Nitrogen Use Traits of Different Rice for Three Planting Modes in a Rice-Wheat Rotation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Materials
2.2. Experimental Design and Field Management
2.3. Sampling and Measurements
2.4. Calculation method and Data Analysis
3. Results
3.1. Nitrogen Content and Nitrogen Uptake Traits
3.2. Nitrogen Accumulation and Nitrogen Uptake Rate
3.3. The NUE Traits
3.4. Nitrogen Contents of Leaves, Stem-Sheaths, and Panicles
3.5. Nitrogen Translocation Traits
3.6. Relationship between Yield and N Accumulation or N Translocation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassman, K.G.; Gines, G.C.; Dizon, M.A.; Samson, M.I.; Alcantara, J.M. Nitrogen-use efficiency in tropical lowland rice systems: Contributions from indigenous and applied nitrogen. Field Crop. Res. 1996, 47, 1–12. [Google Scholar] [CrossRef]
- Li, T.Y.; Zhang, W.F.; Yin, J.; Chadwick, D.; Norse, D.; Lu, Y.L.; Liu, X.J.; Chen, X.P.; Zhang, F.S.; Powlson, D.; et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Glob Chang. Biol. 2018, 24, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, H.Y.; Pan, J.T.; Luo, J.F.; Liu, J.; Gu, B.J.; Liu, S.; Zhai, L.M.; Lindsey, S.; Zhang, Y.T.; et al. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agric. Ecosyst. Environ. 2018, 265, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Zhou, J.; Huang, N.S.; Mo, L.J.; Lv, M.J.; Gao, Y.B.; Chen, C.; Yin, S.Y.; Ju, J.; Dong, G.C.; et al. Transcriptomic and co-expression network profiling of shoot apical meristem reveal contrasting response to nitrogen rate between indica and japonica rice subspecies. Int. J. Mol. Sci. 2019, 20, 5922. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.Y.; Jiang, W.T.; He, X.L.; Fiaz, S.; Ahmad, S.; Lei, X.; Wang, W.Q.; Wang, Y.F.; Wang, X.K. A review of nitrogen translocation and nitrogen-use efficiency. J. Plant Nutr. 2019, 42, 2624–2641. [Google Scholar] [CrossRef]
- Zhu, K.; Zhou, Q.; Shen, Y.; Yan, J.Q.; Xu, Y.J.; Wang, Z.Q.; Yang, J.C. Agronomic and physiological performance of an indica-japonica rice variety with a high yield and high nitrogen use efficiency. Crop Sci. 2020, 60, 1556–1568. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Jia, B.; Wang, S.; Dou, F.; Samonte, S.O.P.; Chen, K.; Wang, Y. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in Northeast China. Agronomy 2019, 9, 555. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Peng, J.; Wang, J.; Fu, P.H.; Hou, Y.; Zhang, C.D.; Fahad, S.; Peng, S.B.; Cui, K.H.; Nie, L.X.; et al. Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China. Field Crop. Res. 2015, 184, 50–57. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.C.; Yang, X.; Ge, M.J.; Ma, Q.; Wei, H.Y.; Dai, Q.G.; Huo, Z.Y.; Xu, K.; Luo, D.X. Accumulation and utilization of nitrogen, phosphorus and potassium of irrigated rice cultivars with high productivities and high N use efficiencies. Field Crop. Res. 2014, 161, 55–63. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Chu, G.; Liu, L.J.; Wang, Z.Q.; Wang, X.M.; Zhang, H.; Yang, J.C.; Zhang, J.H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crop. Res. 2013, 150, 9–18. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Yan, J.Q.; Shen, Y.; Zhang, W.Y.; Xu, Y.J.; Wang, Z.Q.; Yang, J.C. Deciphering the physio-morphological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study. J. Integr. Agric. 2021, 21, 947–963. [Google Scholar] [CrossRef]
- Huo, Z.Y.; Li, J.; Zhang, H.C.; Dai, Q.G.; Xu, K.; Wei, H.Y.; Gong, J.L. Characterization of nitrogen uptake and utilization in rice under different planting methods. Acta Agron. Sin. 2012, 38, 1908–1919. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, T.; Fu, Y.; Yang, Z.P.; Liu, Q.; Yan, F.J.; Chen, Y.; Tao, Y.F.; Ren, W.J. Differences in rice productivity and growth attributes under different paddy-upland cropping systems. Int. J. Plant Prod. 2022, 16, 299–312. [Google Scholar] [CrossRef]
- Xing, Z.P.; Hu, Y.J.; Qian, H.J.; Cao, W.W.; Guo, B.W.; Wei, H.Y.; Xu, K.; Huo, Z.Y.; Zhou, G.S.; Dai, Q.G.; et al. Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system. J. Integr. Agric. 2017, 16, 1451–1466. [Google Scholar] [CrossRef] [Green Version]
- Escabarte, R.S.J.; Ando, H.; Kakuda, K. Comparison of growth and 15 nitrogen recovery between direct seeded flooded and transplanted rice at early growth stage under conventional and delayed planting. Soil Sci. Plant Nutr. 1999, 45, 131–142. [Google Scholar] [CrossRef]
- Deng, F.; He, L.H.; Chen, D.; Zhang, C.; Tian, Q.L.; Wu, Z.Y.; Li, Q.P.; Zeng, Y.L.; Zhong, X.Y.; Chen, H.; et al. Growth characteristics and grain yield of machine-transplanted medium indica hybrid rice with high daily yield. J. Integr. Agric. 2022, 21, 2547–2558. [Google Scholar] [CrossRef]
- Bian, J.L.; Xu, F.F.; Han, C.; Qiu, S.; Ge, J.L.; Xu, J.; Zhang, H.C.; Wei, H.Y. Effects of planting methods on yield and quality of different types of japonica rice in northern Jiangsu plain, China. J. Integr. Agric. 2018, 17, 2624–2635. [Google Scholar] [CrossRef]
- Bremner, M.J. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Pallant, J. SPSS Survival Manual—A Step by Step Guide to Data Analysis Using IBM SPSS, 5th ed.; Open University Press: Maidenhead, UK, 2013; pp. 261–400. [Google Scholar]
- Huang, L.Y.; Yang, D.S.; Li, X.X.; Peng, S.B.; Wang, F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crop. Res. 2019, 233, 49–58. [Google Scholar] [CrossRef]
- Huang, M.; Tang, Q.Y.; Ao, H.J.; Zou, Y.B. Yield potential and stability in super hybrid rice and its production strategies. J. Integr. Agric. 2017, 16, 1009–1017. [Google Scholar] [CrossRef]
- Wu, X.J. Prospects of developing hybrid rice with super high yield. Agron. J. 2009, 101, 688–695. [Google Scholar] [CrossRef]
- Chu, G.; Chen, S.; Xu, C.M.; Wang, D.Y.; Zhang, X.F. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crop. Res. 2019, 243, 107625. [Google Scholar] [CrossRef]
- Wei, H.Y.; Zhang, H.C.; Blumwald, E.; Li, H.L.; Cheng, J.Q.; Dai, Q.G.; Huo, Z.Y.; Xu, K.; Guo, B.W. Different characteristics of high yield formation between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crop. Res. 2016, 198, 179–187. [Google Scholar] [CrossRef]
- Ju, C.X.; Zhu, Y.W.; Liu, T.; Sun, C.M. The effect of nitrogen reduction at different stages on grain yield and nitrogen use efficiency for nitrogen efficient rice varieties. Agronomy 2021, 11, 462. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, S.; Wang, X.Y.; Yu, X.; Peng, S.B. High yields of hybrid rice do not require more nitrogen fertilizer than inbred rice: A meta-analysis. Food Energy Secur. 2021, 10, e276. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, Z.P.; Wang, T.; Fu, Y.; Hu, B.H.; Yamagishi, J.; Ren, W.J. Environmental compensation effect and synergistic mechanism of optimized nitrogen management increasing nitrogen use efficiency in indica hybrid rice. Front. Plant Sci. 2019, 10, 245. [Google Scholar] [CrossRef]
- Chandra, S.; Singh, N.K.; Sinha, J.P.; Kumar, P. Performance evaluation of direct-seeded rice (DSR) conventional transplanted rice in Bihar. Indian J. Agric. Sci. 2021, 91, 109–112. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Cheng, Q.Y.; Liao, Q.; Fu, H.; Zhang, J.Y.; Zhu, Y.M.; Lv, T.F.; Sun, Y.J.; Ma, J. Can reduced-input direct seeding improve resource use efficiencies and profitability of hybrid rice in China. Sci. Total Environ. 2022, 833, 15518. [Google Scholar] [CrossRef]
- Peng, S.B.; Buresh, R.J.; Huang, J.L.; Zhong, X.H.; Zou, Y.B.; Yang, J.C.; Wang, G.H.; Liu, Y.Y.; Hu, R.F.; Tang, Q.Y.; et al. Improving nitrogen fertilization in rice by site-specific N management. A review. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Singh, Y.; Gupta, R.K.; Singh, B.; Gupta, S. Efficient management of fertilizer nitrogen in wet direct-seeded rice (Oryza sativa) in northwest India. Indian J. Agric. Sci. 2007, 77, 561–564. [Google Scholar]
- Meng, T.Y.; Wei, H.H.; Li, X.Y.; Dai, Q.G.; Huo, Z.Y. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crop. Res. 2018, 228, 135–146. [Google Scholar] [CrossRef]
- Wu, L.L.; Yuan, S.; Huang, L.Y.; Sun, F.; Zhu, G.L.; Li, G.H.; Fahad, S.; Peng, S.B.; Wang, F. Physiological mechanisms underlying the high-grain yield and high-nitrogen use efficiency of elite rice varieties under a low rate of nitrogen application in China. Front Plant Sci. 2016, 7, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, W.Y.; Chen, Y.J.; Huang, S.H.; Li, Y.Z.; Wang, Z.M.; Tang, X.R.; Pan, S.G.; Tian, H.; Mo, Z.W. Optimization of nitrogen-silicon (N-Si) fertilization for grain yield and lodging resistance of early-season indica fragrant rice under different planting methods. Eur. J. Agron. 2022, 136, 126508. [Google Scholar] [CrossRef]
- Gui, M.Y.; Wang, D.; Xiao, H.H.; Tu, M.; Li, F.L.; Li, W.C.; Ji, S.D.; Wang, T.X.; Li, J.Y. Studies of the relationship between rice stem composition and lodging resistance. J. Agric. Sci. 2018, 156, 387–395. [Google Scholar] [CrossRef]
- Wu, H.; Xiang, J.; Zhang, Y.P.; Zhang, Y.K.; Peng, S.B.; Chen, H.Z.; Zhu, D.F. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Sci. Rep. 2018, 8, 12891. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Lv, T.F.; Zhang, P.P.; Huang, Y.; Chen, Y.; Ren, W.J. Regular nitrogen application increases nitrogen utilization efficiency and grain yield in indica hybrid rice. Agron. J. 2016, 108, 1951–1961. [Google Scholar] [CrossRef]
- Gao, H.; Li, Y.Y.; Zhou, Y.C.; Guo, H.L.; Chen, L.R.; Yang, Q.; Lu, Y.; Dou, Z.; Xu, Q. Influence of mechanical transplanting methods and planting geometry on grain yield and lodging resistance of indica rice Taoyouxiangzhan under rice-crayfish rotation system. Agronomy 2022, 12, 1029. [Google Scholar] [CrossRef]
- Hussain, S.; Peng, S.B.; Fahad, S.; Khaliq, A.; Huang, J.L.; Cui, K.H.; Nie, L.X. Rice management interventions to mitigate greenhouse gas emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 3342–3360. [Google Scholar] [CrossRef]
- Ju, C.X.; Buresh, R.J.; Wang, Z.Q.; Zhang, H.; Liu, L.J.; Yang, J.C.; Zhang, J.H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crop. Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Xiong, Q.Q.; Tang, G.P.; Zhong, L.; He, H.H.; Chen, X.R. Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Front. Plant Sci. 2018, 9, 1075. [Google Scholar] [CrossRef]
- Muhammad, N.; Zheng, Y.T.; Nabi, F.; Yang, G.T.; Sajid, S.; Hakeem, A.; Wang, X.C.; Peng, Y.L.; Khan, Z.; Hu, Y.A. Responses of nitrogen accumulation and translocation in five cytoplasmic hybrid rice cultivars. Plant Soil Environ. 2022, 68, 73–81. [Google Scholar]
Type | Variety | Parental Information |
---|---|---|
JIHR | Yongyou 2640 | Yongjing 26A × F7540 |
Yongyou 1640 | Yongjing 16A × F7540 | |
JCR | Nanjing 9108 | Wuxiangjing 14 × Guandong 194 |
Wuyunjing 27 | (Jia 45×9520) × Wuyunjing 21 | |
IHR | Xinliangyou 6380 | 03S × D208 |
II you 084 | II-32A × Zhenhui 084 |
Mode | Type | Sowing Date | Transplanting Date | Basic Seedling (×104 ha−1) | Applied Nitrogen (kg ha−1) |
---|---|---|---|---|---|
PM | JIHR | May 18th | June 15th | 50.5 | 270 |
JCR | 75.8 | 270 | |||
IHR | 50.5 | 225 | |||
CM | JIHR | May 28th | June 15th | 50.5 | 270 |
JCR | 75.8 | 270 | |||
IHR | 50.5 | 225 | |||
DM | JIHR | June 13th | - | 60.0 | 270 |
JCR | 90.0 | 270 | |||
IHR | 60.0 | 225 |
Type | Mode | Trait | Nitrogen Content (%) | Nitrogen Uptake (kg ha−1) | ||||
---|---|---|---|---|---|---|---|---|
SE | HE | MA | SE | HE | MA | |||
JIHR | PM | Mean | 1.94 c | 1.52 a | 1.22 a | 88.8 de | 197.4 a | 261.0 a |
CV (%) | 2.0 | 1.6 | 0.8 | 1.7 | 1.8 | 1.7 | ||
CM | Mean | 2.04 b | 1.48 b | 1.18 b | 90.9 d | 182.5 b | 236.8 b | |
CV (%) | 2.4 | 1.1 | 1.3 | 1.1 | 0.9 | 2.9 | ||
DM | Mean | 2.19 a | 1.37 d | 1.07 d | 93.5 c | 157.2 d | 193.1 e | |
CV (%) | 2.1 | 1.1 | 1.3 | 1.8 | 2.3 | 1.5 | ||
JCR | PM | Mean | 2.05 b | 1.51 a | 1.19 b | 88.4 e | 182.1 b | 236.2 b |
CV (%) | 1.7 | 1.0 | 0.8 | 0.7 | 1.2 | 1.5 | ||
CM | Mean | 2.09 b | 1.49 b | 1.17 b | 89.1 de | 175.6 c | 224.2 c | |
CV (%) | 0.6 | 1.0 | 1.1 | 0.8 | 0.4 | 1.4 | ||
DM | Mean | 2.15 a | 1.39 c | 1.11 c | 90.5 de | 156.4 d | 194.2 e | |
CV (%) | 0.8 | 1.5 | 1.4 | 0.4 | 0.7 | 0.6 | ||
IHR | PM | Mean | 1.83 d | 1.24 e | 1.09 c | 100.8 b | 159.7 d | 205.8 d |
CV (%) | 1.6 | 1.7 | 1.6 | 1.5 | 2.5 | 1.7 | ||
CM | Mean | 1.88 d | 1.21 f | 1.06 d | 102.6 b | 151.1 e | 185.8 f | |
CV (%) | 1.8 | 1.0 | 1.4 | 2.3 | 2.3 | 1.3 | ||
DM | Mean | 1.96 c | 1.16 g | 0.98 e | 105.6 a | 136.7 f | 155.3 g | |
CV (%) | 2.4 | 1.5 | 2.4 | 1.8 | 2.5 | 2.5 | ||
ANOVA | ||||||||
Mode (M) | ** | ** | ** | ** | ** | ** | ||
Type (T) | ** | ** | ** | ** | ** | ** | ||
M × T | ** | ** | ** | NS | ** | ** |
Type | Mode | Trait | Nitrogen Accumulation (kg ha−1) | Ratio of Nitrogen Accumulation to Total (%) | Nitrogen Uptake Rate (kg ha−1 d−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
SE-HE | HE-MA | SO-SE | SE-HE | HE-MA | SO-SE | SE-HE | HE-MA | |||
JIHR | PM | Mean | 108.5 a | 63.7 a | 34.0 g | 41.6 a | 24.4 a | 1.33 e | 3.02 a | 1.16 a |
CV (%) | 2.7 | 7.6 | 1.5 | 3.2 | 6.6 | 3.0 | 2.8 | 7.5 | ||
CM | Mean | 91.6 b | 54.3 b | 38.4 ef | 38.7 b | 22.9 ab | 1.57 c | 2.59 b | 0.99 b | |
CV (%) | 1.0 | 9.9 | 2.2 | 2.1 | 6.9 | 4.7 | 4.1 | 10.0 | ||
DM | Mean | 63.7 d | 35.8 d | 48.4 cd | 33.0 c | 18.6 c | 1.91 a | 1.86 c | 0.68 c | |
CV (%) | 3.5 | 6.9 | 1.9 | 2.3 | 7.0 | 3.1 | 10.0 | 6.4 | ||
JCR | PM | Mean | 93.7 b | 54.2 b | 37.5 f | 39.7 b | 22.9 ab | 1.20 f | 2.76 b | 1.02 b |
CV (%) | 2.5 | 5.8 | 2.2 | 1.9 | 4.7 | 4.4 | 5.0 | 5.5 | ||
CM | Mean | 86.6 c | 48.6 c | 39.7 e | 38.6 b | 21.7 b | 1.39 d | 2.51 b | 0.92 b | |
CV (%) | 1.0 | 5.4 | 1.8 | 0.8 | 4.0 | 5.2 | 4.8 | 5.4 | ||
DM | Mean | 65.9 d | 37.8 d | 46.6 d | 33.9 c | 19.5 c | 1.68 b | 1.94 c | 0.74 c | |
CV (%) | 1.2 | 5.4 | 0.7 | 1.7 | 5.0 | 4.0 | 4.4 | 5.1 | ||
IHR | PM | Mean | 58.9 e | 46.1 c | 49.0 c | 28.7 d | 22.4 b | 1.39 d | 1.56 d | 1.03 b |
CV (%) | 5.8 | 3.7 | 1.1 | 4.8 | 4.0 | 2.1 | 10.9 | 10.2 | ||
CM | Mean | 48.5 f | 34.7 d | 55.2 d | 26.1 e | 18.7 c | 1.59 c | 1.27 e | 0.77 c | |
CV (%) | 6.5 | 4.2 | 2.4 | 5.4 | 5.0 | 2.9 | 12.4 | 10.3 | ||
DM | Mean | 31.1 g | 18.6 e | 68.1 e | 20.0 f | 12.0 d | 1.91 a | 0.79 f | 0.43 d | |
CV (%) | 9.6 | 7.6 | 2.8 | 7.2 | 6.8 | 4.2 | 12.9 | 10.6 | ||
ANOVA | ||||||||||
Mode (M) | ** | ** | ** | ** | ** | ** | ** | ** | ||
Type (T) | ** | ** | ** | ** | ** | ** | ** | ** | ||
M × T | ** | ** | ** | ** | ** | * | ** | ** |
Type | Mode | Trait | Nitrogen Uptake per 100 kg Grain (kg) | Nitrogen Use Efficiency of Grain Yield (kg kg−1) | Nitrogen Use Efficiency of Biomass (kg kg−1) | Partial Factor Productivity of Applied Nitrogen (kg kg−1) | Nitrogen Harvest Index |
---|---|---|---|---|---|---|---|
JIHR | PM | Mean | 2.08 a | 48.0 f | 82.5 f | 46.4 b | 0.67 b |
CV (%) | 0.6 | 0.7 | 0.9 | 1.2 | 1.5 | ||
CM | Mean | 2.04 b | 49.1 ef | 84.8 e | 43.1 d | 0.66 b | |
CV (%) | 1.2 | 1.1 | 1.5 | 1.9 | 1.4 | ||
DM | Mean | 1.86 de | 53.8 bc | 93.3 bc | 38.5 g | 0.64 b | |
CV (%) | 1.5 | 1.5 | 1.3 | 0.5 | 0.8 | ||
JCR | PM | Mean | 2.03 b | 49.2 e | 83.9 e | 43.1 d | 0.65 b |
CV (%) | 1.2 | 1.1 | 1.0 | 1.1 | 2.3 | ||
CM | Mean | 2.01 b | 49.7 e | 85.1 e | 41.3 e | 0.65 b | |
CV (%) | 1.4 | 1.3 | 1.0 | 1.4 | 2.3 | ||
DM | Mean | 1.91 c | 52.3 d | 90.3 d | 37.6 h | 0.65 b | |
CV (%) | 0.9 | 0.9 | 1.1 | 0.7 | 3.3 | ||
IHR | PM | Mean | 1.89 cd | 52.9 cd | 91.5 cd | 48.4 a | 0.81 a |
CV (%) | 1.6 | 1.6 | 1.6 | 1.3 | 1.6 | ||
CM | Mean | 1.83 e | 54.6 b | 94.7 b | 45.1 c | 0.80 a | |
CV (%) | 1.3 | 1.5 | 1.5 | 1.0 | 2.4 | ||
DM | Mean | 1.71 f | 58.7 a | 102.6 a | 40.5 f | 0.80 a | |
CV (%) | 2.5 | 2.4 | 2.6 | 1.0 | 4.2 | ||
ANOVA | |||||||
Mode (M) | ** | ** | ** | ** | ** | ||
Type (T) | ** | ** | ** | ** | * | ||
M × T | ** | ** | ** | ** | NS |
Type | Mode | Trait | Heading Stage | Maturity Stage | ||||
---|---|---|---|---|---|---|---|---|
Leaf | Stem-Sheath | Panicle | Leaf | Stem-Sheath | Panicle | |||
JIHR | PM | Mean | 2.27 ab | 1.14 a | 1.19 a | 1.49 a | 0.73 bc | 1.39 b |
CV (%) | 3.0 | 0.7 | 1.8 | 2.5 | 5.5 | 1.8 | ||
CM | Mean | 2.21 b | 1.12 ab | 1.17 ab | 1.45 a | 0.71 c | 1.35 bc | |
CV (%) | 2.3 | 1.1 | 1.6 | 3.8 | 3.7 | 2.3 | ||
DM | Mean | 1.94 d | 1.10 b | 1.15 ab | 1.32 b | 0.71 c | 1.20 e | |
CV (%) | 2.9 | 0.9 | 2.1 | 4.9 | 6.6 | 1.6 | ||
JCR | PM | Mean | 2.31 a | 1.13 ab | 1.16 ab | 1.45 a | 0.80 a | 1.33 bc |
CV (%) | 1.4 | 1.8 | 1.7 | 2.8 | 8.3 | 1.9 | ||
CM | Mean | 2.28 ab | 1.12 ab | 1.15 ab | 1.43 a | 0.79 a | 1.31 cd | |
CV (%) | 1.7 | 2.2 | 1.5 | 3.0 | 7.8 | 1.7 | ||
DM | Mean | 2.04 c | 1.09 b | 1.13 b | 1.28 b | 0.76 ab | 1.24 de | |
CV (%) | 3.8 | 1.8 | 0.9 | 4.1 | 8.5 | 2.7 | ||
IHR | PM | Mean | 1.80 e | 0.93 c | 1.04 c | 0.67 d | 0.44 d | 1.52 a |
CV (%) | 1.9 | 3.5 | 4.7 | 4.4 | 13.4 | 1.9 | ||
CM | Mean | 1.75 e | 0.92 cd | 1.04 c | 0.74 cd | 0.44 d | 1.48 a | |
CV (%) | 2.4 | 3.4 | 4.2 | 14.5 | 10.2 | 3.7 | ||
DM | Mean | 1.65 f | 0.89 d | 1.01 c | 0.79 c | 0.41 d | 1.36 bc | |
CV (%) | 3.1 | 1.9 | 1.7 | 13.9 | 13.0 | 5.7 | ||
ANOVA | ||||||||
Mode (M) | ** | ** | ** | ** | ** | ** | ||
Type (T) | ** | ** | ** | ** | ** | ** | ||
M × T | ** | NS | NS | ** | NS | ** |
Type | Mode | Trait | NTA (mg) | ANTR (%) | NTCR (%) | NAPH (kg ha−1) | NNCH (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
L | S | L | S | L | S | |||||
JIHR | PM | Mean | 20.2 b | 13.4 a | 52.5 d | 42.0 bc | 29.1 bc | 19.3 ef | 150.5 a | 40.1 a |
CV (%) | 10.7 | 13.7 | 1.3 | 7.4 | 4.5 | 6.9 | 3.2 | 5.0 | ||
CM | Mean | 16.9 c | 12.7 ab | 49.5 de | 43.3 b | 27.8 c | 20.8 de | 132.7 b | 38.9 ab | |
CV (%) | 8.1 | 12.1 | 2.3 | 5.5 | 5.0 | 4.4 | 4.8 | 4.0 | ||
DM | Mean | 10.9 f | 11.2 c | 42.1 f | 43.4 b | 24.0 d | 24.6 b | 98.8 d | 36.6 b | |
CV (%) | 9.8 | 11.2 | 9.1 | 7.4 | 11.3 | 8.4 | 2.3 | 3.7 | ||
JCR | PM | Mean | 12.9 e | 7.9 d | 51.5 de | 37.5 d | 30.2 b | 18.4 f | 130.9 b | 39.8 a |
CV (%) | 4.3 | 15.2 | 2.4 | 12.0 | 3.6 | 10.5 | 3.9 | 3.0 | ||
CM | Mean | 11.2 ef | 7.6 d | 48.2 e | 38.2 d | 28.9 bc | 19.6 ef | 120.3 c | 39.1 a | |
CV (%) | 4.8 | 13.5 | 3.4 | 10.7 | 4.2 | 9.1 | 4.0 | 3.7 | ||
DM | Mean | 7.9 g | 7.0 d | 42.3 f | 39.6 cd | 24.8 d | 22.0 cd | 99.2 d | 39.5 a | |
CV (%) | 6.2 | 14.9 | 7.0 | 11.2 | 4.4 | 12.0 | 3.8 | 3.7 | ||
IHR | PM | Mean | 22.3 a | 13.6 a | 79.3 a | 59.3 a | 36.5 a | 22.1 cd | 146.3 a | 30.3 c |
CV (%) | 8.3 | 17.9 | 1.6 | 9.6 | 4.0 | 11.5 | 1.7 | 4.4 | ||
CM | Mean | 19.3 b | 12.7 ab | 74.9 b | 59.7 a | 36.1 a | 24.0 bc | 126.0 bc | 26.8 d | |
CV (%) | 8.0 | 16.5 | 3.9 | 7.4 | 4.2 | 8.4 | 2.7 | 3.8 | ||
DM | Mean | 14.8 d | 11.7 bc | 68.2 c | 61.9 a | 34.9 a | 28.2 a | 98.2 d | 21.5 e | |
CV (%) | 12.1 | 12.9 | 6.2 | 7.1 | 5.3 | 7.5 | 5.5 | 5.3 | ||
ANOVA | ||||||||||
Mode (M) | ** | ** | ** | ** | ** | ** | ** | ** | ||
Type (T) | ** | ** | ** | ** | ** | ** | ** | ** | ||
M × T | ** | * | NS | NS | ** | * | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Z.; Huang, Z.; Yao, Y.; Fu, D.; Cheng, S.; Tian, J.; Zhang, H. Nitrogen Use Traits of Different Rice for Three Planting Modes in a Rice-Wheat Rotation System. Agriculture 2023, 13, 77. https://doi.org/10.3390/agriculture13010077
Xing Z, Huang Z, Yao Y, Fu D, Cheng S, Tian J, Zhang H. Nitrogen Use Traits of Different Rice for Three Planting Modes in a Rice-Wheat Rotation System. Agriculture. 2023; 13(1):77. https://doi.org/10.3390/agriculture13010077
Chicago/Turabian StyleXing, Zhipeng, Zhicheng Huang, Yu Yao, Dihui Fu, Shuang Cheng, Jinyu Tian, and Hongcheng Zhang. 2023. "Nitrogen Use Traits of Different Rice for Three Planting Modes in a Rice-Wheat Rotation System" Agriculture 13, no. 1: 77. https://doi.org/10.3390/agriculture13010077
APA StyleXing, Z., Huang, Z., Yao, Y., Fu, D., Cheng, S., Tian, J., & Zhang, H. (2023). Nitrogen Use Traits of Different Rice for Three Planting Modes in a Rice-Wheat Rotation System. Agriculture, 13(1), 77. https://doi.org/10.3390/agriculture13010077