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Abstract: Early detection and accurately rating the level of plant diseases plays an important role in
protecting crop quality and yield. The traditional method of mummy berry disease (causal agent:
Monilinia vaccinii-corymbosi) identification is mainly based on field surveys by crop protection experts
and experienced blueberry growers. Deep learning models could be a more effective approach, but
their performance is highly dependent on the volume and quality of labeled data used for training so
that the variance in visual symptoms can be incorporated into a model. However, the available dataset
for mummy berry disease detection does not contain enough images collected and labeled from a
real-field environment essential for making highly accurate models. Complex visual characteristics
of lesions due to overlapping and occlusion of plant parts also pose a big challenge to the accurate
estimation of disease severity. This may become a bigger issue when spatial variation is introduced by
using sampling images derived from different angles and distances. In this paper, we first present the
“cut-and-paste” method for synthetically augmenting the available dataset by generating additional
annotated training images. Then, a deep learning-based object recognition model Yolov5s-CA was
used, which integrates the Coordinated Attention (CA) module on the Yolov5s backbone to effectively
discriminate useful features by capturing channel and location information. Finally, the loss function
GIoU_loss was replaced by CIoU_loss to improve the bounding box regression and localization
performance of the network model. The original Yolov5s and the improved Yolov5s-CA network
models were trained on real, synthetic, and combined mixed datasets. The experimental results
not only showed that the performance of Yolov5s-CA network model trained on a mixed dataset
outperforms the baseline model trained with only real field images, but also demonstrated that the
improved model can solve the practical problem of diseased plant part detection in various spatial
scales with possible overlapping and occlusion by an overall precision of 96.30%. Therefore, our
model is a useful tool for the estimation of mummy berry disease severity in a real field environment.

Keywords: wild blueberry; Vaccinium angustifolium; Monilinia vaccinii-corymbosi; deep learning;
coordinated attention; synthetic data; prediction accuracy

1. Introduction

In agriculture, plant diseases cause an estimated 10–15% annual loss of the world’s
major crops [1]; 70–80% of these diseases are caused by pathogenic fungi that have an
adverse effect on crop growth, quality and yield. Therefore, disease management is im-
portant to agricultural systems including the wild lowbush blueberry production system.
Wild blueberry (mainly Vaccinium angustifolium Aiton) is a perennial shrub that spreads
by underground rhizomes, with aerial shoots occurring every 2–30 cm. Wild blueberry
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plants are not planted [2,3] but grow naturally in rocky hills and sandy fields, and are
managed to form a carpet for berry production [4]. Wild blueberry is one of the most
important crops in Maine, USA, and the Canadian provinces of Quebec and the Maritimes,
and the crop is a major source of income for growers in the regions [5,6]. The state of Maine
is one of the largest producers of wild blueberries of the world, accounting for 97% of
the total production in the US [7–9]. The yield and quality of blueberries are impacted
by several factors, but one of the most important is mummy berry disease caused by
the fungus Monilinia vaccinii-corymbosi [10]. Monilinia vaccinii-corymbosi ascospores attack
opening flower clusters and axillary buds in the spring and kills infected tissues [11]. These
tissues then produce secondary asexual spores that infect healthy flowers and the fungus
colonizes the developing fruit. High levels of infection can kill up to 90% of the leaves
and flower buds during the early part of the growing season [10,12]. The infection of the
developing fruit directly affects yield and the loss of flowers and leaves can indirectly
reduce yield [8]. The loss of yield (berry weight harvested) can be substantial and poses an
economic challenge to growers.

The current method of early warning monitoring for mummy berry disease is based
on the prediction of potential infection periods determined by weather conditions and
development stages of the plants and fungus [13]. If a high likelihood of infection is
predicted, based on the duration of leaf wetness and suitable air temperature, growers
are advised to protect their crops from infection with the application of fungicides [14].
Follow-up field scouting by crop protection experts and experienced blueberry growers is
often implemented to determine the effectiveness of forecasting infection and fungicide
applications. However, monitoring for the presence and rating the level of disease is
extremely time-consuming and labor-intensive since infected plants can be scattered in
patches around the field and so typically multiple transects are used to observe many
individual stems across a field. It can also be prone to error due to confusion between
mummy berry disease symptoms and those from frost damage or other diseases such
as Botrytis blight. These are some of the main reasons why researchers are looking for
alternative methods to identify diseases in the field [15–17]. Previous studies involving
other crops and diseases using traditional machine learning algorithms have mainly relied
on manual extraction of features from image texture, color and shape [18] to locate disease.
However, the symptoms of the same disease may have different visual characteristics, such
as during different stages of infection, when infecting flowers, leaves or fruit, and possible
occlusions and high spatial variations among individual plants. Therefore, when there is
variation in environmental conditions and symptom traits, the generalization ability of
these algorithms decreases significantly.

In recent years, with the rapid advancement of computer vision techniques and deep
learning, various methods of plant disease detection and classification techniques have
been developed in agriculture resulting in highly accurate results [16,19,20]. Despite its
success in achieving superior performance in plant disease detection, deep neural network
architectures depend heavily on the availability of large quantities of training data that
are characterized by variation to accurately “learn the breadth of behavior” for proper
training of a model. However, the available dataset for wild blueberry plant disease
detection does not contain the abundance of images collected and labeled from a real-field
environment which is essential for making highly accurate models [19]. Levels of mummy
berry symptoms vary by field characteristics, weather, and inoculum level and symptoms
of the first stage of infection of leaves and flower buds only last for one to three weeks
depending upon the field and weather. Clean and background-free images of diseased
and healthy plant parts also are difficult to obtain in blueberry fields. Accurately labeling
images for model training is also very labor-intensive. To address the problem of data
scarcity in training deep learning models, researchers have proposed various techniques to
generate synthetic images based on the available dataset to obtain diverse and inexpensive
training data [21,22] rather than field collecting and annotating training images which is an
expensive and time-consuming task.



Agriculture 2023, 13, 78 3 of 23

Although computer vision techniques have greatly improved for plant disease detec-
tion, practical problems such as the small size of lesions, occlusion of shoots, interference
of complex background, uncontrollable light conditions in fields, etc., remain unsolved
for mummy berry disease identification. For instance, masses of conidia (a sign on leaves
and flowers of primary mummy berry infection) on blueberry shoots are tiny (<33 µm
long; in [11] and only account for a very small portion of a field taken image, which makes
it unlikely to be automatically identified by computer vision techniques. Moreover, the
much branched and dense structure of blueberry bushes often occlude small diseased plant
parts such as those exhibiting conidia. Multiple shoots or branches also complicate the
background of field-taken images, which also poses a challenge to disease detection. An
example of field-taken images of mummy berry disease and conidia on shoots are shown
in Figure 1. In addition, disease traits (such as size, color, and portion) in the field obtained
sample images for disease detection and severity rating may vary considerably due to
the changes in camera shooting angle and distance. These highly spatial variations could
inevitably degrade the performance of identification, despite the most advanced object
detection algorithms having been employed [23].
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Figure 1. An example of field-taken images of mummy berry disease with the complex background
of blueberry bushes. The red square marks the area in the left panel. The same image is zoomed in
and depicted in the right panel, where yellow squares identify the presence of conidia.

In deep learning, as in human vision, the attention mechanism tends to focus on
key regions of the input objects by ignoring irrelevant information. Recent studies have
demonstrated the remarkable effectiveness of attention-based methods for boosting deep
learning networks and have proven their usefulness in a variety of computer vision tasks,
such as object detection [20,24,25]. CBAM [26] is a widely used attention mechanism
that combines channel and spatial attention. SE [27], on the other hand, focuses on the
relationship between channels to learn each image feature based on the loss function,
increases the weight of relevant image features, and decreases the weight of irrelevant
image features to achieve the best results. In plant disease detection, the lightness of the
model determines whether it can be deployed to embedded devices, which is of great
importance for growers to monitor the growth and disease status of blueberries in real-
time in the field [15]. Considering the limited computational power and storage capacity
of mobile or embedded devices, SE and CBAM attention mechanisms are still the most
popular attention methods. However, SE neglects the importance of location information
and CBAM only captures local relationships and cannot model long-range dependencies
essential for capturing object structure in visual tasks [28]. In contrast, coordinate attention
(CA) considers both inter-channel relationships and position information.

Therefore, in order to overcome the problems in the current plant disease detection
methods, and solve the limitation of data scarcity for mummy berry disease detection
of the wild blueberry plant in a real-field environment, we have implemented the cut
and paste method [29] for synthetically augmenting the available dataset to generate
annotated training images for object detection tasks, which reduces the effort required to
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collect and manually annotate huge datasets. Thereafter, we improved the backbone of
the original Yolov5s network model by integrating the lightweight coordinate attention
(CA) module to effectively highlight the important features by capturing the channel and
location information to improve a mummy berry disease detection network model in a real
natural field environment with little extra computational cost. The main contributions of
this study are summarized as follows:

• The coordinate attention (CA) module is integrated into a Yolov5s backbone. This
allows the network to increase the weight of key features and pay more attention to
visual features related to disease to improve the performance of disease detection in
various spatial scales.

• The loss function, General Intersection over Union (GIoU), is replaced by the loss
function, Complete Intersection over Union (CIoU) to enhance bounding box re-
gression and localization performance in identifying diseased plant parts with a
complex background.

• A synthetic dataset generation method is presented that can reduce the effort of
collecting and annotating large datasets and boost the performance of identification
by artificially increasing available features in deep model training.

2. Related Work

The scope of the research presented in this article is related to the use of data augmen-
tation processes to create synthetic image datasets and object detection models to identify
mummy berry disease affecting wild blueberry productivity. Thus, the literature review
presented in this section is divided into two subsections. The first subsection lists the
techniques reported in the literature on the use of data augmentation to create synthetic
image datasets, while the second subsection details the various machine learning and deep
learning algorithms reported in the literature for plant disease identification.

2.1. Data Augmentation

To build robust deep-learning models, it is important to ensure that validation error
during training is minimized with the training error. The approach that has been reported
in the literature to be successful is the data augmentation technique [30].

Recently, a method of data augmentation crop-and-paste has become popular in
object detection [31] and instance segmentation. Khoreva et al. [32] used the cut-and-paste
method to generate pairs of synthetic images for video object segmentation. However, object
positions are sampled uniformly and changes between image pairs need only be guaranteed
to be kept small, which does not work for image-level instance segmentation. A copy–paste
method was proposed by Ghiasi et al. [33], which randomly selects a segment object and
pastes it at a random location onto the background image data without considering its visual
state. The high performance and efficiency of this method was experimentally verified.
The authors of [34] presented a simple yet effective approach that took an object detection
VOC2007 dataset and cut out objects according to their ground truth labels and pasted them
onto images with different backgrounds. With this naive approach, the authors showed
a significant improvement in object detection models such as YOLO [35] and SSD [36].
Khalil et al. [37] proposed a new method for augmenting annotated training datasets used
for object detection tasks, which aims at relocating objects based on their segmentation
masks to a new background that comprise changes in the property of the object such
as: image spatial location, surrounding context, and scale. In [31], the authors proposed
a context model to place segmented objects at backgrounds with proper context. They
demonstrated that this technique can improve object detection on a Pascal VOC dataset.
However, the method requires extra model training and off-line data preprocessing. A
method of annotated instance masks with a location probability map is explored in [38]
to augment the training dataset that can effectively improve the generalization ability of
the dataset. Abayomi-Alli et al. [39] proposed a novel histogram transformation approach
that improved the accuracy of deep learning models by generating synthetic images from
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low-quality test images to enhance the number of images in a cassava leaf disease dataset by
applying Gaussian blurring, motion blurring, resolution down-sampling, and overexposure
with a Modified MobileNetV2 neural network model. Nair and Hinton [40] expanded
and enriched their training data by random crop and horizontal reflection. They also
applied PCA (principal component analysis) on the color space to change the intensity
of the RGB channel (red, green, blue color model). Furthermore, geometric and color
transformation were also performed on the dataset. However, the method is based upon
simple transformations and cannot simulate higher levels of complexity inherent in the
field environment.

Other recent works on image analysis [41,42] built and trained models on purely
synthetic rendered 2D and 3D scenes. However, it is difficult to guarantee that models
trained on synthetic images will generalize well to real field-collected data, as the process
introduces significant changes in image statistics. To solve this problem, Gupta et al. [43]
adopted a different approach by embedding real segmented objects into natural images.
This reduces the presence of artifacts. The authors in [44] estimated the scene geometry
and spatial orientation before synthetically placing objects to generate realistic training
examples for the task of object instance detection.

2.2. Deep Learning for Plant Disease Detection

With the aim of developing effective plant disease detection systems, there has been an
increasing number of research studies focused on plant disease classification and detection
in recent years. Qu and Sun [15] proposed a lightweight deep learning model that can be
deployed on embedded devices to detect mummy berry disease in a real environment. The
model uses MobileNetV1 as the main network and adopts multi-scale feature extraction
which combines dilated and depth-wise convolution in a parallel manner. In addition, at
the end of the model, a feature filtering module-based channel attention mechanism is
employed to improve classification performance. Fuentes et al. [45] presented a method
of detection and identification of diseases and pests of tomatoes captured by camera
equipment with different levels of resolution. To find a suitable deep learning architecture,
the Fuentes et al. study combined three main families of detectors: fast region-based
convolutional neural network (FAST R-CNN), region-based fully convolutional network (R-
FCN), and single shot multibox detector (SSD) with VGG net and residual net to effectively
identify nine different types of diseases and pests. Roy and Bhaduri [46] developed a deep
learning based multi-class apple plant disease detection method and achieved 91.2% mean
average precision and 95.9% a F1-score. The model was modified to optimize accuracy and
validated by detecting diseases under complex orchard scenarios. Qi et al. [20] proposed
a method for the recognition of tomato virus disease based on an improved SE-Yolov5
network model. A squeeze-and-excitation (SE) module was added to a Yolov5 model to
focus the network on the effective features of tomato virus visual features. This approach
improved the performance of the network.

3. Materials and Methods

In this section, we briefly present a field-collected image dataset that was used for
model training and evaluation, as well as for generating synthetic images. We then intro-
duced the system of synthetic dataset generation methods for object detection tasks. This
section concludes with the description of an improved Yolov5 model based on attention
mechanism and evaluation metrics.

3.1. Data Source

The first step in developing a deep learning model is to prepare a dataset. As the
primary source of data in this study, images of healthy and diseased flowers, fruits, and
leaves of the blueberry crop in a field environment with complex backgrounds were
obtained from the University of Maine wild blueberry experimental fields at Blueberry Hill
Farm, Jonesboro, ME, USA [47]. However, the total number of field images collected for
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training a deep learning network was not adequate. Therefore, to achieve high performance
and reduce the risk of overfitting a predictive model for mummy berry disease detection,
we first produced annotated synthetic images with a complex background that mimicked
real field situations. Then we collected blueberry images with mummy berry disease from
online sources such as the National Ecological Observatory Network (www.bugwood.org,
accessed on 23 April 2022), and Google Images (www.google.com, accessed on 2 May 2022)
to incorporate variety in training images, as deep learning models show enhanced results
and higher generalization ability on the availability of a large dataset. A total of 459 field
images of blueberries with mummy berry disease were obtained from the University of
Maine wild blueberry experimental fields and online sources. Based on field images, a
total of 1661 annotated images were produced by the synthetic data generation method
(Table A1 in Appendix A).

3.2. Synthetic Data Generation

In this study, we applied the cut and paste technique [29] to create synthetic images
and related annotations by random scaling, rotation, and adding segmented images of
interest to the background. Unlike Mixup and CutMix, our method only copied the exact
pixels that corresponded to an object, as opposed to all the pixels in the object’s bounding
box. To generate a synthetic dataset with our cut and paste method, we randomly selected
images of 55 flowers, 48 fruits, and 58 leaves of diseased blueberry plant tissue from the
field dataset (discussed in Section 3.1) and created masks. Then a total of 83 “healthy”
background photographic images with only healthy uninfected flowers and leaves were
collected in a lowbush blueberry field at the University of Maine, Blueberry Hill Farm
(Jonesboro, ME, USA). In order to make the background more complex, seven distractor
object images of healthy fruits were obtained from online sources, and then masks were
created. Objects of interest masks were created using Adobe Photoshop software, unlike a
previous study [29] that automated this process by training a machine learning model to
segment and extract the objects.

Once the image data was ready, we randomly selected the background image and
resized it to 1080 × 1320 pixels and 1320 × 1080 pixels, vertically and horizontally, respec-
tively. Then, to make the background of the synthetic dataset diverse, we randomly selected
at most 10 segmented distractor images and randomly resized, rotated and added them to
the background iteratively. Under field conditions in agriculture production systems, oc-
clusion problems are common challenges that need to be considered. Hence, in generating
a synthetic dataset, a newly added image can partially or fully overlap a previously added
image. Therefore, to control the degree of overlap and include cases of occlusion in the
synthetic dataset, the threshold value for the degree of overlap was set at 25%. Finally, in
an iterative process, we randomly chose a maximum of 15 segmented images of diseased
leaves, flowers, and fruits and randomly resized and rotated them, and then added the
new background images on top of the background distractor images (see Figure 2).

3.3. Coordinate Attention Module

When detecting mummy berry disease, the infection can be randomly distributed on
the plant stem, resulting in a mixture of overlapping occlusions, and the infected region
may occupy a relatively small proportion of the image area, leading to missed or incorrect
detection. In our study, we introduce the coordinate attention (CA) module to help the deep
learning model focus on the most significant information related to infection and ignore
minor features. The CA mechanism is an efficient and lightweight module that embeds
position information into the attention map. The model can obtain information about a large
area without introducing additional computational costs. The coordinate attention block
can be considered a computational unit that increases the expressive power of the learned
features. It takes an intermediate feature tensor: X = [x1, x2, . . . , xC] ∈ RC × H × W as input;
and outputs a transformed tensor with enhanced representations: Y =

[
y1, y, . . . , yC

]
of

the same size to X.

www.bugwood.org
www.google.com
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In the structure of the coordinate attention module, the operation is divided into
two steps: (1) coordinate information embedding; and (2) coordinate attention generation
(Figure 3). The first step factors global pooling as given in Equation (1) into two 1D
feature encoding operations that encode each channel along the horizontal and vertical
directions, respectively.

zh
c (h) =

1
W ∑

0 ≤ i < W
xc(h, i) zw

c (w) =
1
H ∑

0 ≤ i < H
xc(j, w) (1)

where X denotes the input, zh
c (h) and zw

c (w) indicate the outputs of the c − th channel
at height h and width w, respectively. The second step concatenates the feature maps
produced and sends them to the shared 1 × 1 convolutional transformation F1 to obtain the
intermediate feature map, f , as formulated in Equation (2),

f = δ
(

F1

([
Zh, Zw

]))
(2)

where [. , .] denotes the concatenation operation along the spatial dimension, and δ is a
non-linear activation function. The feature map f is then split along the spatial dimension
into two separate tensors f h and f w, followed by another two 1× 1 convolutional functions
Fh and Fw, which are determined by Equation (3),

gh = σ
(

Fh

(
f h
))

, gw = σ(Fw( f w)) (3)

where σ denotes the sigmoid activation function. The final attention weight Y is generated
according to Equation (4),

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (4)

Therefore, in this study, we integrated the coordinate attention (CA) module on the
Yolov5 backbone. This offers three obvious advantages: (1) it captures cross-channel and
position-sensitive information that helps models accurately locate and recognize objects
of interest; (2) having a lightweight property that is less lightweight than other attention
mechanisms [26,27]; and (3) flexibility to be plugged into object detection models such as
Yolov5 with little additional computational overhead.
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3.4. Yolov5 Method

Object detection is a computer vision technique for locating instances of a certain class
of objects in an image. Recent object detection methods can be categorized into two main
types: one-stage and two-stage. One-stage methods prioritize inference speed and include
a series of YOLO detection methods [15,35,48–50], SSD [36,51], and RetinaNet [52]. Typical
two-stage methods prioritize detection accuracy and include R-CNN [53], Fast R-CNN [54],
Mask R-CNN [55], Cascade R-CNN [56], and others.

Yolov5 is the latest generation of one-stage object detection network models of the
YOLO series proposed by Ultralytics in May 2020 see [57]. Based on the network depth and
width of feature maps, Yolov5 can be divided into four models, namely Yolov5s, Yolov5m,
Yolov5l, and Yolov5x [23]. Compared with two-stage detection network models, Yolov5
greatly improves the running speed of the model while maintaining detection accuracy.
This not only meets the needs of real-time detection, but also has the advantage of a small
structure size. The Yolov5 network model is an improved model based on Yolov3 with
improvements such as multi-scale prediction, which can simultaneously detect images of
different sizes [20]. Therefore, we proposed a lightweight mummy berry disease detection
network model based on Yolov5s by improving the network backbone with an atten-
tion mechanism. The architecture of the improved Yolov5s-CA network model is shown
in Figure 3.

3.5. Improvement of Yolov5s-CA Network Model

Figure 3 shows the structure of the improved Yolov5s-CA network model to detect
mummy berry disease. It can be seen that a lightweight module CA [28] was introduced into
the backbone of Yolov5s to strengthen the feature representation ability of the network and
select useful information, which enhances detection performance. The network structure of
Yolov5s-CA consists of four parts: input, backbone, neck, and head.

The backbone of the Yolov5s-CA network model contains Conv, C3, CA, and Spatial
Pyramid Pooling Fusion (SPPF). The Conv is the basic convolution unit, which performs
two-dimensional convolution, regularization, and activation operations on the input. The
C3 module is located in both the backbone and neck. The C3 module with a shortcut
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structure is implemented in the backbone of the network. It divides the input tensor equally
into two branches and performs convolution operations. One branch passes through a
Conv module and then passes through multiple residual structures to avoid degradation
problems in the deep computational process. The other branch directly combines the two
branches to form a Conv module. As shown in Figure 4, the CA modules are integrated into
the backbone following the C3 module to highlight and select the most important disease-
related visual features and improve the representation ability of the object detection model
to detect mummy berry disease in a field environment. The last layer of the backbone,
Spatial Pyramid Pooling Fast (SPPF), shown in Figure 5, comprises three MaxPool layers of
5 × 5 kernel sizes in series and passes the input through the MaxPool layers in turn and
performs a concatenation operation on the output before performing a Conv operation. The
SPPF structure can achieve similar feature ex-traction results as SPP, but SPPF runs faster.
The image can learn features at multiple scales with the help of MaxPool layers and jump
connections, and then increase the representativeness of the feature map by combining
global and local features.
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The neck module is a feature aggregation layer between the head and the backbone. It
collects as much information as possible from the backbone before feeding it to the head.
It consists of two parts: the Feature Pyramid Network (FPN) and the Path Aggregation
Network (PAN). The FPN structure transmits semantically robust features from the top-
down, while the PAN transmits information in a bottom-up pyramid to strengthen the
feature representation capabilities of the network model. In addition, C3 modules were
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added to enhance the network’s feature extraction capability, and the C3 at the neck replaces
the residual structure with multiple Conv modules.
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The head outputs a vector containing the object category probability, the object scores,
and the position of the bounding box. The loss function of Yolov5s consists of three parts:
the confidence loss, the classification loss and the position loss of the target and prediction
box. The original Yolov5s uses GIoU_loss as a bounding box regression loss function
to evaluate the distance between the predicted box and the ground truth box. It can be
expressed in the following formulae represented in Equations (5)–(7).

IoU =
A ∩ B
A ∪ B

(5)

GIoU = IoU − Ac − u
Ac (6)

LGIoU = 1− GIoU (7)
where A is the predicted box, B is the ground truth box, IoU represents the intersection
ratio of the predicted box and the ground truth box, Ac represents the intersection of the
predicted box and the ground truth box, u represents the smallest circumscribed rectangle
of the predicted box and the ground truth box, and LGIoU is the GIoU Loss.

Compared with the IoU_loss function, the GIoU loss function can solve the problem
of non-overlapping bounding boxes. However, GIoU loss cannot solve the problem that
the prediction frame is inside the target frame and the size of the prediction frame is the
same. On the other hand, CIoU loss considers the scale information of the aspect ratio
of the bounding box and measures it from the three viewpoints: (1) overlapping area,
(2) center point distance, and (3) aspect ratio, which makes the prediction box regression
more efficient. Therefore, in this study, we use CIoU loss as the regression loss function
represented in Equations (8)–(10).

Lloc = 1− IoUI
(

B, Bgt
)
+

d2

c2 + av (8)

a =
v

1− IoU + v
(9)

v =
4

π2

(
arctan,

wgt

hgt − arctan
w
h

)2

(10)

where w is the width and h is the height of the prediction box and wgt and hgt are the width
and height of the ground truth box, respectively.

3.6. Model Evaluation

Three metrics were used to evaluate the performance of the models. First, we used
precision (P), defined as the proportion of true positives to the total number of positive
detections (Equation (11)). Second, we used recall (R), defined as the proportion of true
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positives to the total number of actual objects (Equation (12)). Third, mean average precision
(mAP@0.5) was used, which represents the mean value of AP for different categories with a
threshold of 0.5% when mAP (Equation (13)) is converted to percent.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

mAP =
∑ AP

n
(13)

In Equations (11)–(13), TP is the number of correctly detected disease regions, FP is the
number of healthy regions of plants that have not been detected as having disease, FN is
the number of incorrectly detected disease regions, AP is the area under the precision-recall
curve and n is the number of classes.

The experiments were carried out following the improved Yolov5s-CA model
(Figure 3). To implement the mummy berry disease detection model, we used Pytorch
version 1.11.0. The code was written, edited, and run using Google Colab Pro’s notebook,
a subscription-based service provided by Google Research that allows users to write and
run Python code in web browsers. The hardware configuration that we used was: NVIDIA
Tesla P100 GPU, 16 GB RAM, 127 GB hard disk, and CUDA version 11.2. The hyperparam-
eters of the two models were set uniformly. The initial learning rate of the model was set
to 0.01, and the momentum of the learning rate to 0.9. The batch size was set to process
16 images per iteration. The resolution of the input image was set to 640 × 640 pixels, and
the number of epochs was set to 300. The training, validation, and test set images were in
the ratio of 8:1:1 with no overlap between the three sets. To demonstrate the effectiveness
of improving the original Yolov5s, we conducted experiments with and without modifying
the backbone of Yolov5s with an attention mechanism. Each experiment was validated on
the field-collected test dataset.

4. Results

We designed and conducted five experiments. The first experiment was designed
to compare the two Yolov5s models (Yolov5s vs. Yolov5s-CA) on disease detection when
they were only trained on the field-collected data. The second experiment compared the
two models when they were trained only on the synthetic data. The third experiment
compared the two models when they were trained on a combined dataset of synthetic
and field-collected data. The fourth experiment compared the detection speeds of the two
models. The fifth experiment compared the detection of the two models at different spatial
scales (camera shooting distances).

4.1. Comparison of Disease Detection Models Trained Only on the Field-Collected Dataset

This experiment developed a baseline model by evaluating the effect of varying the
amount of training data on the model’s performance. To this end, the improved Yolov5s-CA
and Yolov5s models were evaluated only on field-collected images. The precision of the
Yolov5s-CA model is 70.2%, the recall is 61.3% and mAP@0.5 is 65.8%, which shows an
increase of 2.7%, 0.5% and 1.1% in precision, recall and mAP@0.5, respectively, compared to
the Yolov5s model (Table 1). Increasing the amount of the field-collected training data from
10–100% in all cases leads to an increase in the performance of the model (Figure 6).

Table 1. Performance comparisons of models trained only on real field dataset.

Models Precision (%) Recall (%) mAP @0.5 (%)

Yolov5s 67.5 60.8 64.7
Yolov5s-CA 70.2 1 61.3 1 65.8 1

1 Bold type reflects the best precision, recall and mAP@0.5 values.
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The comparison of experimental indicators shows that the performance of the im-
proved Yolov5s-CA model is higher than Yolov5s, which confirms the effectiveness of
integrating the attention mechanism on the backbone of the Yolov5s model. This approach
suppresses less important features and improves the rate of correct detection.

4.2. Comparison of Disease Detection Models Trained Only on the Synthetic Dataset

This experiment evaluated models trained exclusively with synthetically generated
images, in contrast to the results in Section 4.1 illustrating the performance of the models
trained only on a limited number of field-collected images. We created a synthetic dataset
containing 1661 images (method in Section 3.2). Similar to Section 4.1, we varied the amount
of synthetic training images to investigate their effect on model performance (Figure 6).



Agriculture 2023, 13, 78 13 of 23

Increasing the training data size to more than 80% of the total available images has no
contribution in terms of improving the performance of the model. Compared with Yolov5s,
the recall of the improved Yolov5s-CA model increased by 4.9%; however, precision and
mAP@0.5 values decreased by 5.9% and 0.4%, respectively (Table 2).

Table 2. Performance comparisons of the model trained only on the synthetic dataset.

Models Precision (%) Recall (%) mAP @0.5 (%)

Yolov5s 30 1 14.9 11.7 1

Yolov5s-CA 24.1 19.8 1 11.3
1 Bold type reflects the best precision, recall and mAP@0.5 values.

Moreover, as illustrated in Tables 1 and 2, when the precision, recall and mAP@0.5
values of models trained on field-collected and synthetic datasets are compared, a model
trained only on a synthetic dataset generalized poorly compared to the field-collected
dataset. This suggests that, although synthetic images are fast to generate, the domain
gap between the synthetic and the field-collected data prevents the disease detection
model trained only on the synthetic dataset from achieving the same performance as the
field-trained models.

4.3. Comparison of Disease Detection Models Trained on a Combination of Synthetic and
Field-Collected Datasets

In this experiment, we explored the effects of varying the amount of field-collected
and synthetic data in mixed model training datasets. We evaluated the models on 10%,
25%, 40%, 55%, and 70% field-collected images with 80% synthetic images. The aim is to
achieve baseline detection performance with less field-collected data and more synthetic
data. The evaluation results are shown in Table 3.

Table 3. Performance comparison of the model trained on a combination of synthetic and real
field datasets.

Dataset Size Models Precision (%) Recall (%) mAP @0.5 (%)

Synthetic + Real field 10% Yolov5s 37.2 33 27.9
Yolov5s-CA 55.8 33 35

Synthetic + Real field 25% Yolov5s 40.4 40.7 35.2
Yolov5s-CA 45.9 43.8 41.2

Synthetic + Real field 40% Yolov5s 47.6 43.5 42.4
Yolov5s-CA 62 49.2 48.8

Synthetic + Real field 55% Yolov5s 62.6 47.3 52.4
Yolov5s-CA 69.6 48.9 54.2

Synthetic + Real field 70% Yolov5s 62.6 55.9 61.1
Yolov5s-CA 71.4 59.2 66.3

Synthetic + Real field 100% Yolov5s 71.6 54 62.3
Yolov5s-CA 75.2 1 61.2 1 68.2 1

1 Bold type reflects the best precision, recall and mAP@0.5 values.

The improved Yolov5s-CA and Yolov5s models were trained on the mixed datasets,
and precision, recall and mAP@0.5 values were calculated for the two models. The precision
of the Yolov5s-CA model is 71.4%, the recall is 59.2% and mAP@0.5 is 66.3% (Table 3), which
indicates an increase in precision, recall and mAP@0.5 by 8.8%, 3.3%, and 5.2%, respectively,
compared to Yolov5s model. Figures 7–9 show comparative results of the model prediction.
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In addition, when the number of field-collected images in the training datasets in-
creased, a slight increase in the experimental indicators of the models was observed. In
particular, the mixed model trained on 70% of field-collected images had a better detection
performance and outperforms the baseline model trained on only field-collected images
(see Section 4.1 with 1.2% precision and 0.5% mAP@0.5).

4.4. Comparison of Detection Speed of the Models

We compared the detection speed of the improved Yolov5s-CA and the original
Yolov5s model (Table 4). The predicted inference speeds of the Yolov5s-CA model are
11.4 ms, 12.3 ms, and 11.9 ms, which are 2.3 ms, 1.6 ms, and 1.4 ms longer than the
Yolov5s for the field-collected, synthetic, and mixed datasets, respectively. In addition,
despite the increase in the parameters of the model, the size of Yolov5s-CA model is
only 0.1 MB larger than the Yolov5s model. The detection speed or frames per second
(FPS) of the Yolov5s-CA model was slightly lower, but had an improved performance
compared to the Yolov5s model (Table 4). Therefore, the improved Yolov5s-CA model can
ensure real-time performance with relatively little additional detection time and nearly no
computational overhead.
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Table 4. Performance comparison of model detection speed.

Models Datasets Frame Per
Second (FPS)

Inference
Time (ms) Parameters Model

Size (MB)

Yolov5s
Real field 109.89 9.1

7,027,720 13.7Synthetic 93.46 10.7
Mixed 95.24 10.5

Yolov5s-CA
Real field 87.72 11.4

7,063,400 13.8Synthetic 81.30 12.3
Mixed 84.03 11.9

4.5. Comparison of Detection at Different Spatial Scales

To compare the detection results of the models, nine images similar to those shown in
Figures 7–9 were selected from the test set as these images represented detection scenarios
at different spatial scales (camera shooting distances) in the dataset. In the figures, the
labels fl, fr, and lf represent infected flower, infected fruit, and infected leaf, respectively.
The improved Yolov5s-CA network model proposed in this study was the superior model
to detect diseased plant parts at different camera shooting distances (Figures 7–9). There is
almost no difference between the improved network model and Yolov5s in detecting large
target plant parts taken at close distances (Figure 7a–f). The detection results focused on the
plant stem (Figure 8a–f) show that there is a difference between the two network models
in detecting small plant parts from the image. As shown in Figure 8d–f, the improved
network model can accurately detect small target plant parts with occlusion which could
not be detected by the original Yolov5s model. For the clone-level detection results shown
in Figure 9a–f between the two models, the Yolov5s model has more wrong and missed
detections than the improved network model. In Figure 9a, Yolov5s predicted two wrong
detection and nine correct detections, while the improved network model in Figure 9d
predicted thirteen correct detections with one wrong detection. Both models predicted
three correct detections in Figure 9b,e, but Yolov5s predicted two wrong detections while
the improved network model had only one wrong detection. Additionally, in Figure 9f, the
improved network model predicted twelve correct detections, while, Yolov5s predicted
eight correct detections (Figure 9c). However, although the improved model still has
satisfactory detection ability with some degree of occlusion, and overlap of leaves, as
shown in Figure 9c,f, both models failed to detect small diseased leaves in the image at
long distances.

To further verify the effectiveness of the improved Yolov5s-CA model proposed in the
present study, nine test sets representing different spatial scale detection scenarios were
analyzed (Table 5). There were 78 mummy berry disease objects in nine test sets. The
number of objects detected by these methods was 47 and 54 for Yolov5s and Yolov5s-CA,
respectively, of which mummy berry disease was 41 for Yolov5s and 52 for Yolov5s-CA.
The recall rate, accuracy, and misdetection rate of the methods were 52.56%, 87.23%, and
12.77% for Yolov5s and 66.67%, 96.30%, and 3.70% for the improved Yolov5s-CA.

From Table 5 and Figure 8d–f, it can be seen that the detection is the best in the plant
stem scenario with a recall and precision rate of 80.95% and 100.00%, respectively. The
plant parts taken at close distances are also accurately detected. Both methods can correctly
detect plant parts in the image and their recall rate is 77.78%. In addition, the proposed
method can effectively detect mummy berry disease objects at a long distance in the clone
with, a recall rate of 58.33%,and a precision of 93.33%.

The loss and mAP curves for the two network models tested in the present study are
shown in Appendix A. The loss curves of both models had a downward trend and the values
of the loss function decreased rapidly when tested against the real field and mixed datasets
(Figures A1b and A3b). However, when the network iterations reach approximately 150,
the loss curves gradually exhibited a slowed rate of change and stabilized. In contrast,
the loss curves in Figure A2b using the synthetic dataset had a downward trend, but only
after approximately 25 iterations, the loss curves showed an upward trend indicating
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noisy movements and no improvement in the values of the loss function. Analysis of the
loss function from Figures A1 and A3 shows that the integrated attention module on the
Yolov5s backbone can effectively accelerate the network convergence speed and improve the
model performance.

Table 5. Detail detection results of mummy berry disease at different spatial scales.

Models
Spatial Plant Scales

Total
Plant Part Plant Stem Clone 1

Yolov5s
Number of objects detected correctly 7 14 20 41

Number of annotations 9 21 48 78
Recall rate (%) 77.78 66.67 41.67 52.56

Precision rate(%) 87.50 93.33 83.33 87.23

Yolov5s-CA
Number of objects detected correctly 7 17 28 52

Number of annotations 9 21 48 78
Recall rate (%) 77.78 80.95 58.33 66.67

Precision rate(%) 100.00 100.00 93.33 96.30
1 Clone is a term that refers to a genetically distinct plant (range: <1–>25 m diameter).

5. Discussion

In the present study, a deep learning model based on the improved Yolov5s for
automatic detection of mummy berry disease in a real wild blueberry field environment
is proposed. In order to highlight important information that is relevant to the current
task and improve the effectiveness of the network model, the coordinate attention (CA)
module was introduced on the backbone structure of the original Yolov5s. In addition,
to overcome the problem of data scarcity, we present a method for generating synthetic
training images for object detection models, which greatly reduces the effort required to
collect and annotate large datasets.

The overall performance of the improved network model was better than the original
Yolov5s. A one-way ANOVA test on precision found a significant difference between the
means of the two network models (F(1299) = 18.069, p < 0.001). The precision of the improved
network model reached 71.4%, which is 1.2% higher than Yolov5s precision. This result
is consistent with previous studies conducted to recognize plant diseases. Yan et al. [58]
compared the original Yolov5s network model with the improved Yolov5s for real-time
apple disease target detection, and the improved Yolov5s model mAP@0.5 increased by
5.1%. Similar results and comparisons with Yolov5 models were shown in a study [59],
where the authors found that with the joint efforts of the coordinate attention module and
Softpool pooling, the multi-scale feature fusion (MFF) convolutional neural network (CNN)
obtained the optimal detection accuracy with a 1.6% improvement compared to Yolov5s.
Another study [60] developed an accurate apple fruitlet detection method with a small
model size and the channel pruned Yolov5s model provided an effective method to detect
apple fruitlets under different conditions. For tomato disease detection, the study in [20]
used a mobile phone to collect images of tomato disease in a greenhouse and the improved
SE-Yolov5 mAP@0.5 was 1.78% higher than the Yolov5 model.

The performance of our improved network model was evaluated on the field-collected,
synthetic and mixed datasets. Compared to training the object detection model only on
synthetic images, we found a detection model with satisfactory performance on field-
collected images, but a significant increase in performance was achieved when trained
on a mixed dataset of field-collected and synthetic images. Our proposed Yolov5s-CA
network model trained on a mixed dataset of 70% real field images and 80% of synthetic
images outperformed, by 1.2% precision and 0.5% mAP@0.5 values, the baseline model
trained using only field-collected images. The results indicated that labeled real-world
field-collected datasets are key to improving performance by overcoming domain gaps
when training a plant disease detection model with synthetic datasets.
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The improved Yolov5s network model has improved disease prediction performance
under a certain degree of occlusion, leaf overlap, and different spatial scale scenarios
(Table 5, Figures 7–9 and Figure A4). This is because the integrated coordinate attention
(CA) mechanism at the backbone of the Yolov5s network model suppresses less relevant
information and highlights key disease-related visual features to help identify mummy
berry disease in a field environment. The lightweight coordinate attention (CA) module
captures long-term dependencies in one space, retains accurate disease location information
in the other, and forms a pair of direction-aware and position-aware feature maps, which
can help the model locate and identify potential targets more precisely and enhance the
representation capability of effective information. In addition, the CIoU loss used in this
study takes into account the overlap area, the center point distance and the aspect ratio
similarity between the actual box and the prediction box, which improves the network’s
regression accuracy and sensitivity to small disease organs [61]. The advantages of our
method become even more obvious when dealing with scenarios of large spatial scale
where a huge number of interacting and overlapping plant parts are present in a clone
level image. Therefore, the effectiveness of the improved network model for mummy berry
disease detection makes it clearly better than the l Yolov5s family and meets the needs of
real-time detection of mummy berry disease under field conditions.

In general, promising results were obtained for training object detection models by
combining a small number of field-collected images with synthetic datasets. The presented
synthetic image generation method is essential when the collection and annotation of
a large dataset are expensive and/or prohibitive. In addition, the coordinate attention
(CA) module integrated into the Yolov5s backbone has contributed to the detection of
mummy berry disease in a commercial lowbush blueberry field environment by efficiently
discriminating important features.

6. Conclusions

This study focused on detecting mummy berry disease in a real natural environment
based on the deep learning method and proposed an improved Yolov5s network model.
By integrating the coordinate attention module into the backbone of Yolov5s, the visual
features associated with mummy berry disease are well focused and extracted, which
boosts the performance of the model in identifying disease symptoms. In addition, we
presented the cut-and-paste method for synthetically augmenting the available dataset to
generate annotated training images which greatly reduces the effort required to collect
and annotate large datasets. To test the generalization ability of the improved network
model and prove the usefulness of the synthetic dataset to enhance the performance of
deep learning-based object detection models, quantitative performance comparisons of
the improved network model and Yolov5s trained on field-collected, synthetic and mixed
datasets were conducted (Tables 1–3). Compared to the baseline model with a 100%
real field dataset, the synthetic dataset combined with 70% of real field outperformed
the baseline model (Table 3). In all three datasets tested, the overall performance of the
improved Yolov5s-CA network model is superior to that of the Yolov5s model with only
slightly higher computational costs. Moreover, the improved Yolov5s network model has
improved the disease prediction performance in occlusion, leaf overlaps, and different
spatial scales. In general, the effectiveness of the improved network model for mummy
berry disease detection is better than the original Yolov5s and meets the needs of real-time
detection of mummy berry disease under field conditions. However, as the synthetic data
generation process and the network model were trained on small numbers of field-collected
images with limited variability in disease symptoms and camera shooting distances, some
missed or incorrect detection cases were observed. In addition, the presented cut–paste
synthetic data generation method is highly influenced by the quality of segmentation of
the object from the image.

In the future, taking images using high-resolution cameras at different shooting dis-
tances will contribute to creating a more robust model, as well as solving the limitations of
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missed or incorrect detection over different occlusions and spatial scales. Furthermore, we
will automate the segmentation process to extract the object from the image. Finally, we
will work on implementing the models to run on a cloud server so that web and mobile
applications can access it to make predictions.
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