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Abstract: Low temperatures are among the most important abiotic stresses, severely affecting vine
growth and development. In order to overwinter safely, grape growers pay high labor costs, which are
unsustainable in modern agriculture. Biodegradable liquid film (BLF) is an environmentally friendly
material that assists grapevines to withstand the cold. In this experiment, Cabernet Sauvignon
from Junding Winery was used as material for field trials. The regulatory effect of BLF on the cold
resistance of grapevines was analyzed, and its mechanism of action was explored using metabolomics.
The results showed that BLF significantly increased the activity of superoxide dismutase, the content
of proline and ascorbic acid, reducing sugar, sucrose, and soluble sugar, and also decreased the
content of malondialdehyde. In addition, BLF significantly increased the activity of invertase and
decreased the activity of pectinase and phosphofructokinase. Metabolomics data showed that BLF
improved cold resistance in grapevines by affecting lipids, flavonoids, amino acids, and nucleotide
metabolic pathways.
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1. Introduction

Plants have faced different types of biotic and abiotic stresses throughout their evo-
lutionary history [1]. Abiotic and biotic factors, such as temperature extremes, drought,
salinity, and pathogenic bacteria significantly affect plant growth and productivity. A plant
is a complex and delicate organism; the synthesis and decomposition of metabolites in
the body are always in a delicate dynamic equilibrium to sense changes in the external
environment and maintain the body’s normal metabolism. Temperature induces changes
in many metabolites, and low temperatures, especially, have a greater impact [2]. Cold,
one of the major abiotic stressors, has been shown to impact the equilibrium of plants,
leading to the production of reactive oxygen species (ROS) and disrupting cellular chemical
equilibrium [3]. Exposing plants to non-freezing cold temperatures increases their tolerance
to extreme cold temperatures, which is known as cold acclimation [4]. Cold affects the
growth, development, productivity, and geographic range of plants, inducing significant
changes at the molecular, cellular, physiological and biochemical levels [5].

Hypothermia is known to cause damage to cell membranes, thus causing metabolic
disorders and affecting cellular life activities [6], and even irreversible mechanical damage
to biofilms, organelles, and matrix structures, resulting in cell death [7]. Damage to the cell
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membrane leads to an increase in malondialdehyde content, which in turn destroys the
cell membrane structure [8,9]. The extent of damage to plants caused by hypothermia is
influenced by the intensity, duration, and number of cooling repetitions. Under normal
conditions, plants’ reactive oxygen species (ROS) are mainly produced by chloroplasts,
mitochondria, and peroxidases that are maintained at low levels. In contrast, under stress
conditions, ROS are generated in excess and the viability of the scavenging system is
reduced, while the redox balance is disrupted, inducing oxidative damage [10]. At low
temperatures, plant membranes undergo a transition from a liquid crystal state to a gel-
like phase with reduced fluidity, leading to ion leakage and inactivation of membrane
proteins [11]. Cell membrane lipid and fatty acid fractions affect the phase transition
temperature of membrane lipids [12]. Modulation of unsaturated fatty acid levels improves
cold resistance by remodeling membrane fluidity [13]. Severe oxidative damage may
upregulate the biosynthesis of antioxidants such as flavonoids [14–16]. Upregulation of
genes related to flavonoid synthesis was also observed in cold stress in grapevines [17].
Flavonoids play an important regulatory role in plants by enhancing antioxidant activity
and attenuating ROS accumulation [18,19]. Thus, they protect the plant to alleviate the
environmental stress [20–22]. An important factor in plant acclimatization to low tempera-
tures is the regulation of carbohydrate metabolism, including the roles of sugar precursors,
intermediates, and final products in osmoregulation, icing protection, and scavenging of
ROS, as well as their effects on vital activities such as photosynthesis, translocation, and res-
piration [23,24]. Several studies have been conducted to reveal changes in plant saccharides
at low temperatures, such as hydrolysis of cell wall polysaccharides [25], accumulation of
soluble sugars, such as sucrose, glucose, fructose, raffinose, and arabinose [26,27], as well
as changes in glycolytic processes [28]. Carbohydrates, such as raffinose, maltose, glucose,
and fructose were accumulated in tea leaves under natural overwintering conditions [29].
In addition, amino acid biosynthesis exerts a positive regulatory influence on the cold
resistance of tea plants [30,31]. The levels of proline (Pro) and free amino acids have shown
a positive correlation with the ability of tea plants to withstand cold temperatures [31].

Currently, metabolomics during plant adversity defense has become one of the
hotspots of extensive research, mainly involving some model plants and crop varieties,
such as in cold resistance studies in Arabidopsis [32,33] and drought tolerance studies
in maize [34] and wheat [35]. In addition, metabolomics has been widely applied to the
study of cold temperature response mechanisms in plants, such as garlic [36], Camellia
oleifera [37], Hevea brasilien [38], Pyrus hopeiensis [39] and rice [40]. Moreover, the effect of ex-
ogenous substances on the metabolic profile of plants in response to low-temperature stress
has also received some attention from scholars. For example, the lipophilic components
of the brown seaweed Ascophyllum nodosum improved freezing tolerance in Arabidopsis
thaliana [41] and exogenous calcium improved cold stress tolerance in bermudagrass [42].

The BLF material used in the experiment is a humic acid-based liquid film, which
can be completely naturally degraded and will not pollute the environment [43]. Previ-
ous studies have shown that BLF as a mulching material can improve soil nutrients [44]
and improve fruit quality [45]. The use of BLF as an overwintering protectant in win-
ter alleviated oxidative damage to grapevine branches caused by low temperatures and
increased the content of osmoregulatory substances [46], which can protect grapes from
safe overwintering with low labor input [43]. Humic acid (HA) can mitigate the damage
caused by abiotic stress to the plant by increasing the activity of antioxidant enzymes
and the content of osmotic regulating substances and increasing plant’s stress tolerance
ability. One study reported that exogenous HA increased peroxidase (POD), superoxide
dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), polyphenol oxidase (PPO),
and nitrate reductase (NR) activities [47]. Exogenous HA also affects starch metabolism,
and the activities of three major starch synthases in lily test tube seedlings were signifi-
cantly increased by low concentration of HA (LHA) treatment [48]. HA also promotes the
production of phenolic compounds in plants [49], which can scavenge excess free radicals
generated by stress and regulate the redox morphology of cells [50]. Our team has been
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researching BLF spraying for overwintering protection of grapevines for several years. We
investigated the effects of BLF on grapevine cold resistance [46,51], including plant sur-
vival [43], grapevine transcriptomic analysis [52], and effects on grape quality [43,53]. The
results showed that BLF attenuated oxidative stress in grapevines, reduced the semilethal
temperature of grapevines, vine and bud mortality, protected grapes from winter cold,
and delayed the date of germination in cold years. Our team has already done a lot of
research on cold-resistant grapevine phenotypes in the previous period. However, this
experiment was mainly intended to study the role of BLF using a metabolomics approach.
Therefore, malondialdehyde (MDA) was selected as an indicator of oxidative stress and
superoxide dismutase (SOD), ascorbic acid (ASA), and proline (Pro) as antioxidant indica-
tors, respectively, for the phenotypic assay in this experiment. Carbohydrates and related
enzymes were also measured in response to intracellular stability. This experiment aims to
investigate the effect of BLF spraying on the cold resistance of grapevines and to provide a
microscopic theoretical basis for the overwintering of grapevines against the cold.

2. Materials and Methods
2.1. Experimental Conditions and Materials

This experiment was conducted in a flat orchard in Junding Winery, Penglai District,
Yantai City, China (37◦75′ N, 120◦84′ E) in 2021. The site has a continental climate in the
temperate monsoon zone. The altitude is 15–25 m, the mean annual temperature is 13.6 ◦C,
the mean annual rainfall is 1002 mm, the annual average sunshine duration is 2343 h, and
the frost-free period is 214 days (data from the China Statistical Yearbook). Soils in the orchard
were relatively uniform and mainly sandy.

The experimental material was Cabernet Sauvignon (Vitis vinifera cv.), planted in 2004
with a spacing between plants and rows of 1.0 m × 2.5 m, north-south rows, Cordon de
Royat pruning, conventional water and fertilizer management. The biodegradable liquid
film (BLF) used in the experiment was purchased from the Shaanxi Mingrui Ecological
Technology Company (Yangling, China). The biodegradable liquid membrane material
consists of emulsified bitumen and humic acid macromolecules, as well as suspending
agents and emulsifiers, which can be completely degraded naturally within 180 days after
use, with a humic acid content of 121.6 g/kg.

The experimental vines were divided into two treatment groups: the group sprayed
with BLF and the group without treatment (control). A completely randomized design
with three biological replications was set up with 30 vines per experimental unit. The vines
were sprayed with BLF on 7 December 2021 (after plant dormancy). The dosage of BLF
was 150 kg/ha each time; the dilution ratio was BLF:water = 1:3 (v/v). The diluted BLF
was sprayed on the main trunk of the plant and annual branches using a manual backpack
gasoline sprayer, and then sprayed again one week later.

The samples were collected from dormant annual branches and the sample collection
date was 19 January 2022 (after cold acclimation). Each biological replicate was collected
from 20 annual branches, 0.5~1.0 cm thick, 25~50 cm long, robust, and free of pests
and diseases. The collection site was the 3rd~8th buds from the base. Stored in the
−80 ◦C freezer.

2.2. Determination of Oxidative Damage Indicator and Antioxidant Systems

Malondialdehyde (MDA): Weigh 1 g of grapevine sample and add an appropriate
amount of PBS ice bath grinding to extract MDA, transfer to a centrifuge tube and centrifuge
at 3000× g for 15 min at 4 ◦C; the supernatant is the extraction solution. To the centrifuge
tube add 1 mL of extract (Vs) and 5 mL of 0.5% thiobarbituric acid solution sequentially
and use the boiling water bath for 10 min. Use the cold water bath immediately after
completion of the reaction and centrifuge at 3000× g for 15 min at 4 ◦C. Determine the
absorbance values of the supernatant at 532 nm, 600 nm, and 450 nm (UV-1800). The results
of MDA content in the grapevines are expressed as mmol/g FW [54].
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Superoxide dismutase (SOD; EC 1.15.1.1): Use the nitrogen blue tetrazolium (NBT)
photoreduction assay with minor modifications [54]. To a clean glass test tube, add 1.5 mL
of PBS (pH 7.8), 0.3 mL of methionine solution, 0.3 mL of NBT solution, 0.3 mL of disodium
ethylenediaminetetraacetic acid solution, 0.3 mL of riboflavin solution, 0.1 mL of enzyme
extract, and 0.5 mL of distilled water sequentially and mix homogeneously. After 30 min
of reaction under 6000 lx light, terminate the reaction by shading. In addition, set up a
control tube in the light and a control tube in the dark and replace the enzyme extract with
an equal amount of water in the control tubes; shade the dark control tube throughout the
whole process. Measure the absorbance value at 560 nm with a UV-Vis spectrophotometer.
SOD activity in the grapevines is expressed as U·g−1·FW·h−1.

Proline (Pro): Weigh 0.5 g of grapevine powder in a stoppered test tube, add 6 mL of
proline using a sulfosalicylic acid solution to extract the proline in the samples, extract for
15 min in boiling water, and filter the extract after cooling. To the 10 mL centrifuge tube,
add 2.0 mL glacial acetic acid, 2.0 mL ninhydrin hydrate solution, 1.5 mL distilled water,
and 0.5 mL extraction solution sequentially, mix well, and then place in boiling water for
30 min. After cooling, add 5.0 mL toluene to the centrifuge tube, shake well, and then place
in darkness and carry out static extraction for 2 h. After complete delamination, take the
toluene layer to measure absorbance value at 520 nm. The results of the Pro content in
grapevines are expressed as µg/g FW [55].

Ascorbic acid (AsA): Sequentially, add 1.0 mL of TCA solution, 1.0 mL of anhydrous
ethanol, 0.5 mL of 0.4% phosphoric acid-ethanol solution, 1.0 mL of BP-ethanol solution,
0.5 mL of FeCl3-ethanol solution, and 1.0 mL of the extract to the centrifuge tubes. Carry
out the reaction in a water bath at 30 ◦C for 60 min after mixing. Measure absorbance
value at 534 nm. The results of the content of AsA in the grapevines are expressed as mg/g
FW [56].

2.3. Determination of Carbohydrate Contents and Related Metabolic Enzyme Activities

Dry the collected branch samples in an oven until constant weight, then pulverize
with a grinder (TL2020, DHS Life Science & Technology Co., Ltd., Beijing, China) and pass
through a 60-mesh sieve for the determination of saccharide content. Weigh the dry powder
sample (0.5 g) into a centrifuge tube, add 8 mL of 80% ethanol solution, and extract in a
water bath at 80 ◦C for 30 min, cool down, then centrifuge at 3500 r/min for 10 min. Repeat
the extraction three times. Combined and volume-determine the supernatant to 25 mL as
reducing sugar extract.

Reducing sugar: Use the 3,5-dinitrosalicylic acid method (DNS method) [54]. Evapo-
rate 2 mL of the extract in boiling water and then dissolve with 10 mL of distilled water.
Transfer 2 mL of the solution to a glass test tube. Next, add 2 mL of DNS solution. Keep
the solution in boiling water for 5 min, cool down, and then dilute to 20 mL with distilled
water. Measure the absorbance at 520 nm and calculate the reducing sugar content (%)
according to the glucose standard curve.

Sucrose: Transfer the 10 mL extract of reducing sugar to a 100 mL triangular flask.
After decolorization, filter the filtrate to be taken for determination with activated charcoal.
In a centrifuge tube, add 0.4 mL of extract and 0.2 mL of NaOH solution, then remove and
cool the solution after boiling water bath immersion for 5 min. Add 2.8 mL 30% HCl and
0.8 mL 0.1% resorcinol solution sequentially and set the water bath at 80 ◦C for 10 min. Then
measure the absorbance value at 480 nm after cooling and calculate the sucrose content (%)
according to the standard curve [57].

Soluble sugars: Use the anthrone colorimetric method [58]. First, take 1 mL of the
reducing sugar extract above and dilute it 10 times. Add 2 mL to a glass test tube, slowly
add 5 mL of sulfuric acid-anthrone solution in an ice-water bath, shake it well, and then
boil it in a water bath for 5 min. Then measure the absorbance value at 620 nm after cooling
and the content of soluble sugar (%) according to the glucose standard curve.

The cellulose content was determined by the BC4285 Cellulose (CLL) Content Detec-
tion Kit (Solarbio, Beijing, China) method and the results were expressed as mg/g. The total
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pectin content was determined by the method of BC1400 Total Pectin Content Detection Kit
(Solarbio, Beijing), and the results were expressed as µmol/g.

The activities of β-amylase (β-AL; EC 3.2.1.2), β-glucosidase (β-GC; EC 3.2.1.21),
sucrose converting enzyme (INV; EC 3.2.1.26), total pectinase, phosphofructokinase (PFK;
EC 2.7.1.11), acetaldehyde dehydrogenase (ALDH; EC 1.2.1.10), and ethanol dehydrogenase
(ADH; EC 1.1.1.1) were determined separately—refer to BC2040 β-amylase (β-AL) activity
detection kit, BC2560 β-glucosidase (β-GC) activity detection kit, BC0130 plant sucrase
activity detection kit, BC2630 pectinase activity detection kit, BC0530 phosphofructokinase
(PFK) activity detection kit, BC0750 acetaldehyde dehydrogenase (ALDH) activity detection
kit, and BC1080 ethanol dehydrogenase (ADH) activity detection kit (Solarbio, Beijing,
China). The results were expressed as U/g.

2.4. Metabolomics Analysis
2.4.1. Metabolites Extraction

The tissues (100 mg) were separately pulverized using liquid nitrogen, and the re-
sulting homogenate was reconstituted with 500 µL of prechilled 80% methanol through
vigorous vortexing. The samples were placed on ice for a duration of 5 min, followed by
centrifugation at a speed of 15,000× g and temperature of 4 ◦C for a period of 20 min. Some
of the liquid above the sediment was mixed with LC-MS grade water to achieve a final
solution with 53% methanol concentration. The specimens were subsequently relocated
to a new Eppendorf tube and subjected to centrifugation at 15,000× g, 4 ◦C for a duration
of 20 min. Ultimately, the liquid portion was introduced into the LC-MS/MS system for
analysis [59].

2.4.2. UHPLC-MS/MS Analysis

UHPLC-MS/MS analyses were conducted at Gene Denovo Co., Ltd. (Guangzhou,
China) using a Vanquish UHPLC system (Thermo Fisher, Hennigsdorf, Germany) and an
Orbitrap Q ExactiveTM HF-X mass spectrometer (Thermo Fisher, Germany). Samples were
introduced onto a Hypesil Gold column (100 × 2.1 mm, 1.9 µm) by employing a linear
gradient over a period of at a flow rate of 0.2 mL/min. The eluents used in the positive
polarity mode consisted of eluent A, which was a solution containing 0.1% formic acid in
water, and eluent B, which was composed of methanol. The eluents used in the negative
polarity mode consisted of eluent A, which was a solution containing 5 mM ammonium
acetate at pH 9.0, and eluent B, which was composed of methanol. The gradient of the
solvent was programmed as follows: 2% B, 1.5 min; 2–100% B, 12.0 min; 100% B, 14.0 min;
100–2% B, 14.1 min; 2% B, 17 min. A Q ExactiveTM HF-X mass spectrometer was utilized
in both positive and negative polarity modes, employing a spray voltage of 3.2 kV. The
capillary temperature was set at 320 ◦C, while the sheath gas flow rate and aux gas flow
rate were adjusted to 40 arb and 10 arb, respectively.

2.4.3. Data Processing and Metabolite Identification

The UHPLC-MS/MS generated processing with Compound Discoverer 3.1 (1, Thermo
Fisher) to execute peak alignment and peak selection for individual metabolites. The
primary parameters were established as follows: a tolerance of 0.2 min for retention time;
an actual mass tolerance of 5 ppm; a signal intensity tolerance of 30%; a signal-to-noise ratio
of 3; and a minimum intensity threshold set at 100,000. Afterwards, the spectral intensities
were adjusted to match the overall spectral intensity. The adjusted data were utilized for
molecular formula prediction by considering additive ions and molecular ion ions. The
peaks were then compared with the mzCloud (https://www.mzcloud.org/ (accessed on
30 May 2022)), mz Vault, and Mass List database in order to obtain precise qualitative
and relative quantitative results. Statistical analyses were conducted using R software
(version R-3.4.3), Python (version 2.7.6), and the CentOS operating system (release 6.6).
When encountering non-normally distributed data, attempts were made to normalize them
using the area normalization method.

https://www.mzcloud.org/
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2.5. Statistical Analysis

The experimental data were arranged in Microsoft Office Excel 2017; IBM SPSS Statis-
tics 21 was employed for data analysis, and GraphPad Prism was utilized to construct
the graphs. Normality and homogeneity tests were used before Student’s t test. Para-
metric test found that p-values of the data are all greater than 0.05, suggesting that the
samples have homogeneity of variance. The threshold for statistical significance in the
t test was p < 0.05. The multiple comparison test was only used to make comparisons
between BLF and control. Metabolomic profiling was performed in collaboration with
Gene Denovo Biotechnology Co., Ltd. (Guangzhou, China). The analysis of biological
information was conducted utilizing Omicsmart, a platform designed for real-time data
analysis (http://www.omicsmart.com (accessed on 17 July 2022)).

3. Results

In the experiment, 4 cold resistance indicators (Figure 1), 5 saccharides (Figure 2), and
7 enzymes related to sugar metabolism (Figure 3) were measured. The results showed that
BLF significantly increased SOD activity, Pro content, and AsA content, and decreased
MDA content. BLF also significantly increased the reducing sugar, sucrose, and soluble
sugar content, and had no significant effect on cellulose and pectin. In addition, BLF
significantly increased the activity of INV, significantly decreased the activity of Pectinase
and PFK, and had no significant effect on β-GC, β-AL, ADH, and ALDH.

An untargeted metabolomics-based approach was exploited to further examine the
effect of BLF treatment on grapevines. A total of 4899 compounds were detected in the
experimental design, of which 216 were annotated, including esters, flavonoids, carboxylic
acids and derivatives, phenols, and benzene and substituted derivatives.
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Figure 1. Differences in physiological indicators of cold resistance between BLF and control. Notes:
Values are the mean ± SD of three biological replicates. Statistical significance was tested at p < 0.05,
based on the mean square error for each treatment. * indicates significant difference between BLF
and control. The same applies to the figures below. Units for each indicator: MDA: mmol/g; SOD:
U·g−1·h−1; Pro: µg/g; AsA: mg/g.
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Figure 3. Differences between BLF and control in enzymes related to carbohydrate metabolism.
Notes: * indicates significant difference between BLF and control. “ns” indicates no significant
difference between BLF and control.

The multivariate statistical technique known as supervised orthogonal projection to la-
tent structures discriminant analysis (OPLS-DA) was employed to simplify the database and
determine the distinctive contribution of compound groups for discrimination purposes.
The OPLS-DA score plots clearly highlighted discernible distinctions between the BLF and
control (Figure 4a), suggesting that BLF changes the metabolite profiles in grapevines. To
avoid overfitting the OPLS-DA model, 200 permutation tests were performed to verify that
the Q2 value was less than 0. As shown in Figure 4b, R2Y and Q2Y of the original model are
always substantially higher than the corresponding “permutation” values. We may now
see that the OPLS model is valid. Thus, the model allows the identification of differential
metabolites between treatments. Taken together, these results underscore the efficacy of
non-targeted metabolomics in assessing the distribution of grapevine metabolites between
the BLF and control.
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Subsequently, the VIP selection methods were applied to evaluate the most discrim-
inant compounds in the OPLS-DA model built. In total, 68 compounds had significant
differences between BLF and control (Figure 5a), among which 25 metabolites were upreg-
ulated, including fatty acyls, prenol lipids, organooxygen compounds, and so on, while
43 metabolites were downregulated, including carboxylic acids and derivatives, fatty acyls,
glycerophospholipids, and organonitrogen compounds. In addition, the VIP approach
identified 68 compounds with a prediction score greater than 1 (Figure 5b). These com-
pounds can be classified into various categories, including carboxylic acids and derivatives
(9 compounds), fatty Acyls (5 compounds), organooxygen compounds (5 compounds),
organonitrogen compounds (4 compounds), glycerophospholipids (3 compounds), steroids
and steroid derivatives (3 compounds), as well as benzene and substituted derivatives
(2 compounds). These substances played important roles in the differences between BLF
and control.

Agriculture 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 4. The OPLS-DA analysis between BLF and control. Notes: (a): OPLS-DA score plot; (b): 

permutation test plot; Circles are the positional intervals of the samples. Dotted lines are the re-

gression line for the variable. 

Subsequently, the VIP selection methods were applied to evaluate the most discrimi-

nant compounds in the OPLS-DA model built. In total, 68 compounds had significant dif-

ferences between BLF and control (Figure 5a), among which 25 metabolites were upregu-

lated, including fatty acyls, prenol lipids, organooxygen compounds, and so on, while 43 

metabolites were downregulated, including carboxylic acids and derivatives, fatty acyls, 

glycerophospholipids, and organonitrogen compounds. In addition, the VIP approach 

identified 68 compounds with a prediction score greater than 1 (Figure 5b). These com-

pounds can be classified into various categories, including carboxylic acids and deriva-

tives (9 compounds), fatty Acyls (5 compounds), organooxygen compounds (5 com-

pounds), organonitrogen compounds (4 compounds), glycerophospholipids (3 com-

pounds), steroids and steroid derivatives (3 compounds), as well as benzene and substi-

tuted derivatives (2 compounds). These substances played important roles in the differ-

ences between BLF and control. 

 

Figure 5. Basic analysis of differential metabolites between BLF and control. Notes: (a): Differential 

metabolite volcano map; (b): Differential metabolite VIP map. 

Enrichment analysis allows the linking of differential metabolites to specific meta-

bolic pathways. Based on the KEGG database, differential metabolites were integrated 

into one dataset for metabolic pathway enrichment analysis. 

Figure 5. Basic analysis of differential metabolites between BLF and control. Notes: (a) Differential
metabolite volcano map; (b) Differential metabolite VIP map.

Enrichment analysis allows the linking of differential metabolites to specific metabolic
pathways. Based on the KEGG database, differential metabolites were integrated into one
dataset for metabolic pathway enrichment analysis.

The differential metabolites were enriched in a total of 48 metabolic pathways. Five
of these were lipid-related, namely: biosynthesis of unsaturated fatty acids (ko01040),
alpha-linolenic acid metabolism (ko00592), sphingolipid signaling pathway (ko04071),
linoleic acid metabolism (ko00591), and glycerophospholipid metabolism (ko00564). Five
were related to amino acids, namely: arginine biosynthesis (ko00220), arginine and proline
metabolism (ko00330), glycine, serine, and threonine metabolism (ko00260), biosynthe-
sis of amino acids (ko01230), and histidine metabolism (ko00340). Three were related to
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flavonoids, namely: flavone and flavonol biosynthesis (ko00944), flavonoid biosynthe-
sis (ko00941), and biosynthesis of phenylpropanoids (ko01061). Nucleotide metabolism
(ko01232) was related to energy metabolism. Figure 6 contains these 14 metabolic path-
ways, which belong to two different KEGG A Classes (first circle). The image also shows
information on the significance of these pathways (second circle), the proportion of up-and
down-regulated differential metabolites (third circle), and the Rich Factor (fourth circle).
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Figure 6. Enrichment analysis of differential metabolites based on KEGG database.

The metabolomics data showed that there were six differentially expressed metabolites
associated with lipid metabolism (Figure 7a), of which α-LnA, icosenoic acid, and adenosine
were all upregulated, while LnA, phosphocholine, and 9-OxoODE were all downregulated.
Their expression in the samples is shown in Figure 7b. There are two metabolites associated
with flavonoids (Figure 8a), nictoflorin and (+)-upregulated. Their expression in the samples
is shown in Figure 8b. Four differentially expressed metabolites associated with amino
acids (Figure 9a), of which N-Acetylornithine was upregulated and 1-Methylhistidine,
L-Citrulline, and 4-Guanidinobutanoate were downregulated. Their expression in the
samples is shown in Figure 9b. The increase of adenine and adenosine may cause an
increase in ATP (Figure 10a) involved in cellular energy metabolism. Their expression in
the samples is shown in Figure 10b.
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Figure 7. Lipid metabolism and its expression between BLF and control. Notes: A: Choline-phosphate
cytidylyltransferase; B: diacylglycerol choline phosphotransferase; PLC: phosphatidylinositol phos-
pholipase C; PC: Phosphatidylcholine; PA: Phosphatidic acid; JA: Jasmonic acid; LA: Linoleic acid;
LnA: alpha-Linoleic acid; (a) metabolic pathway map; (b) metabolite heat map.
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Figure 8. Flavonoids metabolism and its expression between BLF and control. Notes:
CYP75A: flavonoid 3′,5′-hydroxylase; CYP75B1: flavonoid 3′-monooxygenase; C: flavonol 3-O-
glucosyltransferase; FLS: flavonol synthase; FG2: flavonol-3-O-glucoside L-rhamnosyltransferase;
DFR: bifunctional dihydro flavonol 4-reductase/flavanone 4-reductase; ANS: anthocyanidin synthase;
LAR: leucoanthocyanidin reductase; (a) metabolic pathway map; (b) metabolite heat map.
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Figure 9. Amino acids metabolism and its expression between BLF and control. Notes: D: S-adenosyl-
L-methionine: L-histidine N-methyltransferase; E: arginine 2-monooxygenase; F: amidase; GATM:
glycine amidinotransferase; GAMT: guanidinoacetate N-methyltransferase; (a) metabolic pathway
map; (b) metabolite heat map.
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4. Discussion
4.1. Physiological Indicators of Cold Resistance

Increased levels of malondialdehyde (MDA) are not only the result of damage to
the cytoplasmic membrane, but also cause further damage to the cell. It reacts with
macromolecules, such as proteins or nucleic acids, to produce a Shiff base, which cross-
links proteins and disrupts the cell membrane structure, preventing the normal structural
function of the membrane [8,9]. The higher the MDA content, the greater the damage
to the biofilm and the weaker the plant’s resistance to stress, and vice versa. Under
natural overwintering conditions, the MDA content in grapevines gradually increased
as the field temperature decreased. The MDA content was negatively correlated with
the cold resistance of grapevine rootstock varieties, with varieties more resistant to cold
having lower MDA content [60]. The degree of damage to the cell membrane system can
be reflected by measuring the MDA content [61]. In this experiment, the reduction in
MDA levels reflected the alleviation of oxidative stress by BLF treatment, which may be
related to HA composition. HA contains a variety of reactive functional groups, among
which the interconversion of phenolic hydroxyl and quinone groups can form a redox
system that plays an important role in electron transfer [62]. HA root irrigation reduced
the MDA content and electrolyte permeability of melon seedlings in reducing the extent of
cell membrane damage [63].

Under hypothermic stress, plants can mitigate damage from ROS by enhancing their
antioxidant defense systems. Antioxidant systems, both enzymatic and non-enzymatic,
mitigate oxidative stress by scavenging excess ROS from the body. Superoxide dismutase
(SOD) converts O2·−to H2O2 and is considered the first defense against antioxidant damage.
This experiment showed that BLF enhanced SOD activity by 43.8% in response to oxidative
stress compared to control.

In addition, antioxidant metabolites are essential to non-enzymatic response systems.
Non-enzymatic antioxidant systems include ascorbic acid, glutathione, alkaloids, phenols,
tocopherols, and carotenoids [64]. The present study determined the grapevines’ ascorbic
acid (ASA) content. ASA is a substrate for enzyme-catalyzed ROS detoxification reactions
and also scavenges ROS directly [65]. In the study, grapevines sprayed with BLF showed
an increase in ASA content compared to control, which may be due to the accumulation of
ASA promoted by BLF material in response to oxidative stress.

Proline (Pro) is an important osmoregulatory substance that reduces cellular water
potential and maintains osmotic balance and cell structure. In addition, proline acts
as an antioxidant to scavenge excess ROS in plants and an energy reservoir to provide
energy for plant growth recovery after adversity stress [66]. In the present study, BLF
increased the Pro content in grapevines. However, the conclusions of previous studies
regarding the relationship between free proline and plant cold resistance are inconsistent,
with some researchers suggesting that the accumulation of free Pro can improve plant
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cold resistance [67,68], while some scholars suggest that Pro does not affect plant cold
resistance [69,70]. The present experiment corroborates the former.

4.2. Carbohydrates and Enzymes

In this study, the content of carbohydrates, including the content of insoluble sugars,
cellulose, pectin, soluble sugars, reducing sugars, and sucrose, was also measured to
explore the effects of BLF on intra-plant sugars at the metabolic level.

Carbohydrate metabolism is central to the life activities of all organisms and connects
protein, lipid, nucleic acid, and secondary material metabolism [71]. The regulation of gene
expression of carbohydrate metabolism-related enzymes may play a key role in plants’
corresponding low-temperature stress [72]. In addition to disruptions in physiological
metabolism, tissue freezing may occur in plants in subfreezing cold stress. Plant cells
reduce cell volume contraction and prevent cell deformation by increasing their wall
thickness and strength [73]. The main components of the cell wall are pectin, cellulose, and
hemicellulose, which control cell wall porosity and cell adhesion [74,75], thereby preventing
ice diffusion and promoting subcooling of intracellular water under low temperature
or freezing stress [76]. Under low-temperature stress, cellulose in the cell wall is also
enzymatically hydrolyzed to soluble sugars, which can reduce osmotic potential and
cytosol freezing point, maintain the structural stability of the cell, etc. [77]. In the present
study, the pectinase content of BLF grapevines was lower than that of control, indicating
that BLF alleviated the degradation of grapevine cell walls at low temperatures but did not
show significant differences in total pectin content, which may be related to the complexity
of pectin composition. Pectins are large polysaccharides with a complex class of structures
and functions, including homogalacturonan (HG), rhamnogalacturonan I (RGI, RGII),
and to a lesser extent xylogalacturonan (XGA) and apigenin galacturonan (AGA) [78].
Pectinases are also encoded by a relatively large gene family in plants [79]. BLF treatment
may have affected pectin composition, such as the ratio of pro-pectin to soluble pectin,
more than the total amount of pectin.

The polysaccharides in the cells are hydrolyzed into soluble sugars at low tempera-
tures, which increases the osmotic concentration of the cells, decreases the water potential,
and increases the water retention capacity, thus lowering the freezing point and providing
icing protection, in addition to having a protective effect on sensitive coupling factors
in protoplasts, mitochondria, and cell membranes [80–82]. The study of cold resistance
in different olive varieties found that the soluble sugar content in leaves increased with
decreasing stress temperature, with a greater increase in varieties with high cold resis-
tance [81]. The soluble sugar content of BLF grapevines in this study was significantly
higher than that of control. This suggests that BLF plants may have produced large amounts
of soluble sugars through starch hydrolysis to improve chilling resistance. Studies have
shown that the content of fructose, glucose, sucrose, raffinose, and hydrosucrose in grape
buds is closely related to plant chilling resistance [83], and the contribution of sucrose in
particular to chilling resistance has been widely recognized [84]. In addition to osmopro-
tective effects, sucrose acts as a signaling molecule to induce or repress the expression of
relevant genes and alter plant resistance [85,86]. Low temperature also leads to a decrease
in sucrose content, as evidenced by stimulated degradation of sucrose, increase in hexose
phosphate, and limitation of sucrose synthesis, which contributes to cold tolerance [27]. In
the present study, BLF treatment increased the sucrose, reducing sugar, and soluble sugar
contents of grapevines. These results suggest that BLF treatment may improve the cold
resistance of grapevine plants by affecting carbohydrate metabolism.

Low temperatures tend to induce an increase in the rate of sucrose synthesis in plants
but are accompanied by an increase in sucrose degradation and sucrose/starch conversion
to accumulate more glucose and fructose [27]. The increase in the ratio of fructose/sucrose
content in winter wheat leaves and rhizomes under low-temperature stress, suggests that
low-temperature sucrose conversion to fructose and fructose content in plants is linked to
low-temperature stress [87]. Sucrose synthase (SS) and sucrose convertase (INV) are the
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two most studied sucrose enzymes, both of which regulate the synthesis and catabolism
of sucrose at low temperatures. In the present study, the INV activity of BLF-treated
grapevines was higher than that of control, indicating that BLF treatment increased INV
activity and promoted sucrose catabolism. The increase of sucrose content in BLF treatment
in this experiment might come from the hydrolysis of polysaccharides. In addition, BLF
treatment increased the activity of fructose 6-phosphate kinase (PFK), which promoted the
conversion of fructose-6-phosphate to fructose-1,6-bisphosphate.

4.3. Metabolomics
4.3.1. Lipid Metabolism

Plants typically exhibit a response to cold stress by enhancing the unsaturation of
membrane lipids, modifying lipid composition, or adjusting lipid/protein ratios [88]. In
this study, BLF adjusted end products of lipid metabolism such as icosenoic acid, phospho-
choline, and 9-OxoODE.

Linolenic acid (LnA), the major unsaturated fatty acid in plants that can be released
from the membranes of cellular organelles (e.g., chloroplasts), is the precursor of jasmonic
acid (JA) [89]. JA helps mediate many forms of abiotic stress, including cold and des-
iccation [90]. In this study, BLF treatment increased α-LnA content and decreased LnA
content, thereby impacting grapevine cold tolerance. Phosphatidylinositol phospholipase
C (PLC) hydrolyzes common phospholipids such as phosphatidylcholine (PC) to produce
diacylglycerol (DAG) and phosphocholine. DAG produced by PLC hydrolysis is rapidly
phosphorylated to phosphatidic acid (PA) [91]. Adenosine is important for PLC synthesis
and BLF treatment increased the adenosine content.

4.3.2. Flavonoids Metabolism

Flavonoids are a large group of secondary metabolites, which can be categorized as
flavones, flavonols, flavanols, flavanones, isoflavones, anthocyanins, and proanthocyani-
dins [92], play a role in a wide range of biotic and abiotic stresses. Low temperature strongly
activated the expression of flavonoid biosynthesis-related genes and the rise of flavonoid
content [93–95]. Flavonoids are considered to be the second antioxidant defense system
in plant tissues, which is activated by the depletion of antioxidant enzyme activity [14].
On the one hand, flavonoids have a scavenging effect on ROS. The B-ring hydroxyl con-
figuration provides hydrogen and an electron to the hydroxyl, peroxyl, and peroxynitrite
radicals, which stabilizes them and generates relatively stable flavonoid radicals [96]. On
the other hand, flavonoids inhibit enzymes involved in ROS generation, i.e., microsomal
monooxygenase, glutathione S-transferase, mitochondrial succinylase, NADH oxidase,
etc. [97]. Thus, it protects the plant from oxidative damage.

The bioactivity of flavonoids is highly dependent on the structure, and differences
in the number and distribution of hydroxyl radicals (-OH) affect the type of interactions
between flavonoids and the lipid bilayer, and thus their bioactivity [98]. Some flavonols
can enter the interior of the phospholipid bilayer, form hydrogen bonds with lipid head
groups and water molecules, enhance membrane rigidity, scavenge free radicals flowing
through the lipid bilayer, and thus inhibit lipid peroxidation [99,100]. In this experiment,
BLF treatment increased the content of Kaempferol 3-o-rutinoside and (+)-Catechin in
grapevines. The differences may be caused by differences in the degree of oxidative stress
in the plants or may be related to the inducing effect of humic acid components.

4.3.3. Amino Acids Metabolism

Amino acids play a crucial role in facilitating metabolic processes and the transporta-
tion and storage of essential nutrients, including carbohydrates, proteins, vitamins, and
minerals [101]. Amino acids not only synthesize proteins for plant growth and utiliza-
tion but also provide the plant with a source of nitrogen. In a majority of plants, amino
acids form the most plentiful chemical form for nitrogen carriage [102]. The biosynthesis,
degradation, and transport of amino acid are strongly regulated to meet their require-
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ments for nitrogen and carbon availability [103]. L-arginine and L-citrulline might serve
as endogenous N sources for plants [104]. N-acetylornithine, a non-proteinogenic amino
acid, is an essential intermediate in the production of arginine (Arg) and polyamines
(PAs) [105], which represent important reserves of assimilated nitrogen. In this experiment,
BLF treatment downregulated L-Citrulline content and upregulated N-Acetylornithine
content. Guanidinobutanoate, a metabolite of arginine, is the building block of the polyke-
tide synthase (PKS) [106]. PKS is a natural product with diverse and potent biological
activities [107]. In this experiment, 4-Guanidinobutanoate content was downregulated in
the BLF treatment.

4.3.4. Nucleotides Metabolism

Adenine is an important nucleobase, and its derivative, adenosine 5′-triphosphate
(ATP), is a major energy currency in cells [108]. Adenosine is an endogenous regulator
of the immune system and plays a key role in the inflammatory response [109]. In this
study, BLF increased both adenine and adenosine content which promoted the conversion
between ADP, AMP, and ATP to provide energy for cellular metabolism. In addition,
adenine and adenosine affect the production of PLC in lipid metabolism, which in turn
affects the conversion of PC to DAG.

5. Conclusions

In this study, BLF was found to protect grapevines safely throughout the cold winter
via multiple pathways. BLF spraying improved the cold tolerance of grapevines by increas-
ing SOD activity, Pro and AsA content, decreasing MDA content, and increasing sucrose,
reducing sugar, and soluble sugar content. In addition, BLF reduced pectinase content in
grapevines, contributing to the mitigating cell breakage caused by low temperatures. BLF-
sprayed grapevines showed increased INV activity, which facilitated sucrose catabolism,
and increased fructose 6-phosphate kinase (PFK) activity, which facilitated the conversion
of fructose-6-phosphate to fructose-1,6-bisphosphate. Metabolomics data showed that BLF
affected some of the downstream metabolites of lipids and flavonoids in grapevines, such as
LnA, α-LnA, icosenoic acid, phosphocholine, 9-OxoODE, nictoflorin and (+)-upregulated,
which enabled the vines to withstand severe cold. Additionally, the metabolism of some
amino acids and nucleotides was affected under BLF spraying. Therefore, this experiment
again corroborated the cold-resistant effect of BLF by the metabolomic approach. However,
the limited numbers of differential metabolites and KEGG pathways observed in this ex-
periment may be attributed to the winter test period when grapevine activity was sluggish.
Additionally, the utilization of grapevines as test materials resulted in slower life activity in
non-bud parts compared to buds, thereby influencing the experimental outcomes. In the
future, we will improve the experimental materials and study “buds” in particular.
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