut Seeding Process with an Air-Suction Roller Dibbler. Agriculture 2022, 12, 1942. [Google Scholar] [CrossRef]
- Hrcek, S.; Brumercik, F.; Smetanka, L.; Lukac, M.; Patin, B.; Glowacz, A. Global Sensitivity Analysis of Chosen Harmonic Drive Parameters Affecting Its Lost Motion. Materials 2021, 14, 5057. [Google Scholar] [CrossRef]
- Majchrák, M.; Kohár, R.; Hrček, S.; Brumerčík, F. The Comparison of the Amount of Backlash of a Harmonic Gear System. Teh. Vjesn. 2021, 28, 771–778. [Google Scholar] [CrossRef]
- Rheaume, F.-E.; Champliaud, H.; Liu, Z. Understanding and modelling the torsional stiffness of harmonic drives through finite-element method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2009, 223, 515–524. [Google Scholar] [CrossRef]
- Subham, A.; Santonab, C.; Kanika, P.; Shankar, C. A Rough Multi-Attributive Border Approximation Area Comparison Approach for Arc Welding Robot Selection. Jordan J. Mech. Ind. Eng. 2021, 15, 169–180. [Google Scholar]
- Stephen, C.; Joseph, O.; Stephen, Z. Zero Moment Control for Lead-Through Teach Programming and Process Monitoring of a Collaborative Welding Robot. J. Mech. Robot. 2021, 13, 031016. [Google Scholar] [CrossRef]
- Shah, H.; Sulaiman, M.; Shukor, A.; Jamaluddin, M. A Review Paper on Vision Based Identification, Detection and Tracking of Weld Seams Path in Welding Robot Environment. Mod. Appl. Sci. 2016, 10, 83. [Google Scholar] [CrossRef]
- Wang, X.W.; Xue, L.K.; Yan, Y.X.; Gu, X.S. Welding Robot Collision-Free Path Optimization. Appl. Sci. 2017, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Yin, T.; Wang, J.P.; Zhao, H.; Zhou, L.; Xue, Z.H.; Wang, H.H. Research on Filling Strategy of Pipeline Multi-Layer Welding for Compound Narrow Gap Groove. Materials 2022, 15, 5967. [Google Scholar] [CrossRef] [PubMed]
- ERSÖZ, S.; TÜRKER, A.; AKTEPE, A.; ATABAŞ, i.; KOKOÇ, M. Design of a Tracking Welding Robot Automation System for Manufacturing of Steam and Heating Boilers. Acad. Platf. J. Eng. Sci. 2018, 6, 19–24. [Google Scholar] [CrossRef]
- Ku, N.; Cha, H.; Lee, K.; Kim, J.; Kim, T.; Ha, S.; Lee, D. Development of a mobile welding robot for double-hull structures in shipbuilding. J. Mar. Sci. Technol. 2010, 15, 374–385. [Google Scholar] [CrossRef]
- Mulligan, S.; Melton, J.; Lylynoja, A.; Herman, K. Autonomous welding of large steel fabrications. Ind. Robot Int. J. 2005, 32, 346–349. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, Q.Q.; Dai, Z.E.; Zhou, C.; Yu, J.F.; Hua, C.J. Structural design and kinematic analysis of a welding robot for liquefied natural gas membrane tank automatic welding. Int. J. Adv. Manuf. Technol. 2022, 122, 461–474. [Google Scholar] [CrossRef]
- Yue, J.F.; Dong, X.T.; Guo, R.; Liu, W.J.; Li, L.Y. Numerical simulation of equivalent heat source temperature field of asymmetrical fillet root welds. Int. J. Heat Mass Transf. 2019, 130, 42–49. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Zhang, Q.Y.; Niu, Y.X.; Du, S.Z.; Lu, J.H.; Zhang, H.F.; Wang, J.C. Influence of triangle reinforcement plate stiffeners on welding distortion mitigation of fillet welded structure for lightweight fabrication. Ocean Eng. 2020, 213, 107650. [Google Scholar] [CrossRef]
- Maarten, R.; Richard, P.; Henk, S.; Johan, M. A combined experimental and numerical examination of welding residual stresses. J. Mater. Process. Technol. 2017, 261, 98–106. [Google Scholar] [CrossRef]
- Ahn, J.; He, E.; Chen, L.; Pirling, T.; Dear, J.P.; Davies, C.M. Determination of residual stresses in fibre laser welded AA2024-T3 T-joints by numerical simulation and neutron diffraction. Mater. Sci. Eng. A 2018, 712, 685–703. [Google Scholar] [CrossRef]
- Li, Z.; Peng, W.X.; Chen, Y.Z.; Liu, W.H.; Zhang, H.Q. Simulation and experimental analysis of Al/Ti plate magnetic pulse welding based on multi-seams coil. J. Manuf. Process. 2022, 83, 290–299. [Google Scholar] [CrossRef]
- Lu, B.; Ni, X.D.; Li, S.F.; Li, K.Z.; Qi, Q.Z. Simulation and Experimental Study of a Split High-Speed Precision Seeding System. Agriculture 2022, 12, 1037. [Google Scholar] [CrossRef]
- Bai, S.H.; Yuan, Y.W.; Niu, K.; Shi, Z.L.; Zhou, L.M.; Zhao, B.; Wei, L.G.; Liu, L.J.; Zheng, Y.K.; An, S.; et al. Design and Experiment of a Sowing Quality Monitoring System of Cotton Precision Hill-Drop Planters. Agriculture 2022, 12, 1117. [Google Scholar] [CrossRef]
- Mehran, J.; Antti, A.; Joseph, A.; Timo, B. Numerical and experimental investigations on the welding residual stresses and distortions of the short fillet welds in high strength steel plates. Eng. Struct. 2022, 260, 114269. [Google Scholar] [CrossRef]
- Go, B.S.; Oh, K.H.; Kwon, S.; Bang, H.S. Reduction Characteristics of Welding Deformation According to Cooling Distance in Heat Sink Welding. Int. J. Precis. Eng. Manuf. 2022, 23, 1229–1236. [Google Scholar] [CrossRef]
- Ikushima, K.; Maeda, S.; Shibahara, M. Ultra Large-Scale Nonlinear FE Analysis of Welding Mechanics. Int. Conf. Comput. Exp. Eng. Sci. 2019, 22, 175. [Google Scholar] [CrossRef]
- Farias, R.M.; Teixeira, P.R.F.; Vilarinho, L.O. Variable profile heat source models for numerical simulations of arc welding processes. Int. J. Therm. Sci. 2022, 179, 107593. [Google Scholar] [CrossRef]
- Farias, R.M.; Teixeira, P.R.F.; Vilarinho, L.O. An efficient computational approach for heat source optimization in numerical simulations of arc welding processes. J. Constr. Steel Res. 2021, 176, 106382. [Google Scholar] [CrossRef]
- Goldak, J.; Chakravarti, A.; Bibby, M. A new finite element model for welding heat sources. Metall. Mater. Trans. B 1984, 15, 299–305. [Google Scholar] [CrossRef]
- Yan, X.H.; Chen, G.Q.; Xu, H.L.; Yan, Z.Y.; Li, P. Welding Quality Control of Control Rod of Lawn Mower Cutter Plate Based on Simufact. J. Netshape Form. Eng. 2022, 14, 46–50. [Google Scholar]
- DL/T 868-2004; The Code of Welding Procedure Qualification [S]. Power Standards: China, 2004.
Parts | Length (mm) | Width (mm) | Thickness (mm) | Height (mm) | Mass (g) |
---|---|---|---|---|---|
Girdle | 78.12 | 68.30 | 2.11 | 5.90 | 73.046 |
Static duck bill | 34.09 | 27.52 | 2.57 | 74.97 | 77.747 |
Hinge | 69.02 | 36.11 | 2.08 | 7.97 | 39.281 |
C (Mass Fraction)/% | Mn | Si | S | P |
---|---|---|---|---|
0.14~0.19 | 0.30~0.65 | 0.30 | ≤0.050 | ≤0.045 |
Tensile strength (MPa) | Yield point (MPa) | Elongation (%) | ||
375~500 | 235 | 26 |
Welding Current (A) | Welding Voltage (V) | Welding Speed (mm s) |
---|---|---|
38 | 26 | 10 |
Welding Method | Welding Duckbill Efficiency (Piece/h) | Welding Qualification Rate | |
---|---|---|---|
Assessment Indicators | |||
Manual welding | 100–130 | 99% | |
Semi-automatic duckbill welding equipment | 200–300 | 100% | |
Cotton seeder duckbill welding robot | 600–800 | 85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Guo, W.; Wang, X.; Hu, C.; Wang, L.; He, X.; Xing, J. Design and Test of Duckbill Welding Robot for Cotton Seeder. Agriculture 2023, 13, 31. https://doi.org/10.3390/agriculture13010031
Ren Y, Guo W, Wang X, Hu C, Wang L, He X, Xing J. Design and Test of Duckbill Welding Robot for Cotton Seeder. Agriculture. 2023; 13(1):31. https://doi.org/10.3390/agriculture13010031
Chicago/Turabian StyleRen, Yu, Wensong Guo, Xufeng Wang, Can Hu, Long Wang, Xiaowei He, and Jianfei Xing. 2023. "Design and Test of Duckbill Welding Robot for Cotton Seeder" Agriculture 13, no. 1: 31. https://doi.org/10.3390/agriculture13010031
APA StyleRen, Y., Guo, W., Wang, X., Hu, C., Wang, L., He, X., & Xing, J. (2023). Design and Test of Duckbill Welding Robot for Cotton Seeder. Agriculture, 13(1), 31. https://doi.org/10.3390/agriculture13010031