
Citation: Ryu, G.-A.;

Chuluunsaikhan, T.; Nasridinov, A.;

Rah, H.; Yoo, K.-H. SCE-LSTM:

Sparse Critical Event-Driven LSTM

Model with Selective Memorization

for Agricultural Time-Series

Prediction. Agriculture 2023, 13, 2044.

https://doi.org/10.3390/

agriculture13112044

Academic Editor: Xanthoula

Eirini Pantazi

Received: 18 September 2023

Revised: 15 October 2023

Accepted: 18 October 2023

Published: 24 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

SCE-LSTM: Sparse Critical Event-Driven LSTM Model with
Selective Memorization for Agricultural Time-Series Prediction
Ga-Ae Ryu 1, Tserenpurev Chuluunsaikhan 2 , Aziz Nasridinov 2, HyungChul Rah 3 and Kwan-Hee Yoo 2,*

1 Department of Materials Digitalization Center, Korea Institute of Ceramic Engineering & Technology,
Jinju 52851, Republic of Korea; garyu@kicet.re.kr

2 Department of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea;
teo@chungbuk.ac.kr (T.C.); aziz@chungbuk.ac.kr (A.N.)

3 Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
rah.remnant@gmail.com

* Correspondence: khyoo@chungbuk.ac.kr

Abstract: In the domain of agricultural product sales and consumption forecasting, the presence
of infrequent yet impactful events such as livestock epidemics and mass media influences poses
substantial challenges. These rare occurrences, termed Sparse Critical Events (SCEs), often lead to
predictions converging towards average values due to their omission from input candidate vectors.
To address this issue, we introduce a modified Long Short-Term Memory (LSTM) model designed to
selectively attend to and memorize critical events, emulating the human memory’s ability to retain
crucial information. In contrast to the conventional LSTM model, which struggles with learning sparse
critical event sequences due to its handling of forget gates and input vectors within the cell state, our
proposed approach identifies and learns from sparse critical event sequences during data training.
This proposed method, referred to as sparse critical event-driven LSTM (SCE-LSTM), is applied to
predict purchase quantities of agricultural and livestock products using sharp-changing agricultural
time-series data. For these predictions, we collected structured and unstructured data spanning the
years 2010 to 2017 and developed the SCE-LSTM prediction model. Our model forecasts monetary
expenditures for pork purchases over a one-month horizon. Notably, our results demonstrate
that SCE-LSTM provides the closest predictions to actual daily pork purchase expenditures and
exhibits the lowest error rates when compared to other prediction models. SCE-LSTM emerges as a
promising solution to enhance agricultural product sales and consumption forecasts, particularly
in the presence of rare critical events. Its superior performance and accuracy, as evidenced by our
findings, underscore its potential significance in this domain.

Keywords: sparse critical event-driven LSTM (SCE-LSTM); forecasting; pork consumption; unstructured
big data

1. Introduction

Time series data are a set of sequential data that are temporally ordered and collected
over a certain period. Successive observations are correlated within these data, which
exhibit characteristics such as trends, seasons, cycles, and irregular fluctuations. Trend
changes refer to data that exhibit a state of gradual and continual change over a long period.
When trend changes are recorded on a monthly or quarterly basis, data with seasonal
differences can be referred to as time-series data with seasonal variations. Time-series data
with irregular fluctuations refer to data devoid of patterns and resulting from unpredictable
events, such as natural disasters and social issues such as labor strikes. Analyzing time-
series data with these characteristics enables us to identify specific patterns and predict
future values [1].

For time-series data prediction, machine learning models, such as autoregressive
integrated moving average (ARIMA), regression models, or deep learning methods based

Agriculture 2023, 13, 2044. https://doi.org/10.3390/agriculture13112044 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13112044
https://doi.org/10.3390/agriculture13112044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-7107-4830
https://orcid.org/0000-0002-2015-1979
https://orcid.org/0000-0002-2299-4216
https://doi.org/10.3390/agriculture13112044
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13112044?type=check_update&version=2

Agriculture 2023, 13, 2044 2 of 21

on recurrent neural networks (RNN), can be used [2]. In fact, several studies related to
predicting various types of time-series data have been reported. In particular, stock and
oil prices, and sales volumes have been predicted using models that reflect the features
affecting the target values, such as online news and word-of-mouth on social media [3–7].
In addition, LSTM models have been used to predict sales volumes and consumption
of agricultural products [8–10]. Although the data were compiled and predicted using
monthly, weekly, and quarterly seasonal data, the predictions of sales volumes were
not sufficiently accurate [10]. The prediction model using the LSTM algorithm made
poor predictions, especially during irregular fluctuations,. Similarly, food consumption
prediction in terms of the cost of purchasing pork was proposed using structured and
unstructured data such as blogs and online news to reflect social issues related to pork [9].
In this study, the prediction model with the LSTM algorithm was compared with that of
the autoregressive model with exogenous variables (ARX). Although the LSTM model
exhibited marginally better accuracy and a lower mean absolute percentage error (MAPE)
than the ARX model, the pattern of the ARX model mimicked that of actual data better
than the LSTM model, which stayed close to the mean. The LSTM prediction models did
not follow the actual data as closely as the ARX models in terms of height and depth.

There are several challenges when the deep learning models are applied to agricultural
time-series. Specifically, when sales or consumption of agricultural products are to be
forecasted, sparsely occurring events such as livestock epidemics or mass media influences
can significantly impact the target values and complicate forecasting. In this study, we
define these events as sparse critical events (shortly, SCE). As these critical events generally
occur rarely, most of the data points are blank or zero, which makes the conventional deep
learning LSTM model unsuitable for forecasting. As a result, future sparse critical event
values are difficult to predict because they do not reflect trends in the target value. Moreover,
occasional critical events are not reflected in the input candidate vectors; therefore, the
prediction result converges to an average value.

To overcome these problems, this paper sets the following objective. We propose
a prediction method that reflects various issues and influences in unstructured data by
improving the conventional deep learning LSTM model. The proposed modified LTSM
model can selectively prioritize and memorize SCE, differentiate sequences with SCE
values within the cell to be learned, and subsequently select the learning method based
on whether it is a SCE. Furthermore, it can learn and predict by reflecting the trend,
even in the case of sudden changes. The model proposed in this study is called sparse
critical event-driven LSTM (SCE-LSTM) and was used to predict the purchased amounts
of agricultural and livestock products such as pork. To predict the purchased amounts,
we collected structured and unstructured data from 2010 to 2017 and pre-processed the
data for analysis. We subsequently developed a prediction model to forecast the amount of
money spent to purchase pork using the SCE-LSTM and made a prediction for a one-month
period. The predictions of the proposed model were compared with those of other models,
including the RNN, gated recurrent unit (GRU), and conventional LSTM model for model
evaluation [2,11].

2. Literature Review

In this section, we review literature related to the following topics: LSTM models on
price or consumption prediction using unstructured data, problems in LSTM models when
SCE occurs, and modified LSTM models that mimic how human brains control forgetting to
address the problems caused by SCE. Literature on LSTM models for price or consumption
prediction is reviewed in Section 2.1; the problems caused by SCE in LSTM models and the
modifications adopted to address them are reviewed in Section 2.2. Finally, the mechanism
of forgetting in the human brain and the representation of selective memorization in the
proposed modification to LSTM models are reviewed in Section 2.3.

Agriculture 2023, 13, 2044 3 of 21

2.1. LSTM Model and Its Applications

The prices of items such as stocks and agricultural products may represent buyers’
interests or expectations. Buyers may show interest in certain items based on the need
they desire to fulfil or the information they receive, resulting in greater demand or price
fluctuations. Information from various media, such as news, social network services (SNS),
and TV programs, which are referred to as unstructured data in this study, have reportedly
influenced price fluctuations in stock, foreign currency, and foods [3,9,12]. Several reports
suggest that unstructured data have influenced trend changes in stocks and prices when
these data were incorporated into a LTSM model [3,9,13]. Generally, LSTM models are
recurrent neural network (RNN) models designed to overcome a vanishing/exploding
gradient problem [14] and are popular as prediction models for various applications,
including stock trading and agriculture [3,9,15,16]. In a certain study, a novel application
of deep learning models for stock price prediction was proposed by converting newspaper
articles into distributed representations for LSTM [15]. The proposed model captures the
changes in the time-series influence on stock prices. In another study, a deep learning
approach that combines unstructured and time-domain data was proposed to improve
time-series predictions [16]. It captures the text pattern with embeddings and convolutional
layers by crawling the collected web event data and predicts taxi demand forecasting using
LSTM and fully connected layers. The error rate of the proposed method was significantly
lower than that of other forecasting methods. Five forecasting algorithms were compared
to forecast the demands of agri-food, including four machine learning-based models and
the LSTM model [9]. The results indicated that unstructured data, including broadcast
news, TV programs, and SNS, improved forecasting patterns of pork consumption when
combined with structured data for forecasting.

2.2. Problems in LSTM Models and Modification to LSTM Models

When LSTM was introduced to overcome the vanishing/exploding gradient problem,
it was created with memory cells and gate units, including the input, output, and forget
gates [14,17]. A forget gate controls how much data or knowledge are retained or forgotten
by the cell memory, where the data or knowledge are learned from previous time points.
An input gate controls the amount of current data or knowledge that is absorbed by the
cell memory. Current and previous data or knowledge are both generally stored in LSTM
models. However, conventional LSTM models may forget the knowledge learned from
previous events when important events occur after a long period, which may lead to failure
of the long-term dependency mechanism and suboptimal performance [3,18]. A few novel
approaches have been proposed to address the problems caused by irregular time intervals
between events. In the healthcare domain, random and irregular sickness records, as
well as regular daily health monitoring records, were used to detect abnormalities using
time-aware LSTM [18]. Similarly, in stock prediction, online news with a large time gap was
learned through an event-driven LSTM model by extending an LSTM model to include an
event-driven memory mechanism [3]. Although the effectiveness of the proposed models
remains unverified, we propose a modified LSTM model that reflects SCE to properly
forecast the prices when sparse but critical events occur.

2.3. How Selective Memorization Is Represented in Our Proposed Modification to LSTM Models

Until recently, the majority of researchers investigating memory considered forgetting
to be a passive process; however, a small group of researchers proposed the radical idea
that the brain is built to forget [19]. Active forgetting has been suggested as a process
in which the brain actively prunes memories that become unused; a phenomenon called
adaptive forgetting enables the brain to discard unwanted memories and to retain only
the important information to efficiently store important things [20,21]. When an active
forgetting mechanism is introduced to a neural network through a plug-and-play forgetting
layer, it provides several benefits, including strong generalization and long-term learning
and memory [22]. Interestingly, in the LSTM model in which the problems of gradient

Agriculture 2023, 13, 2044 4 of 21

vanishing and explosion were resolved, one of the three gates of the memory cell, an
adaptive forget gate, enables the LSTM model to learn automatically and causes adaptive
forgetting or resetting of the cell’s memory [14,23,24]. Let us now consider the brain’s role
in memorizing rather than forgetting. Generally, brain memory is designed to selectively
remember meaningful critical events. In this study, we propose a modification to LSTM
to enable the selective attention and memorization of critical events. The ability of the
modified LSTM model to generalize new information is based on the mechanisms of
controlled forgetting and selective attention required for encoding and retrieval in the
human brain [19,25,26].

3. Methodology

As mentioned in Section 1, several applications involve independent variables that
occur sparsely but significantly affect the target variable in time-series data, which we call
SCE [6,16,22,27]. SCE tend to be selectively handled and remembered by the brain. The
SCE-LSTM, which reflects these characteristics, is described in detail. In Section 3.1, we
specify the SCE in the time-series data and, subsequently, describe the method used to
define them SCE. In Section 3.2, we describe how SCE can be found in time-series data.
Finally, we describe the design of our proposed SCE-LSTM model in Section 3.3.

3.1. Defining the SCE in Time-Series Data

One of the most crucial tasks in agriculture is to predict the demand for agricultural
products accurately [28–30]. In this study, we predict the demand for pork using structured
as well as unstructured big data [9]. For this purpose, we considered the daily amounts
of money spent to purchase pork in Korea from 2010 to 2017 as target values, which were
taken from the agri-food consumers panel data by the Rural Development Administration.
The average amount of money used to purchase pork belly meat was KRW (Korean Won)
263,115, the maximum was KRW 860,869, and the minimum was KRW 11,400, as shown
in Figure 1a. Generally, outliers appear when the purchase amount changes sharply. For
example, the daily amount of money spent to purchase pork belly meat is between KRW
331,494 and KRW 860,869 in Figure 1a, which exceeds the upper and lower limits of the
moving-average-based Bollinger band on the window sequence. The Bollinger band is
an indicator that reflects stock price trends, and it was developed by John Bollinger [31].
Outliers were defined as those above the daily amounts of money exceeding the upper or
lower limits of the moving average-based Bollinger band. Figure 1b shows a few of the
largest differences in the daily amount of money spent to purchase pork belly meat. The
largest difference, KRW 589,119, occurred on 3–4 March 2015, followed by KRW 589,969
on 29–30 September 2017, and KRW 571,728 on 9–10 July 2016 with an average difference
of KRW 112,916. KRW 589,969 was spent on 29–30 September 2017, and KRW 571,728 on
9–10 July 2016, with an average difference of KRW 112,916.

The daily amounts of money falling beyond the upper or lower limits of the Bollinger
Band are shown in Figure 2, in which the outlying dependent variable occurred. Figure 2
shows the trends of the Bollinger band for one month when the dependent variables were
outliers, as shown in Table 1.

When the daily amount of money spent to purchase pork belly meat fell beyond the
upper or lower limits of the moving average-based Bollinger band within the window
sequence, the target variable was defined as an outlier. The window value and Bollinger
band constant value were set at 7 and 2 days, respectively.

Agriculture 2023, 13, 2044 5 of 21Agriculture 2023, 13, x FOR PEER REVIEW 5 of 22

(a) (b)

Figure 1. (a) Average, maximum and minimum, the red box indicates outliers that include critical
events; (b) some of the daily differences of the amounts of money spent to purchase pork belly meat
in Korea from 2010 to 2017.

(a) Sparse critical event determination section from 2015-02-27 to 2015-03-24
(2015-03-03~2015-03-04: Pork Day)

(b) Sparse critical event determination section from 2017-09-03~2017-10-01

(2017-09-29~2017-09-30: Chuseok)

(c) Sparse critical event determination section from 2016-07-01~2016-07-28

(2016-07-08~2016-07-09: Three Meals a Day TV program)

Figure 1. (a) Average, maximum and minimum, the red box indicates outliers that include critical
events; (b) some of the daily differences of the amounts of money spent to purchase pork belly meat
in Korea from 2010 to 2017.

Agriculture 2023, 13, x FOR PEER REVIEW 5 of 22

(a) (b)

Figure 1. (a) Average, maximum and minimum, the red box indicates outliers that include critical
events; (b) some of the daily differences of the amounts of money spent to purchase pork belly meat
in Korea from 2010 to 2017.

(a) Sparse critical event determination section from 2015-02-27 to 2015-03-24
(2015-03-03~2015-03-04: Pork Day)

(b) Sparse critical event determination section from 2017-09-03~2017-10-01

(2017-09-29~2017-09-30: Chuseok)

(c) Sparse critical event determination section from 2016-07-01~2016-07-28

(2016-07-08~2016-07-09: Three Meals a Day TV program)

Figure 2. Cont.

Agriculture 2023, 13, 2044 6 of 21Agriculture 2023, 13, x FOR PEER REVIEW 6 of 22

(d) Sparse critical event determination section from 2011-02-27~2011-03-28

(2011-03-02~2011-03-03: Soaring consumer prices)

(e) Sparse critical event determination section from 2012-11-01~2012-11-30

(2012-11-15~2012-11-16: Prok prices degradation)

(f) Sparse critical event determination section from 2013-09-01~2013-09-30

(2013-09-16~2013-09-17: Chuseok)

Figure 2. Some of the outlying differences of the daily amounts of money spent to purchase of pork
belly meat that exceeded above the upper or below the lower limits of the Moving Average-based
Bollinger Band.

We explored structured and unstructured data that affect purchase amounts during
these outliers. Subsequently, we analyzed the unstructured data, the results of which are
summarized in Table 1. The data correspond to the representative cases of the differences
in the daily amounts of money to spent purchase pork belly meat, as shown in Figure 2.
Based on the investigation of the unstructured data from newspaper articles, blogs, and
TV programs on 3 March 2015, the frequent appearance of the phrase, “Pork Day,” was
noticed and was subsequently listed under the field of suggested issue. By surveying the
daily amounts of money spent to purchase pork belly meat around 3 March 2015, it was
observed that the amount exhibited its maximum peak on 3 March, then decreased
sharply on 4 March compared with previous days. The second-largest difference was ob-
served between 29–30 September 2017; 29 September 2017 was Chuseok, the Korean
Thanksgiving Day. The third largest difference was observed between 8–9 July 2016. In-
vestigation of the unstructured data revealed that the 9 July episode of the TV cooking
show “Three Meals a Day,” included pork. According to our hypothesis, this contributed
to the third largest difference. As mentioned earlier, we define independent variables that
occur sparsely but affect the target variable tremendously in the time series as SCE.

Figure 2. Some of the outlying differences of the daily amounts of money spent to purchase of pork
belly meat that exceeded above the upper or below the lower limits of the Moving Average-based
Bollinger Band.

We explored structured and unstructured data that affect purchase amounts during
these outliers. Subsequently, we analyzed the unstructured data, the results of which are
summarized in Table 1. The data correspond to the representative cases of the differences
in the daily amounts of money to spent purchase pork belly meat, as shown in Figure 2.
Based on the investigation of the unstructured data from newspaper articles, blogs, and
TV programs on 3 March 2015, the frequent appearance of the phrase, “Pork Day”, was
noticed and was subsequently listed under the field of suggested issue. By surveying the
daily amounts of money spent to purchase pork belly meat around 3 March 2015, it was
observed that the amount exhibited its maximum peak on 3 March, then decreased sharply
on 4 March compared with previous days. The second-largest difference was observed
between 29–30 September 2017; 29 September 2017 was Chuseok, the Korean Thanksgiving
Day. The third largest difference was observed between 8–9 July 2016. Investigation of the
unstructured data revealed that the 9 July episode of the TV cooking show “Three Meals
a Day”, included pork. According to our hypothesis, this contributed to the third largest
difference. As mentioned earlier, we define independent variables that occur sparsely but
affect the target variable tremendously in the time series as SCE.

Agriculture 2023, 13, 2044 7 of 21

Table 1. Summarized investigation results of the unstructured data from periods with large deviations
in amounts of money spent to purchase pork.

Date Daily Amounts to
Purchase Pork Retail Price Meat Wholesale

Price Caress
News

Frequency

News
Command
Frequency

TV
Frequency

Blog
Frequency

Blog
Command
Frequency

Suggested Issue

3 March 2015 670,076 15,763 4596 68 74 0 12 18 Pork
Day4 March 2015 80,957 17,563 4728 9 0 30 7 12

29 September 2017 206,260 23,276 4500 1 0 72 1 0
Chuseok30 September 2017 790,229 23,276 4500 2 1 1 0 0

8 July 2016 158,650 22,761 4697 6 107 0 0 0 “Three Meals a Day“
TV program9 July 2016 730,378 22,761 4697 0 0 3 3 4

3 March 2011 238,080 19,996 5982 13 13 8 106 53 Soaring
consumer prices3 March 2011 805,401 18,566 5936 6 6 0 178 110

28 November 2015 751,194 20,488 4403 2 0 8 1 0 -
29 November 2015 191,110 20,488 4403 0 0 151 2 16

3 March 2011 805,401 18,566 5936 6 6 0 178 110 Soaring
consumer prices4 March 2011 265,294 18,566 5936 3 0 4 136 137

15 November 2012 167,373 14,400 3525 0 0 39 6 7 Pork prices
degradation16 November 2012 694,547 14,354 3525 3 0 3 7 0

16 September 2013 230,070 18,349 3706 2 4 40 9 43
Chuseok17 September 2013 754,870 18,482 3488 1 0 35 11 0

3.2. Defining the SCE in Time-Series Data Finding the SCE

As mentioned, SCE may occur as a sparsely occurring independent variable that
significantly affects the target variable in a time series. In this section, we describe a
method of discriminating and learning the SCE that can occur in an input sequence X
(independent variables) and, subsequently, a target sequence Y (dependent variables)
(Algorithm 1). Based on the upper Bollinger band (UBB) and lower Bollinger band (LBB), a
target sequence and an input sequence are scanned for an SCE for the purposes of event
finding and data learning, respectively. The UBB and LBB are calculated by applying the
following equations [31]:

X[i].ubb =
1
d

i

∑
j=i−d

Y[j] + z ∗

√
∑i

j=i−d (Y[j]−Y[i])
2

d
(1)

X[i].lbb =
1
d

i

∑
j=i−d

Y[j]− z ∗

√
∑i

j=i−d (Y[j]−Y[i])
2

d
(2)

Here, d represents the number of continuous days and z refers to a weight for the
standard deviation of d target values. We assign d as 7 because the period that affects the
target variable is 7 d; the weight value z of the range for determining the sparse critical
event we want to identify is set to 2, as described in Section 3.1.

Algorithm 1 CalculateBolingerband (Y, X, d, z)
Input
(1) Y: a time-series target sequence
(2) X: a time-series input sequence without UBB and LBB
(3) d: period to represent the number of continuous days
(4) z: weight for standard deviation of p
Output
(5) X: a time-series input sequence with calculated UBB and LBB values.
Begin
1. y_size← length o f Y
2. while i + d < y_size do
2.1 X[i].ubb← a value calculated by Equation (1) with d and z
2.2 X[i].lbb← a value calculated by Equation (2) with d and z
2.3 i = i + 1
2.3 end of while

Agriculture 2023, 13, 2044 8 of 21

After computing all LBBs and UBBs with the target value in an input sequence, we
determine whether SCEs exist within the sequence. The input sequence is learned by
determining the event with as much data as allowed by the specified window size of
approximately d. At this time, the first and last indexes of the window are designated as
start_index and end_index, respectively, and an SCE is determined for the data between the
start_index and end_index of the sequence.

First, the absolute difference, which is denoted as diffValue, from the current target
value to its previous target value is calculated. The differing values are stored sequentially
in a list D. During learning, the difference value of the sequence is used as weighting. In
particular, the possibility of an SCE sequence is determined by comparing the UBB and
LBB values of the input sequence with the target value. For UBB values smaller than or
LBB values larger than the target value, the occurrence of an SCE sequence is considered
possible. If the UBB value is smaller than the target value, “1” is stored in list C, and if the
LBB value is larger than the target value, “2” is stored in C. Conversely, when the UBB value
is larger than the target value or the LBB value is smaller than the target value, the sequence
is classified as normal, and “0” is stored in C. All the values of list D of the difference value
of the sequence are to be added and stored in diffValue, and one is added to the event if
the value of list C where the event check value is stored is one or two, whereas zero is
added to the event if the value of list C is zero. Subsequently, if the event is greater than
zero, the input sequence is determined as a sparse critical event sequence, and eventFlag is
stored as one; if the event is less than or equal to zero, the input sequence is determined
as a non-sparse critical event sequence, and the eventFlag is stored as zero. Finally, the
difference value in diffValue and the event determination value in eventFlag are returned.
Algorithm 2 presents the details of the sparse critical-event algorithm.

3.3. Designing SCE-LSTM Layer by Reflecting the SCE

The SCE-LSTM includes a modified layer that reflects SCE variables based on the
mechanisms of selective attention and memorization of critical events in the human brain.
The concept is implemented in the modified neural network model using a switch that
prevents data being sent to the forget gate in the case of critical events. Furthermore, varying
weights are assigned to the variables to ensure that the modified model can better mimic
human brains in terms of selectively storing information with different weights in case of
critical events [25,26,32,33]. Figure 3 shows the details of the proposed SCE-LSTM model.

Agriculture 2023, 13, x FOR PEER REVIEW 9 of 22

Figure 3. The proposed SCE-LSTM cell.

Algorithm 2 CheckSparseCriticalEvent (Y, X, start_index, end_index)
Input
(1) 𝑌: a time-series target sequence
(2) 𝑋: a time-series input sequence without UBB and LBB
(3) 𝑑: period to represent the number of continuous days
(4) 𝑧: weight for standard deviation of 𝑝
Output
(5) 𝑋: a time-series input sequence with calculated UBB and LBB values
(6) 𝑑𝑖𝑓𝑓𝑉𝑎𝑙𝑢𝑒: sum of the difference of current target value and its previous one
Begin
// 𝐷: a list to store the difference of current target value and its previous one
// 𝐶: a list to store flags for representing whether a target value is critical
// event: the number of critical events in 𝑌
1. 𝐷 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡
2. 𝐶 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡
3. 𝑒𝑣𝑒𝑛𝑡 ← 0
4. 𝑑𝑖𝑓𝑓𝑉𝑎𝑙𝑢𝑒 ← 0
5. 𝑖 ← start_index
6. 𝐰𝐡𝐢𝐥𝐞 𝑖 < 𝑒𝑛𝑑_𝑖𝑛𝑑𝑒𝑥 𝐝𝐨
7. 𝐷ሾ𝑖ሿ ← 𝑎𝑏𝑠(𝑌ሾ𝑖 + 1ሿ − 𝑌ሾ𝑖ሿ)
8. 𝑑𝑖𝑓𝑓𝑣𝑎𝑙𝑢𝑒 ← 𝑑𝑖𝑓𝑓𝑉𝑎𝑙𝑢𝑒 + 𝐷ሾ𝑖ሿ
9. 𝐢𝐟 𝑋ሾ𝑖ሿ. 𝑢𝑏𝑏 < 𝑌ሾ𝑖ሿ 𝐭𝐡𝐞𝐧
10. 𝐶ሾ𝑖ሿ ← 1
11. 𝑒𝑣𝑒𝑛𝑡 ← 𝑒𝑣𝑒𝑛𝑡 + 1
12. 𝐞𝐥𝐬𝐞 𝑌ሾ𝑖ሿ < 𝑋ሾ𝑖ሿ. 𝑙𝑏𝑏 𝐭𝐡𝐞𝐧
13. 𝐶ሾ𝑖ሿ ← 2
14. 𝑒𝑣𝑒𝑛𝑡 ← 𝑒𝑣𝑒𝑛𝑡 + 1
15. 𝐞𝐥𝐬𝐞
16. 𝐶ሾ𝑖ሿ ← 0
17. 𝑖 ← 𝑖 + 1
18. end of while

Figure 3. The proposed SCE-LSTM cell.

Agriculture 2023, 13, 2044 9 of 21

As shown in Figure 3, the SCE-LSTM model includes a step to distinguish SCE from
an input sequence and learn about critical and noncritical events, as described in Algorithm
2 (SCE-LSTM Cell(Y, X, start_index, d)). Here, X refers to the input sequence of the entire
data list to be learned and start_index refers to the first index of the window about d
among the input sequences. Assuming that tensor X represents all information at time
t, as described in the previous section, whether a sparse critical event occurs at time t is
determined using Algorithm 1 (CheckSparseCriticalEvent (Y, X, t, d) as step 1 in Algorithm
2. If it is not an SCE at that time, the learning method uses a conventional LSTM model
directly, the flows of which are well represented by the solid lines in Figure 3.

Algorithm 2 CheckSparseCriticalEvent (Y, X, start_index, end_index)
Input
(1) Y: a time-series target sequence
(2) X: a time-series input sequence without UBB and LBB
(3) d: period to represent the number of continuous days
(4) z: weight for standard deviation of p
Output
(5) X: a time-series input sequence with calculated UBB and LBB values
(6) di f f Value: sum of the difference of current target value and its previous one
Begin
// D: a list to store the difference of current target value and its previous one
// C: a list to store flags for representing whether a target value is critical
// event: the number of critical events in Y
1. D ← empty list
2. C ← empty list
3. event← 0
4. di f f Value← 0
5. i← start_index
6. while i < end_index do
7. D[i]← abs(Y[i + 1]−Y[i])
8. di f f value← di f f Value + D[i]
9. if X[i].ubb < Y[i] then
10. C[i]← 1
11. event← event + 1
12. else Y[i] < X[i].lbb then
13. C[i]← 2
14. event← event + 1
15. else
16. C[i]← 0
17. i← i + 1
18. end of while
19. eventFlag← 0
20. if event > 0 then
21. eventFlag← 1
22. return eventFlag, di f f Value

The conventional LSTM model is processed through from Step 2.1 to Step 2.8 in
Algorithm 2 using the following equations [34].

The conventional LSTM model first receives ht−1 and Xt using Equation (3), calculates
a forget gate, and sends a value of 0 or 1 to ct−1. If the resulting value is one, the value will
be preserved; if it is zero, the value will be discarded.

ft ← σ
(

U f Xt + W f ht−1 + b f

)
(3)

Agriculture 2023, 13, 2044 10 of 21

An input gate is calculated after ht−1 and Xt are received through Equations (4) and (5).
Then, it is determined whether the value of the cell state is to be updated through at
according to the resulting value of the forget gate.

it ← σ(UiXt + Wiht−1 + bi) (4)

at ← tanh(UcXt + Wcht−1 + bc) (5)

Subsequently, the past cell state is updated according to the resulting value of what
to forget and what to update from Equations (3)–(5). In Equation (6), the forget gate ft
is multiplied by the past cell state ct−1, and it is multiplied by at so that the data to be
forgotten reach zero through multiplication, and those to be remembered are recorded
using addition.

ct← it◦at + f t◦ct− 1 (6)

The following step is to determine what to report as output by calculating the output
gate ot of Equation (7) and by multiplying ot with a specific part of the cell state ct in
Equation (8). Finally, the output ht, is reported.

ot ← σ(UoXt + Woht−1 + bo) (7)

ht ← ot
◦tanh (ct) (8)

Conversely, if it is a SCE at the time, the learning method does not pass the representa-
tive forget gate in the LSTM model, as indicated by the dotted lines in Figure 3.

In the case of a sequence determined as an SCE, the event input gate is calculated by
receiving ht−1 and Xt using Equations (9) and (10). At this time, to reflect the cell state
in the gate when calculating the event input gate in Equation (9), a peephole connection,
which is a modified LSTM model introduced by [35], is added to reflect the past cell state
value in the event input gate.

eit ← σ(UeiXt + Weiht−1 + Weict−1 + bei) (9)

at ← tanh (UcXt + Wcht−1 + bc) (10)

The past cell state is updated according to the resulting value of the event input
sequence calculated in steps Equations (9) and (10). The calculation is performed by
multiplying eit by the weight of the SCE, i.e., the product of diffValue, as shown in Equation
(11), and the events to be recorded as SCE, i.e., at. Subsequently, the current cell state ct is
calculated by adding ct−1 to the updated past cell state.

ct ← (eit
◦di f f Value)◦at + ct−1 (11)

Finally, the output is determined by calculating the event output gate eot in Equation
(12). Similarly, by adding a peephole connection, it is calculated by reflecting the ct state of
the previously calculated cell state. Subsequently, a specific part of the cell state ct and eot
is calculated using Equation (13), and the output, ht, is reported.

eot ← σ(Ueoxt + Weoht−1 + Weoct + beo) (12)

ht ← eot
◦tanh (ct) (13)

The algorithm for calculating SCE-LSTM cells using Equations (3)–(13) is detailed in
Algorithm 3. Specifically, the data-learning method using the SCE-LSTM cell is presented in
Algorithm 3, where X refers to a list of input sequences to be learned, p refers to the number
of data in a window, d refers to the number of input sequences in a given duration to find

Agriculture 2023, 13, 2044 11 of 21

an SCE, and pred_m refers to the number of predicted values to be estimated after learning.
When the total number of data points is n, the number of windows can be calculated as
wdn = n− p + 1. The overall configuration diagram for the SCE-LSTM layer using the
SCE-LSTM cell, i.e., the proposed model for learning the SCE, is shown in Figure 4.

Agriculture 2023, 13, x FOR PEER REVIEW 12 of 22

17. 𝑎௧ ← tanh(𝑈𝑋௧ + 𝑊ℎ௧ିଵ + 𝑏)
18. 𝑐௧ ← (𝑒𝑖௧°𝑑𝑖𝑓𝑓𝑉𝑎𝑙𝑢𝑒)°𝑒𝑎௧ + 𝑐௧ିଵ
19. 𝑒𝑜௧ ← 𝜎(𝑈𝑋௧ + 𝑊ℎ௧ିଵ + 𝑊𝑐௧ + 𝑏)
20. ℎ௧ ← 𝑒𝑜௧° tanh(𝑐௧)
21. End for
22. 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ௧, 𝑐௧

Figure 4. Training diagram using SCE-LSTM layer.

Following the input sequence, the Algorithm 4 SCE-LSTM model is created using the
SCE-LSTM cell according to Algorithm 3 and the predicted result value, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑟𝑒𝑠𝑢𝑙𝑡,
is returned. The learning of the input sequence is window-based, and the number of win-
dows is calculated based on the length of the input sequence 𝑋, and the number of data
points in window 𝑝. The window was utilized to increase the accuracy of the model by
repeatedly learning the SCE in the input sequence for each window. Following the esti-
mation of the number of windows, the input sequence 𝑋, window start index 𝑡, and the
number of data in window 𝑝 are transmitted to the SCE-LSTM cell. Then, via Check-
SparseCriticalEvent in Algorithm 1, 𝑒𝑣𝑒𝑛𝑡𝐹𝑙𝑎𝑔, which determines whether there is a crit-
ical event in the corresponding window input sequence, and 𝑑𝑖𝑓𝑓𝑉𝑎𝑙𝑢𝑒, which is the re-
sult of adding the difference between the next and previous days of the window, are cal-
culated in Algorithm 2. When the value of 𝑒𝑣𝑒𝑛𝑡𝐹𝑙𝑎𝑔 is zero, the input sequence of the
corresponding window is considered as a non-sparse critical event and learned through
the conventional LSTM learning method of Equations (3)–(8). When the value of 𝑒𝑣𝑒𝑛𝑡𝐹𝑙𝑎𝑔 is 1, the input sequence of the corresponding window is considered to include
an SCE and is learned using Equations (9)–(12). The learned model returns the cell state
value, 𝑐௧, and output value of the hidden layer, ℎ௧. The proposed model repeats learning
as many times as the number of windows and finally generates the prediction through the
dense layers, which amounts to pred_m values.

Algorithm 4 SCE-LSTM model (Y, X, p, d, pred_m)
Input
(1) 𝑌: a time-series target sequence
(2) 𝑋: a time-series input sequence with calculated UBB and LBB values.
(3) 𝑝: the number of data in a window
(4) 𝑑: the number of input sequences in a considered duration once
(5) 𝑝𝑟𝑒𝑑_𝑚: the number of predicted values
Output
(6) 𝑝𝑟𝑒𝑑𝑖𝑐𝑡_result: predicted result for 𝑝𝑟𝑒𝑑_𝑚 using proposed SCE-LSTM
Begin

Figure 4. Training diagram using SCE-LSTM layer.

When xwdi
t refers to the input sequence at the start time t of the i-th window wdi, the i-th

window is from xwdi
t to xwdi

t+p at the point of t+ p. Data from the window are used for the SCE-
LSTM cell to learn, as described in Algorithm 2. For each input, eventFlag and di f f Value is
calculated using the Check SparseCriticalEvent function of Algorithm 1, and the SCE-LSTM
cell function of Algorithm 2 is used to learn the input sequence. The learning process is
repeated until the last input sequence, xwdi

t+p, and the prediction sequence is created through
the dense layer.

Following the input sequence, the Algorithm 4 SCE-LSTM model is created using
the SCE-LSTM cell according to Algorithm 3 and the predicted result value, predict_result,
is returned. The learning of the input sequence is window-based, and the number of
windows is calculated based on the length of the input sequence X, and the number
of data points in window p. The window was utilized to increase the accuracy of the
model by repeatedly learning the SCE in the input sequence for each window. Following
the estimation of the number of windows, the input sequence X, window start index t,
and the number of data in window p are transmitted to the SCE-LSTM cell. Then, via
CheckSparseCriticalEvent in Algorithm 1, eventFlag, which determines whether there is a
critical event in the corresponding window input sequence, and di f f Value, which is the
result of adding the difference between the next and previous days of the window, are
calculated in Algorithm 2. When the value of eventFlag is zero, the input sequence of the
corresponding window is considered as a non-sparse critical event and learned through
the conventional LSTM learning method of Equations (3)–(8). When the value of eventFlag
is 1, the input sequence of the corresponding window is considered to include an SCE and
is learned using Equations (9)–(13). The learned model returns the cell state value, ct, and
output value of the hidden layer, ht. The proposed model repeats learning as many times
as the number of windows and finally generates the prediction through the dense layers,
which amounts to pred_m values.

Agriculture 2023, 13, 2044 12 of 21

Algorithm 3 SCE-LSTM Cell (Y, X, start_index, d)
Input
(1) Y: a time-series target sequence Y: a time-series target sequence
(2) X: a time-series input sequence with calculated UBB and LBB values
(3) start_index: the first index of window
(4) d: the number of data in window
Output
(5) ht: LSTM output
(6) ct: Cell State output
Begin
1. //U f , Ui, Uc, Uo, Uei, Ueo: Weight values for Xt
2. //W f , Wi, Wc, Wo, Wei, Weo: Weight values for ht−1
3.
4. eventValue, di f f Value← CheckSparseCriticalEvent(Y, X, start_index,

start_index + d)
5. if eventFlag == 0 then
6. for t= start_idex to t < startindex + d; t = t + 1 do

7. f t ← σ
(

U f Xt + W f ht−1 + b f

)
8. it ← σ(UiXt + Wiht−1 + bi)
9. at ← tanh (UcXt + Wcht−1 + bc)
10. ct ← it

◦at + ft
◦ct−1

11. ot ← σ(UoXt + Woht−1 + bo)
12. ht ← ot

◦tanh (ct)
13. End for
14. else eventFlag == 1 then
15. for t= start_idex to t < start_index + d; t = t + 1 do
16. eit ← σ(UeiXt + Weiht−1 + Weict−1 + bei)
17. at ← tanh(UcXt + Wcht−1 + bc)
18. ct ← (eit

◦di f f Value)◦eat + ct−1
19. eot ← σ(UeoXt + Weoht−1 + Weoct + beo)
20. ht ← eot

◦tanh(ct)
21. End for
22. return ht, ct

Algorithm 4 SCE-LSTM model (Y, X, p, d, pred_m)
Input
(1) Y: a time-series target sequence
(2) X: a time-series input sequence with calculated UBB and LBB values.
(3) p: the number of data in a window
(4) d: the number of input sequences in a considered duration once
(5) pred_m: the number of predicted values
Output
(6) predict_result: predicted result for pred_m using proposed SCE-LSTM
Begin
1. n← x.length
2. W ← n− p + 1
3. w← 0
4. t← 0
5. n← x.length
6. W ← n− p + 1
7. w← 0
8. t← 0
9. w← w + 1
10. end of while
11. predict_result← dense(pred_m)

return predict_result

Agriculture 2023, 13, 2044 13 of 21

4. Predicting the Purchase Amount of Pork Meat Using the Proposed SCE-LSTM

In this section, we describe how the proposed SCE-LSTM can be applied to predict the
daily amounts of money spent to purchase pork belly meat under the influence of a few
critical events. In Section 4.1, we describe data collection and pre-processing. Subsequently,
in Section 4.2, we describe how the SCE-LSTM was used to estimate the daily amount of
money spent to purchase pork belly meat for the next pred_m = 30 days using Algorithm 4
in Section 3.3.

4.1. Data Collection and Pre-Processing

The target variable is the daily amount of money spent to purchase pork belly meat
from 2010 to 2017. The independent variables in the same period as the target variable
comprise 8 structured and 19 unstructured data, which can affect the daily amounts of
money spent, as listed in Tables 2 and 3. The structured data comprise factors related
to consumption, such as retail price, wholesale price, sales quantity, and import volume
(Table 2). The structured data were collected using open API and include wholesale market
data from the Outlook and Agricultural Statistics Information System (OASIS) of the
Korea Rural Economic Institute, retail Service (KAMIS), and pork production data from
the Korean Statistical Information System (KOSIS) [36]. Because the data period for each
element was different, all raw data were pre-processed daily. The unstructured data used
in this study were collected from news (e.g., “news freq”, “emotions number angries”,
“emotion number likes”, “emotions number sads”, “emotions number wants”, “emotions
number warms”, “news comment freq”, “news positive term freq”, and “news negative
term freq”), broadcast video programs (e.g., “video freq, video total ranking ave p”, “video
freq times viewrate”, “video positive term freq”, and video negative term freq”), and blogs
(e.g., “blog freq”, “blog comments”, “blog likes”, “blog positive term freq”, and “blog
negative term freq”), as shown in Table 3. The collected unstructured data include dates,
titles and whole text, frequency of terms of interest mentioned in the text (e.g., a term “pork
belly meat”), positive/negative words in the text, and frequency of these positive/negative
words. Words in the text were classified as positive (e.g., delicious), neutral (e.g., really), or
negative (e.g., nasty) according to the part of speech to which the word belonged.

Table 2. Independent variables of structured data used in this study.

Column Description

retail_price_meat Daily retail prices of pork belly meat
wholesale_price_carcass Daily wholesale prices of pork carcass

pig_bred_number_quarter_before Number of pigs bred in previous quarter
pig_slaughtered_number_quarter_before Number of pigs slaughtered in previous quarter

wholesale_price_carcass_quarter_before Daily wholesale prices of pork carcass in
previous quarter

output_ton_year_before_carcass Pork meat production in previous year (ton)
import_ton_year_before Imported pork meat in previous year (ton)

monthly_sales_trend_ton_meat Monthly sales trend of pork meat (ton)

4.2. Application of the Proposed SCE-LSTM

To create a consumption prediction model for agricultural/livestock products that
can reflect SCE, the proposed SCE-LSTM model Section 3.2 is applied. The structured and
unstructured data used for analysis are for the consumption prediction of pork belly meat
in Korea, and they are listed in Tables 2 and 3 from Section 4.1. The collected data were
pre-processed through data normalization and correlation analysis. Data normalization
of independent and dependent variables includes min–max scaling, converting data into
values between 0 and 1 to normalize the data distribution. Correlation analysis was used
to estimate weights for the normalized data by deriving the correlation with the target
value, i.e., the daily amount of money spent to purchase pork belly meat. After data
normalization of the independent variables, a consumption prediction learning model was
created using the proposed SCE sequence detection and learning method of the SCE-LSTM.
For the prediction of pork belly meat consumption, the prediction model was trained with

Agriculture 2023, 13, 2044 14 of 21

the consumption data for 3 months, and consumption for a period of one month was
predicted. The model continually accumulated the learning content based on the window.
The min–max normalization was calculated using the following formula:

x′ =
(x−min(x))

max(x)−min(x) + 1e− 7
(14)

Table 3. Independent variables of unstructured data used in this study.

Column Description Record Numbers

news_freq Frequency of the appearance of the word in pig news contents 6655
emotions_number_angries

Frequency of sentiment for news content

3979
emotion_number_likes 14,811
emotions_number_sads 395

emotions_number_wants 438
emotions_number_warms 153

news_comment_freq Frequency of the appearance of the word in pig news comment 44,342
news_positive_term_freq Frequency of positive word appearance in pig news content 35,319
news_negative_term_freq Frequency of negative word appearance in pig news content 4429

video_freq Frequency of the appearance of the word in pig TV programs 1529
video_total_ranking_ave_p Video total ranking average 1529
video_freq_times_viewrate Video frequency times view rate 1529
video_positive_term_freq Frequency of positive word appearance in pig TV programs content 119,396
video_negative_term_freq Frequency of negative word appearance in pig TV programs content 4745

blog_freq Frequency of the appearance of the word in pig blog 75,035
blog_comments Frequency of word appearance in a pig blog comment 109,950

blog_likes Frequency of sentiment for blog content 70,025
blog_positive_term_freq Frequency of positive word appearance in pig blog content 1,666,492
blog_negative_term_freq Frequency of negative word appearance in pig blog content 56,870

An overall diagram of the proposed SCE-LSTM application is shown in Figure 5.

Agriculture 2023, 13, x FOR PEER REVIEW 15 of 22

𝑥ᇱ = (𝑥 − 𝑚𝑖𝑛(𝑥))𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥) + 1𝑒 − 7 (13)

An overall diagram of the proposed SCE-LSTM application is shown in Figure 5.

Figure 5. Overall diagram of the proposed SCE-LSTM application.

5. Performance Evaluation
In this section, we describe how different time-series deep learning models, such as

RNN, LSTM, and GRU, in addition to the proposed SCE-LSTM, were evaluated for their
prediction performances. In Section 5.1, we describe the experimental setup and evalua-
tion models, followed by the evaluation metrics in Section 5.2, and the model hyperpa-
rameters and experimental results in Section 5.3.

5.1. Experimental Models
When using a conventional neural network to predict various types of data, continu-

ous information is difficult to store. To address this problem, RNN learning models, which
are advanced Neural Network models, have been commonly used to learn sequential data
[2]. An RNN model repeats itself and retains the information obtained in the previous
step. Moreover, in contrast to conventional neural networks, it can retain data. The chain-
based RNN model, in particular, has been optimized for dealing with sequenced data and
is frequently used in various fields, including speech recognition and language modeling.

However, long-term dependencies are a central problem; RNNs forget information
over time [36,37]. To solve this problem, LSTM, which learns information while

Figure 5. Overall diagram of the proposed SCE-LSTM application.

Agriculture 2023, 13, 2044 15 of 21

5. Performance Evaluation

In this section, we describe how different time-series deep learning models, such as
RNN, LSTM, and GRU, in addition to the proposed SCE-LSTM, were evaluated for their
prediction performances. In Section 5.1, we describe the experimental setup and evaluation
models, followed by the evaluation metrics in Section 5.2, and the model hyperparameters
and experimental results in Section 5.3.

5.1. Experimental Models

When using a conventional neural network to predict various types of data, continuous
information is difficult to store. To address this problem, RNN learning models, which are
advanced Neural Network models, have been commonly used to learn sequential data [2].
An RNN model repeats itself and retains the information obtained in the previous step.
Moreover, in contrast to conventional neural networks, it can retain data. The chain-based
RNN model, in particular, has been optimized for dealing with sequenced data and is
frequently used in various fields, including speech recognition and language modeling.

However, long-term dependencies are a central problem; RNNs forget information
over time [36,37]. To solve this problem, LSTM, which learns information while controlling
the cell state through the cell state and input, forget, and output gates, was introduced [14].
In the first step of LSTM, the forget gate, which determines which information is to be
discarded from the cell state, outputs a value between 0 and 1 through a sigmoid operation.
If the forget gate has a value of one, all information is preserved; if it has a value of zero,
all information disappears. The second step is to determine which of the new information
is to be stored in the cell state in the future. During this step, a vector of new candidate
values is created through a hyperbolic tangent operation to determine the value that is to be
updated through the sigmoid operation of the input gate. The information is subsequently
merged into the cell state to create information to be updated. The third step is to update
the old cell state to create a new cell state. New information is added to the new cell state
by multiplying the value from the input gate by the vector of candidate values. This added
value becomes a scaled value of the updated information from the input gate. Finally, based
on the cell state, the output gate value is calculated to output the filtered value. In this step,
the value of the output gate is calculated using a sigmoid function to determine which part
of the cell state to output as input information. The cell state subsequently receives a value
between −1 and 1 through a hyperbolic tangent operation, and that value is multiplied
by the value of the output gate. Consequently, only the desired part is exported from the
input information to the output gate. There is a modified LSTM model, the peephole LSTM,
which learns by considering the cell state for each gate of the LSTM [35]. Although this
method considers the previous cell state, it is incapable of reflecting the SCE value. Another
modified LSTM model, the GRU model, was introduced to compensate for the heavy use
of weights in the LSTM model [38]. This model combines the forget gate and input gate
into an update gate and learns the data after combining the cell and hidden states.

5.2. Evaluation Metrics

The model’s performance in predicting daily amounts of money spent to purchase
pork belly meat were evaluated by comparing predicted amounts with actual amounts
in terms of error rates, including root mean squared error (RMSE), mean absolute error
(MAE), MAPE, and mean percentage error (MPE).

Among the error rates used, the MSE of the RMSE is the mean squared difference
between the actual and predicted values and is the sum of the area of the difference
between the predicted and the actual values. A characteristic of the MSE is that its value
increases with the presence of outliers. In addition, since MSE calculates the square of the
error, its error rate tends to be larger than actual error rates; thus, RMSE values, i.e., the
root of the MSE values, are used instead. MAE is obtained by converting the differences
between the actual and predicted values into an absolute value and then averaging it.
Since MAE considers the absolute value errors, the size of an error is reflected as it is, and

Agriculture 2023, 13, 2044 16 of 21

it has the advantage of being less affected by outliers. MAPE is the conversion of MAE
to a percentage and also has the advantage of being less affected by outliers. However,
because MAE and MAPE take absolute values, the model’s performance, i.e., whether it
predicts higher values (overperformance) or lower values (underperformance) than the
actual values, is unclear. Therefore, the accuracy of the MAE and MAPE values should
be confirmed using the MPE. MPE is an index that excludes absolute values from MAPE
and determines whether a model shows overperformance (−) or underperformance (+).
Table 4 presents a comparison of the error rates for each case in the proposed model. After
comparing error rates according to window, batch size, epoch, and whether diffValue was
used, the result obtained using diffValue in case2 was found to exhibit the lowest error rate.
The error rate metrics are defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − fi)
2 (15)

MAE =
1
N

N

∑
i=1
|yi − fi| (16)

MAPE =
1
N

N

∑
i=1

|yi − fi|
yi

(17)

MPE =
1
N

N

∑
i=1

(yi − fi)

yi
(18)

Table 4. Comparison of the error rates for each case using the proposed model.

Test Case
Parameter Error Rate

Window Batch Size Epoch Whether to Use diffValue
in Event Sequence RMSE MAE MAPE MPE

1 84 64 500
Used 0.11 0.09 35.48 −6.60

Not used 0.16 0.12 49.09 −17.50

2 84 64 300
Used 0.08 0.06 23.80 −3.17

Not used 0.13 0.10 36.44 −9.36

3 28 64 500
Used 0.14 0.11 48.70 −20.65

Not used 0.15 0.13 61.83 −39.95

4 28 64 300
Used 0.14 0.11 50.25 −24.68

Not used 0.14 0.11 41.58 −2.44

5 84 32 500
Used 0.09 0.08 32.61 −11.56

Not used 0.10 0.08 33.49 −13.64

6 84 32 300
Used 0.09 0.07 30.87 −12.52

Not used 0.10 0.08 33.90 −13.86

7 28 32 500
Used 0.16 0.12 66.33 −45.59

Not used 0.16 0.12 64.31 −39.60

8 28 32 300
Used 0.16 0.12 72.91 −57.40

Not used 0.15 0.12 70.66 −52.69

5.3. Model Hyperparameters and Experimental Results

In this study, agricultural data were compared using the SCE-LSTM method proposed
in Section 3.3 and the deep learning-based time-series prediction methods described in
Section 5.1. The proposed SCE-LSTM method can provide accurate predictions, even in
a sequence with rapid changes. Therefore, to confirm its effectiveness, we identified and
predicted the cases with SCE and compared the error rate. The model performances were
compared by calculating the RMSE, MAE, MAPE, and MPE according to the window for
the RNN, LSTM, GRU, and the proposed method, SCE-LSTM. For this comparison, the
parameter settings were identical for all the methods, i.e., the batch size was 64 and the
epoch was 300. Thus, we can see how well the most accurate method performed in the same
setting as the learning methods, how well SCE were found, and how well SCE sequences
were predicted.

Agriculture 2023, 13, 2044 17 of 21

Table 5 shows the results of comparing the error rates for the learning methods
according to the window values for 10 test cases of SCE. Figure 5 shows the MAPE results
in Table 5 for the SCE case. Figure 5 shows that SCE-LSTM has the lowest error rates
compared with the other prediction methods in all cases except Case 9, in which RNN has
the lowest error rate. However, the MPE of SCE-LSTM in Case 9 indicates that the predicted
values of SCE-LSTM are closer to the actual values than those of the other methods (Table 5).

In Figure 6, a window of 84 is used for the model parameters of Cases 1–5, whereas a
window of 28 is used for Cases 6–10. In Case 1 of Figure 6, SCE-LSTM exhibits the lowest
error rates and predicts the 11th and 18th values closest to the actual data. In Case 2, the
error rate is the lowest in SCE-LSTM, and the 27th value of SCE-LSTM is closest to the
actual data. In Case 4, RMSE and MAE values of SCE-LSTM and GRU are identical in
Table 5; however, the MAPE and MPE values are lower in SCE-LSTM than in GRU. Case 4
indicates similar error rates between the SCE-LSTM and GRU; however, the 7th and 27th
values of the SCE-LSTM are closest to the actual data. In Case 5, the RMSE values of LSTM,
GRU, and SCE-LSTM are identical, as shown in Table 5; nevertheless, the 15th and 22nd
values by SCE-LSTM are the closest to the actual data. In Cases 6 to 10, SCE-LSTM predicts
the SCE values more accurately than the other predictive methods. However, in Case 9, the
error rates are lowest in the RNN, as shown in Table 5. Nevertheless, the predicted results
indicate that the 15th and 16th values of the SCE-LSTM are closest to the actual data. The
detailed visualization of all test cases is presented in Figure 7.

Agriculture 2023, 13, x FOR PEER REVIEW 18 of 22

In Figure 6, a window of 84 is used for the model parameters of Cases 1–5, whereas
a window of 28 is used for Cases 6–10. In Case 1 of Figure 6, SCE-LSTM exhibits the lowest
error rates and predicts the 11th and 18th values closest to the actual data. In Case 2, the
error rate is the lowest in SCE-LSTM, and the 27th value of SCE-LSTM is closest to the
actual data. In Case 4, RMSE and MAE values of SCE-LSTM and GRU are identical in
Table 5; however, the MAPE and MPE values are lower in SCE-LSTM than in GRU. Case
4 indicates similar error rates between the SCE-LSTM and GRU; however, the 7th and 27th
values of the SCE-LSTM are closest to the actual data. In Case 5, the RMSE values of LSTM,
GRU, and SCE-LSTM are identical, as shown in Table 5; nevertheless, the 15th and 22nd
values by SCE-LSTM are the closest to the actual data. In Cases 6 to 10, SCE-LSTM predicts
the SCE values more accurately than the other predictive methods. However, in Case 9,
the error rates are lowest in the RNN, as shown in Table 5. Nevertheless, the predicted
results indicate that the 15th and 16th values of the SCE-LSTM are closest to the actual
data. The detailed visualization of all test cases is presented in Figure 7.

Figure 6. MAPE comparison results of the prediction models of RNN, LSTM, GRU, and proposed
SCE-LSTM models.

Table 5. Comparison of error rates among different learning methods according to window values
for 10 test cases of SCE.

Test Case Method Window RMSE MAE MAPE MPE Parameter

1

RNN

84

0.13 0.10 57.70 −39.19
batch size = 64

epoch = 300
LSTM 0.13 0.10 57.46 −40.22
GRU 0.12 0.09 59.63 −42.88

SCE-LSTM 0.11 0.09 45.93 −25.97

2

RNN

84

0.13 0.09 32.18 −6.83
batch size = 64

epoch = 300
LSTM 0.13 0.09 36.26 −14.83
GRU 0.12 0.09 34.64 −16.95

SCE-LSTM 0.11 0.07 27.60 −10.67

3

RNN

84

0.11 0.08 30.45 −8.98
batch size = 64

epoch = 300
LSTM 0.12 0.09 37.70 −11.70
GRU 0.10 0.06 28.12 −9.04

SCE-LSTM 0.08 0.06 22.55 1.95

4

RNN

84

0.11 0.08 38.96 −25.21
batch size = 64

epoch = 300
LSTM 0.12 0.08 48.46 −38.02
GRU 0.10 0.07 38.43 −20.91

SCE-LSTM 0.10 0.07 37.95 −20.83
5 RNN 84 0.12 0.09 29.12 −3.69 batch size = 64

Figure 6. MAPE comparison results of the prediction models of RNN, LSTM, GRU, and proposed
SCE-LSTM models.

Table 5. Comparison of error rates among different learning methods according to window values
for 10 test cases of SCE.

Test Case Method Window RMSE MAE MAPE MPE Parameter

1

RNN

84

0.13 0.10 57.70 −39.19
batch size = 64

epoch = 300
LSTM 0.13 0.10 57.46 −40.22
GRU 0.12 0.09 59.63 −42.88

SCE-LSTM 0.11 0.09 45.93 −25.97

2

RNN

84

0.13 0.09 32.18 −6.83
batch size = 64

epoch = 300
LSTM 0.13 0.09 36.26 −14.83
GRU 0.12 0.09 34.64 −16.95

SCE-LSTM 0.11 0.07 27.60 −10.67

Agriculture 2023, 13, 2044 18 of 21

Table 5. Cont.

Test Case Method Window RMSE MAE MAPE MPE Parameter

3

RNN

84

0.11 0.08 30.45 −8.98
batch size = 64

epoch = 300
LSTM 0.12 0.09 37.70 −11.70
GRU 0.10 0.06 28.12 −9.04

SCE-LSTM 0.08 0.06 22.55 1.95

4

RNN

84

0.11 0.08 38.96 −25.21
batch size = 64

epoch = 300
LSTM 0.12 0.08 48.46 −38.02
GRU 0.10 0.07 38.43 −20.91

SCE-LSTM 0.10 0.07 37.95 −20.83

5

RNN

84

0.12 0.09 29.12 −3.69
batch size = 64

epoch = 300
LSTM 0.10 0.08 28.93 −6.34
GRU 0.10 0.08 27.29 −10.96

SCE-LSTM 0.10 0.07 26.20 0.15

6

RNN

28

0.14 0.10 51.00 −20.08
batch size = 64

epoch = 300
LSTM 0.16 0.11 55.67 −19.22
GRU 0.13 0.10 62.31 −42.22

SCE-LSTM 0.13 0.09 49.21 −22.41

7

RNN

28

0.13 0.09 66.53 −47.47
batch size = 64

epoch = 300
LSTM 0.14 0.10 65.99 −41.44
GRU 0.13 0.09 63.28 −45.50

SCE-LSTM 0.13 0.10 59.76 −27.30

8

RNN

28

0.18 0.12 32.07 −2.84
batch size = 64

epoch = 300
LSTM 0.19 0.12 34.93 −10.59
GRU 0.19 0.13 34.42 −3.81

SCE-LSTM 0.16 0.10 26.33 2.30

9

RNN

28

0.13 0.09 37.33 −8.35
batch size = 64

epoch = 300
LSTM 0.16 0.13 61.00 −35.89
GRU 0.15 0.11 50.19 −21.95

SCE-LSTM 0.14 0.11 41.58 −2.44

10

RNN

28

0.12 0.09 32.26 −11.04
batch size = 64

epoch = 300
LSTM 0.13 0.09 32.55 −7.99
GRU 0.11 0.09 29.32 −6.81

SCE-LSTM 0.11 0.08 26.94 −0.18

Agriculture 2023, 13, x FOR PEER REVIEW 19 of 22

LSTM 0.10 0.08 28.93 −6.34 epoch = 300
GRU 0.10 0.08 27.29 −10.96

SCE-LSTM 0.10 0.07 26.20 0.15

6

RNN

28

0.14 0.10 51.00 −20.08
batch size = 64

epoch = 300
LSTM 0.16 0.11 55.67 −19.22
GRU 0.13 0.10 62.31 −42.22

SCE-LSTM 0.13 0.09 49.21 −22.41

7

RNN

28

0.13 0.09 66.53 −47.47
batch size = 64

epoch = 300
LSTM 0.14 0.10 65.99 −41.44
GRU 0.13 0.09 63.28 −45.50

SCE-LSTM 0.13 0.10 59.76 −27.30

8

RNN

28

0.18 0.12 32.07 −2.84
batch size = 64

epoch = 300
LSTM 0.19 0.12 34.93 −10.59
GRU 0.19 0.13 34.42 −3.81

SCE-LSTM 0.16 0.10 26.33 2.30

9

RNN

28

0.13 0.09 37.33 −8.35
batch size = 64

epoch = 300
LSTM 0.16 0.13 61.00 −35.89
GRU 0.15 0.11 50.19 −21.95

SCE-LSTM 0.14 0.11 41.58 −2.44

10

RNN

28

0.12 0.09 32.26 −11.04
batch size = 64

epoch = 300
LSTM 0.13 0.09 32.55 −7.99
GRU 0.11 0.09 29.32 −6.81

SCE-LSTM 0.11 0.08 26.94 −0.18

window = 84 window = 28

Figure 7. Cont.

Agriculture 2023, 13, 2044 19 of 21
Agriculture 2023, 13, x FOR PEER REVIEW 20 of 22

Figure 7. Experimental comparison results of RNN, LSTM, GRU, and proposed SCE-LSTM models.

6. Conclusions
In this study, we introduced the SCE-LSTM method, which is designed to emulate

human memory’s selective attention and memorization of critical events. This innovative
approach excels at identifying sparse critical event (SCE) sequences during data learning,
effectively dividing data into cases involving sparse and non-sparse critical events. In
stark contrast, conventional LSTM struggles to learn SCE sequences due to the constraints
of its forget gate and input vector computations within the cell state. SCE-LSTM, during
data learning, bypasses the forget gate for SCE sequences and estimates weight values as
differences in the input vector, ensuring that the updated portion of the SCE’s input can-
didate vector can contribute more substantially to the cell state. In the case of non-sparse
critical events, sequences are learned through conventional LSTM.

Our application of the proposed SCE-LSTM method to predict agricultural time-se-
ries data, characterized by rapid fluctuations, yielded promising results. We conducted a
comparative analysis with other deep learning-based models, including RNN, LSTM, and
GRU. The outcomes underscore the superior predictive accuracy of SCE-LSTM, closely
aligning with actual daily expenditures on purchasing pork belly and exhibiting the low-
est error rates among the models tested.

While our study demonstrates the efficacy of the proposed approach among the com-
pared deep learning models, there remains room for improving the prediction accuracy.
Future investigations should delve into SCE identification and the incorporation of

Figure 7. Experimental comparison results of RNN, LSTM, GRU, and proposed SCE-LSTM models.

6. Conclusions

In this study, we introduced the SCE-LSTM method, which is designed to emulate
human memory’s selective attention and memorization of critical events. This innovative
approach excels at identifying sparse critical event (SCE) sequences during data learning,
effectively dividing data into cases involving sparse and non-sparse critical events. In stark
contrast, conventional LSTM struggles to learn SCE sequences due to the constraints of
its forget gate and input vector computations within the cell state. SCE-LSTM, during
data learning, bypasses the forget gate for SCE sequences and estimates weight values
as differences in the input vector, ensuring that the updated portion of the SCE’s input
candidate vector can contribute more substantially to the cell state. In the case of non-sparse
critical events, sequences are learned through conventional LSTM.

Our application of the proposed SCE-LSTM method to predict agricultural time-series
data, characterized by rapid fluctuations, yielded promising results. We conducted a
comparative analysis with other deep learning-based models, including RNN, LSTM, and
GRU. The outcomes underscore the superior predictive accuracy of SCE-LSTM, closely
aligning with actual daily expenditures on purchasing pork belly and exhibiting the lowest
error rates among the models tested.

While our study demonstrates the efficacy of the proposed approach among the com-
pared deep learning models, there remains room for improving the prediction accuracy.
Future investigations should delve into SCE identification and the incorporation of ad-
ditional indicators representing diverse trends. Additionally, understanding the optimal

Agriculture 2023, 13, 2044 20 of 21

duration for retaining sparse critical event sequences with varying weights presents a
significant avenue for further research.

In conclusion, the SCE-LSTM model represents a valuable advancement in predicting
agricultural consumption, particularly during unforeseen critical events like livestock
epidemics, such as African swine fever, that impact the market. Its potential for enhancing
predictive accuracy is evident, and ongoing research endeavors in this direction are poised
to contribute to more robust and reliable forecasting methods in the field.

Author Contributions: Conceptualization, T.C.; Methodology, G.-A.R. and H.R.; Validation, G.-A.R.;
Formal analysis, G.-A.R.; Data curation, T.C. and A.N.; Writing—original draft, G.-A.R., H.R. and
K.-H.Y.; Writing—review & editing, T.C. and A.N.; Visualization, T.C.; Supervision, A.N. and K.-H.Y.;
Project administration, H.R. and K.-H.Y.; Funding acquisition, K.-H.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This work has been supported by the MSIT (Ministry of Science and ICT), Korea, under the
Grand Information Technology Research Center support program (IITP-2023-2020-0-01462) super-
vised by the IITP (Institute for Information & communications Technology Planning & Evaluation),
and the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (Grant number:2020R1I1A1A01071884).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Neves, R.F.L. An Overview of Deep Learning Strategies for Time Series Prediction. Master’s Thesis, Instituto Superior Técnico,

Lisboa, Portugal, 2018.
2. Grossberg, S. Recurrent neural networks. Scholarpedia 2013, 8, 1888. [CrossRef]
3. Li, Q.; Tan, J.; Wang, J.; Chen, H. A multimodal event-driven lstm model for stock prediction using online news. IEEE Trans.

Knowl. Data Eng. 2020, 33, 3323–3337. [CrossRef]
4. Lin, H.; Sun, Q. Crude oil prices forecasting: An approach of using CEEMDAN-based multi-layer gated recurrent unit networks.

Energies 2020, 13, 1543. [CrossRef]
5. Long, W.; Lu, Z.; Cui, L. Deep learning-based feature engineering for stock price movement prediction. Knowl.-Based Syst. 2019,

164, 163–173. [CrossRef]
6. Ozbayoglu, A.M.; Gudelek, M.U.; Sezer, O.B. Deep learning for financial applications: A survey. Appl. Soft Comput. 2020, 93, 106384.

[CrossRef]
7. Wen, M.; Li, P.; Zhang, L.; Chen, Y. Stock market trend prediction using high-order information of time series. IEEE Access 2019, 7,

28299–28308. [CrossRef]
8. Chuluunsaikhan, T.; Ryu, G.-A.; Yoo, K.-H.; Rah, H.; Nasridinov, A. Incorporating deep learning and news topic modeling for

forecasting pork prices: The case of South Korea. Agriculture 2020, 10, 513. [CrossRef]
9. Ryu, G.-A.; Nasridinov, A.; Rah, H.; Yoo, K.-H. Forecasts of the amount purchase pork meat by using structured and unstructured

big data. Agriculture 2020, 10, 21. [CrossRef]
10. Yoo, T.-W.; Oh, I.-S. Time series forecasting of agricultural products’ sales volumes based on seasonal long short-term memory.

Appl. Sci. 2020, 10, 8169. [CrossRef]
11. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.
12. Li, Q.; Chen, Y.; Jiang, L.L.; Li, P.; Chen, H. A tensor-based information framework for predicting the stock market. ACM Trans.

Inf. Syst. (TOIS) 2016, 34, 1–30. [CrossRef]
13. Sun, T.; Wang, J.; Zhang, P.; Cao, Y.; Liu, B.; Wang, D. Predicting stock price returns using microblog sentiment for chinese stock

market. In Proceedings of the 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM),
Chengdu, China, 10–11 August 2017; pp. 87–96.

14. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
15. Akita, R.; Yoshihara, A.; Matsubara, T.; Uehara, K. Deep learning for stock prediction using numerical and textual information. In

Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan,
26–29 June 2016; pp. 1–6.

16. Rodrigues, F.; Markou, I.; Pereira, F.C. Combining time-series and textual data for taxi demand prediction in event areas: A deep
learning approach. Inf. Fusion 2019, 49, 120–129. [CrossRef]

https://doi.org/10.4249/scholarpedia.1888
https://doi.org/10.1109/TKDE.2020.2968894
https://doi.org/10.3390/en13071543
https://doi.org/10.1016/j.knosys.2018.10.034
https://doi.org/10.1016/j.asoc.2020.106384
https://doi.org/10.1109/ACCESS.2019.2901842
https://doi.org/10.3390/agriculture10110513
https://doi.org/10.3390/agriculture10010021
https://doi.org/10.3390/app10228169
https://doi.org/10.1145/2838731
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/j.inffus.2018.07.007

Agriculture 2023, 13, 2044 21 of 21

17. Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep learning with long short-term memory for time series prediction. IEEE
Commun. Mag. 2019, 57, 114–119. [CrossRef]

18. Baytas, I.M.; Xiao, C.; Zhang, X.; Wang, F.; Jain, A.K.; Zhou, J. Patient subtyping via time-aware LSTM networks. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17
August 2017; pp. 65–74.

19. Gravitz, L. The forgotten part of memory. Nature 2019, 571, S12. [CrossRef]
20. Cherry, K. Reasons Why People Forget. 2021. Available online: https://www.verywellmind.com/explanations-for-forgetting-27

95045 (accessed on 17 September 2023).
21. Nørby, S. Why forget? On the adaptive value of memory loss. Perspect. Psychol. Sci. 2015, 10, 551–578. [CrossRef]
22. Peng, J.; Sun, X.; Deng, M.; Tao, C.; Tang, B.; Li, W.; Wu, G.; Liu, Y.; Lin, T.; Li, H. Learning by Active Forgetting for Neural

Networks. arXiv 2021, arXiv:2111.10831.
23. Ivasic-Kos, M.; Host, K.; Pobar, M. Application of deep learning methods for detection and tracking of players. In Deep Learning

Applications; IntechOpen: London, UK, 2021.
24. Zhang, X.; Zhang, Y.; Lu, X.; Bai, L.; Chen, L.; Tao, J.; Wang, Z.; Zhu, L. Estimation of lower-stratosphere-to-troposphere ozone

profile using long short-term memory (LSTM). Remote Sens. 2021, 13, 1374. [CrossRef]
25. Chun, M.M.; Turk-Browne, N.B. Interactions between attention and memory. Curr. Opin. Neurobiol. 2007, 17, 177–184. [CrossRef]
26. Kraft, R. Why We Forget. 2017. Available online: https://www.psychologytoday.com/ca/blog/defining-memories/201706

/why-we-forget (accessed on 17 September 2023).
27. Qi, L.; Khushi, M.; Poon, J. Event-driven LSTM for forex price prediction. In Proceedings of the 2020 IEEE Asia-Pacific Conference

on Computer Science and Data Engineering (CSDE), Gold Coast, Australia, 16–18 December 2020; pp. 1–6.
28. Oliveira Pezente, A. Predictive Demand Models in the Food and Agriculture Sectors: An Analysis of the Current Models and

Results of a Novel Approach Using Machine Learning Techniques with Retail Scanner Data. Bachelor’s Thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2018.

29. Song, Y.; Lee, J. Importance of event binary features in stock price prediction. Appl. Sci. 2020, 10, 1597. [CrossRef]
30. Zhang, S.; Bahrampour, S.; Ramakrishnan, N.; Schott, L.; Shah, M. Deep learning on symbolic representations for large-scale

heterogeneous time-series event prediction. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 5970–5974.

31. Bollinger, J. Using Bollinger Bands. Stock. Commod. 1992, 10, 47–51.
32. Silva, D.B.; Cruz, P.P.; Gutierrez, A.M. Are the long–short term memory and convolution neural networks really based on

biological systems? ICT Express 2018, 4, 100–106. [CrossRef]
33. Uncapher, M.R.; Rugg, M.D. Selecting for Memory? The Influence of Selective Attention on the Mnemonic Binding of Contextual

Information. J. Neurosci. 2009, 29, 8270–8279. [CrossRef] [PubMed]
34. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw.

Learn. Syst. 2016, 28, 2222–2232. [CrossRef] [PubMed]
35. Gers, F.A.; Schmidhuber, J. Recurrent nets that time and count. In Proceedings of the IEEE-INNS-ENNS International Joint

Conference on Neural Networks, IJCNN 2000, Neural Computing: New Challenges and Perspectives for the New Millennium,
Como, Italy, 27 July 2000; pp. 189–194.

36. KOSIS (Korean Statistical Information System). Available online: https://kosis.kr/index/index.do (accessed on 17 September 2023).
37. Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma Tech. Univ. München 1991, 91, 31.
38. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv 2014, arXiv:1409.1259.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/MCOM.2019.1800155
https://doi.org/10.1038/d41586-019-02211-5
https://www.verywellmind.com/explanations-for-forgetting-2795045
https://www.verywellmind.com/explanations-for-forgetting-2795045
https://doi.org/10.1177/1745691615596787
https://doi.org/10.3390/rs13071374
https://doi.org/10.1016/j.conb.2007.03.005
https://www.psychologytoday.com/ca/blog/defining-memories/201706/why-we-forget
https://www.psychologytoday.com/ca/blog/defining-memories/201706/why-we-forget
https://doi.org/10.3390/app10051597
https://doi.org/10.1016/j.icte.2018.04.001
https://doi.org/10.1523/JNEUROSCI.1043-09.2009
https://www.ncbi.nlm.nih.gov/pubmed/19553466
https://doi.org/10.1109/TNNLS.2016.2582924
https://www.ncbi.nlm.nih.gov/pubmed/27411231
https://kosis.kr/index/index.do

	Introduction
	Literature Review
	LSTM Model and Its Applications
	Problems in LSTM Models and Modification to LSTM Models
	How Selective Memorization Is Represented in Our Proposed Modification to LSTM Models

	Methodology
	Defining the SCE in Time-Series Data
	Defining the SCE in Time-Series Data Finding the SCE
	Designing SCE-LSTM Layer by Reflecting the SCE

	Predicting the Purchase Amount of Pork Meat Using the Proposed SCE-LSTM
	Data Collection and Pre-Processing
	Application of the Proposed SCE-LSTM

	Performance Evaluation
	Experimental Models
	Evaluation Metrics
	Model Hyperparameters and Experimental Results

	Conclusions
	References

