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Abstract: Wheat stripe rust poses a serious threat to the quality and yield of wheat crops. Typically,
the occurrence data of wheat stripe rust is characterized by small sample sizes, and the current
research on severity identification lacks high-precision methods for small sample data. Additionally,
the irregular edges of wheat stripe rust lesions make it challenging to draw samples. In this study,
we propose a method for wheat stripe rust severity identification that combines SLIC superpixel
segmentation and a random forest algorithm. This method first employs SLIC to segment subregions
of wheat stripe rust, automatically constructs and augments a dataset of wheat stripe rust samples
based on the segmented patches. Then, a random forest model is used to classify the segmented
subregion images, achieving fine-grained extraction of wheat stripe rust lesions. By merging the
extracted subregion images and using pixel statistics, the percentage of lesion area is calculated,
ultimately enabling the identification of the severity of wheat stripe rust. The results show that
our method outperforms unsupervised classification algorithms such as watershed segmentation
and K-Means clustering in terms of lesion extraction when using the segmented subregion dataset
of wheat stripe rust. Compared to the K-Means segmentation method, the mean squared error is
reduced by 1.2815, and compared to the watershed segmentation method, it is reduced by 2.0421.
When compared to human visual inspection as the ground truth, the perceptual loss for lesion area
extraction is 0.064. This method provides a new approach for the intelligent extraction of wheat
stripe rust lesion areas and fading green areas, offering important theoretical reference for the precise
prevention and control of wheat stripe rust.

Keywords: wheat stripe rust; severity recognition; SLIC superpixel segmentation; random forest
algorithm

1. Introduction

Wheat stripe rust is caused by the spores of the specialized wheat stripe rust pathogen
(Puccinia striiformis f.sp.tritici), which belongs to low temperature, high humidity, and
strong light-type fungal disease. It is also a cross-regional air-transmitted disease with a
wide occurrence and strong prevalence [1]. Since the founding of the People’s Republic of
China, an average of about 4 million hectares has been affected annually by wheat stripe
rust. In epidemic years, the affected area exceeds 5.5 million hectares. The disease can
cause a reduction of 20–30% in wheat yield in normal to moderately affected cases, and in
severe cases, it can lead to a reduction of more than 60% [2]. This poses a serious threat to
wheat production and quality. Therefore, the prevention and control of wheat stripe rust is
particularly important for wheat production and the accurate recognition of wheat stripe
rust severity is the key to accurate prevention and control of the disease and the accurate
application of pesticides.

Traditional wheat stripe rust severity recognition depends on experts or farmers
with relevant experience to enter the field for manual judgment. This method has the
disadvantages of strong subjectivity, low efficiency, and low recognition accuracy, which can
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easily lead to untimely prevention and control and excessive use of pesticides. Compared
with the traditional empirical recognition method, spectrum technology can provide more
abundant information on crop disease, and some scholars have applied it to intelligent
detection of crop disease [3–5], finding that this method is suitable for regional detection
and early prevention of diseases. Inspired by this, many scholars have applied it to the
recognition of wheat stripe rust severity. Li Xiaolong et al. [6] established a qualitative
recognition model of wheat stripe rust on different severity leaves based on near-infrared
spectrum technology and partial least squares regression. Wang Haiguang et al. [7] used
an SVM algorithm to identify the severity of wheat stripe rust based on hyperspectral data
of wheat stripe rust leaves with different severity levels. Jiang Xiaomin [8] used a series
of algorithms based on the crown scale and the plot scale, to construct a wheat stripe rust
severity estimation model based on the spectrometry data of wheat stripe rust. In these
studies, all achieved significant results, providing technical support for wheat stripe rust
grading and monitoring. However, these methods easily suffer from the “same spectrum,
different diseases” phenomenon, are susceptible to weather and terrain effects, and lead
to decreased detection accuracy [9]. In addition, these methods also require professional
equipment with high costs and cannot be directly applied in the field by farmers.

With the development of deep learning, convolutional neural networks based on
images have been widely used in the recognition and detection of crop diseases [10–12].
Compared with the spectrum technology-based method, this method does not require
professional equipment to obtain data and has high recognition accuracy; therefore, some
scholars have applied it to the recognition of wheat stripe rust severity. Guo Wei et al. [13]
improved the convolutional network to achieve the recognition of wheat stripe rust severity
levels. Mi Zhiwen [14] proposed a new deep learning network C-DenseNet for wheat
stripe rust infestation level determination, showing that C-DenseNet has the highest testing
accuracy and is superior to other comparative networks. Bao Wenxia et al. [15] proposed
a convolutional neural network based on cyclic spatial transformation and conducted
severity estimates of wheat stripe rust and powdery mildew on wheat leaves with high
accuracy. However, this image-based method requires a large dataset and high-performance
computer equipment as a basis for its implementation, as well as the creation of a large
number of training samples, which is costly in terms of human and material resources.

In the recognition and detection of crop diseases, machine vision image processing
methods have also been widely used [16–19]. There are few studies that have applied this
method for the recognition of wheat stripe rust severity and research on severity grading
based on the proportion of the lesion area is even less common. RN Singh et al. [20] esti-
mated the severity of stripe rust through heat imaging and supervised image classification
methods. Jiang Xiaomin [21] used clustering methods and OTUS methods based on leaf
scale to propose a wheat stripe rust severity grading method based on pictures. These two
scholars’ research shows that machine vision image processing methods have significant
advantages in wheat stripe rust severity recognition for small data sets. Therefore, based
on the idea of segmentation before classification using machine vision image processing
methods, this study proposes a wheat stripe rust severity recognition method that combines
the Simple Linear Iterative Clustering (SLIC) superpixel method with the random forest
algorithm, based on a small-scale publicly available network dataset. The SLIC superpixel
segmentation method effectively preserves the irregular edges of lesions, addressing the
challenges of difficult and time-consuming manual delineation of disease lesions. Further-
more, by segmenting leaf images into multiple sub-images, there is an increase the sample
size for training the random forest method, overcoming the limitation of a small sample
size. The advantages of the random forest algorithm, including dual randomness, handling
high-dimensional feature image sets, strong robustness to noise data, and resistance to
overfitting, contribute to achieving excellent classification accuracy. The proposed method
ultimately realizes the fine extraction of wheat stripe rust lesion areas, providing a strategy
for determining severity levels based on lesion area. This approach aims to serve as a
scientific basis for the precise prevention and accurate treatment of wheat stripe rust.
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The following content is organized as follows: Section 2 introduces the dataset and its
sources, as well as the methods and accuracy evaluation metrics used in this article; Sec-
tion 3 describes the experimental process, presents the experimental results, and validates
the model accuracy; finally, a summary of the methods proposed in this article is provided
in Section 4.

2. Materials and Methods
2.1. Data Source

The wheat stripe rust image data used in this study come from the public dataset,
Wheat Leaf Dataset [22], which was collected by Hawi Getachew in 2021 at the Holeta
wheat farm in Ethiopia with the assistance of pathologists using a Canon EOS 5D Mark III
camera. The dataset contains a total of 407 images, consisting of 102 healthy leaf images,
208 wheat leaf images with rust disease, and 97 wheat leaf images with leaf blight. The
dataset used in this article includes 102 healthy leaf images and 208 wheat rust disease leaf
images, without using wheat leaf blight data. The categories of the dataset are shown in
Figure 1. In this study, pure color background images of wheat rust disease leaves in the
dataset were selected as the research objects.
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Figure 1. Partial dataset image. (a) Image of wheat stripe rust leaf; (b) image of healthy leaf; (c) image
of septoria disease leaf.

2.2. Wheat Leaf Segmentation Method
2.2.1. Principle of SLIC Superpixel Segmentation

The superpixel [23] refers to a visually meaningful irregular pixel block composed
of adjacent pixels with similar textures, colors, brightness, and other features. Super-
pixel generation is often used as a pre-processing step in image segmentation and has
become an important part in visual processing technology and has been applied in multiple
computer vision tasks [24]. The SLIC (Simple Linear Iterative Clustering) algorithm is
a gradient descent-based and simple linear iterative clustering algorithm proposed by
Achanta et al. [25]. Compared to other segmentation algorithms, it has the advantages of
high edge adherence and controllable quantity. Moreover, it improves the convergence
speed by modifying the search range [26]. Therefore, in this study, the SLIC algorithm
is used for wheat leaf segmentation. The algorithm converts the color space of the color
image into a 5-dimensional feature vector in the CIELAB color space and the XY coordinate
space. Based on the color and space features of the image, the algorithm performs local
clustering of each pixel in the color image, grouping pixels with similar visual features into
superpixel blocks that have consistent local structures and ideal boundary contours. The
specific implementation process of the algorithm is as follows:

(1) The first step is to initialize the seed points (cluster centers). According to the
pre-set number of superpixels K, seed point positions are evenly distributed on the image.
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Assuming the image has N pixels, the size of the segmented superpixels is N
K , and the

distance between adjacent seed points is approximately S =
√

N
K .

(2) In the 3 × 3 neighborhood of a seed point, seed points are selected to avoid being
assigned to regions with high gradients near the image edges, thereby preventing potential
influence on the subsequent clustering results.

(3) For each seed point, assign a unique label and associate the search area of each pixel
with its corresponding seed point. To reduce computation and enhance the algorithm’s
convergence speed, the search area is restricted 2S × 2S as shown in Figure 2.
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(4) Next, calculate the similarity D between each seed point and the pixels in its search
range neighborhood. Since a pixel can be searched by multiple seed points, the seed point
with the closest distance to the pixel is used to calculate the similarity, and the label of the
most similar seed point is assigned to the pixel. The similarity calculation formula is as
follows:

D =

√
dc2 +

(
ds

S

)2
m2 (1)

where dc represents the color distance between the seed point and the pixel in the search
neighborhood, ds represents the spatial distance between the seed point and the pixel in
the search neighborhood, m can be used as a weight to measure the importance of color
similarity and spatial proximity. When m is large, the weight of spatial proximity is large
and the resulting superpixel is more compact. When m is small, the resulting superpixel is
more closely aligned with the image boundary, and its size and shape are less regular.

(5) Then, update the clustering center iteratively by taking the mean of the x and
y coordinates of the pixels with the same labels as the new x and y coordinates of the
clustering center.

(6) Finally, repeat steps (3), (4), and (5) for iterative optimization until the error con-
verges, i.e., the clustering center no longer changes. The final superpixel segmentation
result is generated.

2.2.2. SLIC Segmentation Parameters

The SLIC algorithm used in this study was implemented in the Python language using
PyCharm as the IDE. It was developed using the Scikit-image framework (version 0.20.0)
along with NumPy (version 1.23.4).

To apply the SLIC superpixel segmentation algorithm to wheat leaf images infected
with wheat stripe rust, the first step is to determine the number of superpixels for pre-
segmentation. In order to ensure that the segmentation method is adaptable to images of
different sizes, a fixed number of pre-segmentations is not used in this study. Instead, the
number of pre-segmentations for each image is determined by considering the size of the
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image. This is achieved by determining a “size” parameter that adapts to different image
sizes. The calculation formula is as follows:

numsegments = int(w · h/size) (2)

where numsegments is the number of superpixels for pre-segmentation, w is the width of
the image, h is the height of the image, and size is the given parameter. The int function is a
calculation function that rounds the result.

2.3. Wheat Stripe Rust Lesion Classification Method
2.3.1. Principles of Random Forest Classification Algorithm

The random forest algorithm [27] is a bagging ensemble classifier constructed by
multiple decision trees as base classifiers, which is a variant of bagging based on bootstrap
sampling of samples and randomly selecting feature subsets. It constructs multiple decision
trees to form a “forest” and obtains the final classification result through the voting results or
averaging of each tree. Many studies [28–31] have shown that the random forest algorithm
is less susceptible to outliers and image noise in samples, has good classification accuracy
and stability, and is difficult to overfit. It has broad applicability in the field of pest and
disease identification. Therefore, this study constructs a random forest model to classify
and identify wheat leaf disease lesions and healthy areas. The model construction method
is as follows:

(1) Random sampling by taking a training dataset with N samples, performing N
random withdrawals with replacement, and using the resulting subsets as root node
samples for decision tree construction.

(2) When splitting each node in a decision tree, we needed to randomly select m
attributes (where m = log2M, rounded up) without replacement from the available M
attributes. Then, we used a certain strategy (such as information gain) to choose one
attribute as the splitting criterion for the node. Starting from the root node, we generate a
complete decision tree layer by layer from top to bottom.

(3) Then construct a random forest by repeating steps (1) and (2) n times to build n
decision trees and combine them to form a random forest.

(4) The next step is decision tree classification, I For each sample in the test set,
perform decision-making for each decision tree, and use majority voting to determine the
final classification result.

(5) Finally, repeat step (4) multiple times until the test set completes classification.
The classification flowchart is shown in Figure 3.

2.3.2. Experimental Parameters Setting

The method for classifying diseased regions and its comparative models were imple-
mented using the Scikit-learn framework (version 1.1.1) combined with NumPy (version
1.23.4).

The training dataset for this method was created based on a sample dataset of 2284 im-
ages obtained through the SLIC segmentation method applied to leaf images. This dataset
comprises 1142 images of healthy leaf portions and 1142 images of diseased regions. The
dataset was randomly split into training and testing sets with an 80:20 ratio, resulting in
a set of 1827 images for training and 457 images for testing. During the training process,
the random forest classifier utilized interpretable variables such as the grayscale histogram
features, color features, and texture features of the images. The number of base estimators
(n_estimators) was set to 200, and out-of-bag sample estimation (oob_score) was enabled
with a setting of True. All other parameters were kept at their default values.
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2.4. Wheat Stripe Rust Severity Determination Method
2.4.1. Wheat Stripe Rust Severity Grading Standard

According to the Chinese national standard “Rules for monitoring and forecast of the
wheat stripe rust” (GB/T 15795-2011) [32], which has been implemented since 2011, the
severity of wheat stripe rust on a single leaf is determined based on the percentage of the
diseased area on the leaf affected by wheat stripe rust relative to the total leaf area. This
severity is expressed using a grading system ranging from 1 to 8, as outlined in Table 1. For
cases falling between grades, the nearest whole number is assigned. If the severity is below
1% despite the presence of the disease, it is recorded as 1%.

Table 1. Wheat stripe rust severity grading table.

Disease Severity 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level

Percentage of diseased
area relative to total leaf

area (%)
0 1 5 10 20 40 60 80 100

2.4.2. Wheat Stripe Rust Severity Identification Method

As mentioned above, the severity of wheat stripe rust disease is measured based
on the proportion of lesion area to total leaf area. In digital images, since pixels are the
basic building blocks of the image, we can use pixel statistics to calculate the number
of pixels in the lesion region and the leaf region after segmentation. Then, calculate the
ratio of the number of pixels of the two regions, and finally obtain the percentage of the
lesion area in the total leaf area in the image, represented by s. Based on Table 1, we can
determine the severity level of wheat leaf rust disease. Based on the wheat stripe rust
severity grading standard in Table 1, the severity of wheat stripe rust can be determined.
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Therefore, this study uses the percentage s to determine the severity of wheat stripe rust,
and the calculation formula [33] is as follows:

s =
Ad
Al
× 100% =

p ∑(x,y)∈Rd
1

p ∑(x,y)∈Rl
1
× 100% =

∑(x,y)∈Rd
1

∑(x,y)∈Rl
1
× 100% (3)

where s is the percentage of wheat stripe rust lesion area to total leaf area; Ad is the area of
the lesion area; Al is the area of the leaf area; p is the area of a unit pixel; Rd is the lesion
area; Rl is the leaf area.

In summary, this study constructs a wheat stripe rust severity identification method
based on the combination of the SLIC superpixel segmentation method and the random
forest algorithm. First, the pixel-level image segmentation of wheat leaves was achieved
through unsupervised SLIC superpixel segmentation, dividing the image into sub-regions
with similar features. Second, a random forest model was constructed to train the classified
sub-region images, achieving precise extraction of wheat stripe rust disease lesions and
healthy leaf areas. Finally, the number of extracted lesion and leaf pixels was counted
and the ratio of lesion area was computed to determine the severity of wheat stripe rust
according to the severity grading standard of wheat stripe rust. The overall flowchart is
shown in Figure 4.
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2.5. Comparison Methods
2.5.1. Methods for Wheat Stripe Rust Lesion Sub-Region Identification

This experiment employs a comparative experimental strategy to investigate the
advantages of the proposed model. The comparative models include the currently popular
and well-performing XG Boost [34] (eXtreme Gradient Boosting) and Ada Boost [35]
(Adaptive Boosting). XG Boost is a gradient boosting tree model that combines many CART
tree models to construct a strong classifier by continuously adding trees and performing
feature splitting. Ada Boost is an iterative algorithm that trains different classifiers (weak
classifiers) using the same training set. By increasing the weights of misclassified samples
and decreasing the weights of correctly classified samples in the previous round, these
weak classifiers are combined to form a stronger final classifier (strong classifier). They
share a similar principle as ensemble learning methods but differ in their boosting strategies
and weight adjustments. XG Boost and AdaBoost represent weak learning and strong
learning methods, respectively, based on tree models. By comparing these two methods
with random forests, a better assessment of the performance of random forests in various
learning tasks can be achieved.

In terms of method implementation and parameter settings, consistent with the ran-
dom forest algorithm, grayscale co-occurrence matrix features, color features, and texture
features are employed as interpretable variables. In the XG Boost algorithm, the number
of classes (num_class) and the maximum depth (max_depth) are set to 2 and 150, respec-
tively. For the AdaBoost algorithm, max_depth and n_estimators are set to 150 and 200,
respectively. The remaining parameters for both algorithms are set to their default values.



Agriculture 2023, 13, 2187 8 of 17

2.5.2. Methods for Wheat Stripe Rust Lesion Extraction

To verify the advantages of the proposed lesion extraction method, the Watershed
Segmentation [36] and K-means [37] clustering algorithm were used for comparison. The
Watershed Segmentation is an image segmentation algorithm based on geographical mor-
phological analysis, which classifies different objects by mimicking the geographical struc-
tures (such as ridges and valleys) on the Earth’s surface. The watershed segmentation
method is effective in handling complex image features, exhibiting excellent recognition
capabilities for features such as edges and corners. It provides accurate localization and
high stability. However, it is associated with a large computational burden, prolonged
processing times, and a tendency to produce over-segmentation phenomena. The K-means
algorithm is a distance-based clustering algorithm that assigns similar samples to the same
cluster by comparing the similarity between samples. The K-means algorithm is simple to
implement, fast in terms of speed, and yields intuitive results. However, it is sensitive to
the initial cluster centers and can be influenced by outliers and noise.

The recognition using the aforementioned two algorithms is implemented utilizing
the Scikit-image framework (version 0.20.0), in combination with Scikit-learn framework
(version 1.1.1) and leveraging NumPy (version 1.23.4). For the K-means algorithm, the
number of clusters (n_clusters) was set to 5. As for the watershed algorithm, the parameters
and other settings were left at their default values.

2.6. Accuracy Evaluation Metrics
2.6.1. Accuracy Evaluation Metrics for the Identification Model

To evaluate the performance of the wheat stripe rust disease lesion recognition model,
select precision, recall, F1 score, accuracy, and ten-fold cross-validation evaluation score were
chosen as the evaluation indicators. Precision represents the proportion of true positive
samples among all samples predicted as positive. Recall represents the proportion of
correctly classified positive samples among all positive samples. F1 score is the harmonic
mean of precision and recall. Accuracy is the percentage of correctly predicted samples
among the total number of samples, indicating the overall prediction accuracy. Ten-fold
cross-validation is a method used to evaluate the accuracy of a model. It involves dividing
the dataset into 10 equal parts, using 9 parts for training and the remaining 1 part for
testing. This process was repeated 10 times, with each iteration using a different subset as
the testing data. The final cross-validation evaluation score is obtained by averaging the
predictions from the 10 tests. The formulas for calculating precision, recall, F1 score, and
accuracy are shown in Equations (4)–(7).

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1 =
2× precision× recall

precision + recall
(6)

accuracy =
TP + TN

TP + FP + FN + TN
(7)

In the formulas, TP represents true positives (samples predicted as positive and
actually positive), FP represents false positives (samples predicted as positive but actu-
ally negative), FN represents false negatives (samples predicted as negative but actually
positive), and TN represents true negatives (samples predicted as negative and actually
negative).
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2.6.2. Accuracy Evaluation Metrics for Prediction Results

To assess the accuracy of the model’s prediction results, the Structural Similarity Index
(SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and Mean Square Error (MSE)
were selected as evaluation metrics. SSIM is a metric for quantifying the structural similarity
between two images. The SSIM value ranges from 0 to 1, where a higher value indicates
higher similarity between the images. If two images are exactly the same, the SSIM value is
1. Perceptual loss is used to measure the difference between two images. This metric learns
the inverse mapping from generated images to ground truth, forcing the generator to learn
the inverse mapping from fake images to reconstruct real images, giving priority to the
perception similarity between them. LPIPS measures the difference between two images by
learning the perceptual similarity between them. It simulates human perception of image
differences through the learning of a neural network. Its objective is to provide a better
measure of image similarity that aligns with human subjective perception. By calculating
the similarity of image blocks and paying more attention to the details between these blocks,
it achieves greater accuracy and objectivity compared to human visual inspection. A lower
LPIPS value indicates higher similarity between the images. Mean Square Error (MSE)
is used to compare the images of lesions extracted by algorithms with those manually
extracted through visual inspection. It measures the differences between algorithmic and
manual interpretations to assess the image quality of lesion extraction results based on
the algorithm. The average is computed for each pair of pixel values between manually
inspected results and algorithmic results, where the difference for each pixel is squared,
summed, and then averaged to obtain the MSE value. The range is [0, +∞), with a value
of 0 indicating a perfect match between predicted and actual values. The larger the value,
the greater the error. The formulas for calculating SSIM, LPIPS, and MSE are shown in
Equations (8)–(10).

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (8)

d(x, x0) = ∑ l
1

HlWl
∑ h,w ‖ wl �

(
ŷl

hw − ŷl
0hw

)
‖2

2 (9)

MSE =
1
n ∑ n

i=1(yi − ŷi)
2 (10)

In Equation (8), x and y are input images, µx and µy are the mean values of x and y,
σ2

x and σ2
y are the variances of x and y, σxy is the covariance between x and y, and c1 and

c2 are constants. In Equation (9), d(x, x0) is the metric for LPIPS, where d represents the
distance between x0 and x, the feature maps are extracted at the L layer and normalized
along the channel dimension, and the L2 distance is computed after scaling the activation
channels with the vector wl , followed by spatial averaging and channel summation. In
Equation (10), n is the number of samples, yi represents the true value, and ŷi represents
the predicted value.

3. Results and Discussion
3.1. Results of the SLIC Superpixel Segmentation

In order to determine the appropriate size, based on the existing experimental segmen-
tation experience, parameter settings were established through comparative experiments to
observe the segmentation results under different parameters. This comparative experiment
used multiple wheat stripe rust images of different sizes and set the parameter size to 5000,
4500, 4000, 3500, 3000, 2500, 2000, 1500, and 1000, and the SLIC algorithm was used for
image segmentation. The partial segmentation results for different size parameters are
shown in Figure 5.
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From Figure 5, it can be observed that the segmentation results are generally good
for the leaf edges and lesion areas. When the segmentation parameter size is set to 5000,
some lesion areas are not well separated from the healthy regions, and some leaf edges are
connected to the background, resulting in poor segmentation results. When the size is set
to 4500, the segmentation results for the lesion areas are more detailed compared to the
size parameter of 5000, but there are still a few small lesions that are not well separated.
When the size parameter is set to 4000, it shows good segmentation results on smaller-sized
leaves but poor results on larger-sized leaves. When the size parameters are set to 3000,
2500, 2000, 1500, and 1000, the segmentation results are good for different-sized images,
but there is over-segmentation in some cases. When the size parameter is set to 3500, it
achieves good segmentation results for leaf edges and background in different-sized images.
Therefore, based on the experimental results, the size parameter of 3500 was selected for
image segmentation. The segmented subregion images with the optimal parameters are
shown in Figure 6.
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3.2. Results of the Sub-Region Classification
3.2.1. Results of the Classification Model Training

After determining the segmentation parameters, the wheat leaf images were divided
into subregions using the SLIC superpixel segmentation algorithm. A total of 2284 sub-
region images were obtained, including 1142 images of lesion areas and 1142 images of
healthy regions. The dataset was randomly divided into a training set (1827 images) and a
testing set (457 images) with an 8:2 ratio. Using training samples for training, precision,
recall, F1 score, and accuracy were selected as evaluation metrics for the test set. The
evaluation metrics values for the Random Forest, XG Boost, and Ada Boost models were
calculated separately. Additionally, ten-fold cross-validation was performed on the training
set to validate the training results of the models. The experimental results are shown in
Table 2.

Table 2. Comparison of accuracy among different models.

Model Label Precision (%) Recall (%) F1 Score (%) Accuracy (%) Cross-Validation Score
(%)

Random forest
Disease 94.57 91.67 93.10

93.22 90.47Healthy 91.95 94.76 93.33
Overall 93.26 93.22 93.21

XG Boost
Disease 92.17 92.98 92.58

92.56 89.43Healthy 92.95 92.14 92.54
Overall 92.56 92.56 92.56

Ada Boost
Disease 82.46 82.46 82.46

82.06 83.52Healthy 82.53 82.53 82.53
Overall 82.49 82.49 82.49
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From Table 2, it can be seen that compared to XG Boost, the recognition accuracy
in the lesion area of the random forest algorithm is improved, with an increase of 2.4%
in accuracy and 0.52% in F1 score, but a decrease of 1.31% in recall. In the healthy area
recognition, the recall and F1 score increase by 2.62% and 0.79%, respectively, while the
accuracy decreases by 1%. Overall, the accuracy, recall, and F1 score of the random forest
are better than those of XG Boost, with an accuracy increase of 0.66% and a cross-validation
score increase of 1.04%. Compared to Ada Boost, the random forest improves the accuracy,
recall, and F1 score in the lesion area by 12.11%, 9.21%, and 10.64%, respectively, and the
improvements in the healthy area are 9.42%, 12.23%, and 10.8%. Overall, the classification
accuracy of the random forest is superior to that of Ada Boost in terms of accuracy, recall,
and F1 score, with an accuracy increase of 11.16% and a cross-validation score increase of
6.95%. The results indicate that the random forest classifier performs best in the sub-region
image classification task, has high accuracy and stability in recognizing lesion areas, and
has better generalization ability than the other two classifiers, making it suitable for the
classification task in this study.

3.2.2. Results of the Classification Model Predictions

To evaluate the prediction results of the three models, the Structural Similarity Index
(SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and Mean Square Error (MSE)
were used as evaluation metrics. The model’s lesion area prediction results were compared
using these metrics, and the results are shown in Figure 7 and Table 3.

Table 3. Comparison of similarity between prediction results of different models.

Metric Image
Model

RF XG Boost Ada Boost

Learned Perceptual Image Patch Similarity (LPIPS)

1 0.046 0.054 0.086
2 0.010 0.014 0.027
3 0.010 0.014 0.042
4 0.006 0.029 0.038

Average 0.026 0.02775 0.04825

Structural Similarity Index (SSIM)

1 0.9840 0.9797 0.9629
2 0.9940 0.9921 0.9863
3 0.9948 0.9921 0.9819
4 0.9973 0.9885 0.9785

Average 0.992525 0.9881 0.9774

Mean Square Error (MSE)

1 1.3898 1.7793 3.3205
2 0.6257 0.819 1.3649
3 0.5735 0.8241 1.7484
4 0.2368 1.1017 1.9488

Average 0.70645 1.131025 2.09565

From Figure 7 and Table 3, it can be seen that among the three models, the Random
Forest algorithm performs best in predicting the classification of wheat stripe rust disease
lesions and healthy areas with artificial visual inspection as the true value. Compared to
XG Boost and Ada Boost, the LPIPS of Random Forest decreases by 0.00175 and 0.02225,
and the SSIM increases by 0.004425 and 0.015125, while the MSE decreases by 0.424575 and
1.3892. This indicates that the results of the Random Forest have the best image quality and
are the closest to the artificial visual interpretation, verifying the superiority of the Random
Forest model. In summary, among the three models, the Random Forest algorithm is most
suitable for classification of wheat stripe rust disease lesions and healthy areas, with high
classification accuracy and good prediction effect. Therefore, this study selects the Random
Forest algorithm to implement the identification of wheat stripe rust disease lesions.
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3.3. Results of the Wheat Stripe Rust Lesion Extraction

To explore the advantages of the proposed lesion extraction method, a comparative
experiment was conducted using the Watershed Segmentation and K-means clustering
algorithms for lesion segmentation and extraction. The results were evaluated using the
Structural Similarity Index (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and
Mean Square Error (MSE) metrics. The results are shown in Figure 8 and Table 4.
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Table 4. Comparison of similarity in extracted lesion results using different methods.

Metric

Method

Method of This Study K-Means Watershed
Segmentation

Learned Perceptual Image Patch Similarity (LPIPS) 0.046 0.076 0.082
Structural Similarity Index (SSIM) 0.9840 0.9558 0.9255

Mean Square Error (MSE) 1.3898 2.6713 3.4319

From the segmentation results, it can be observed that the Watershed Segmentation
method had poor lesion extraction results, with some lesion areas not being properly
extracted. The K-means segmentation method achieved good extraction results but failed
to extract some faded lesion areas. According to Table 4, using manual evaluation as the
ground truth, the proposed lesion extraction method achieved the best results. Compared
to the K-means segmentation method, the proposed method showed a decrease of 0.03
in LPIPS, an increase of 0.0282 in SSIM, and a decrease of 1.2815 in MSE. Compared to
the Watershed Segmentation method, the proposed method showed a decrease of 0.036 in
LPIPS, an increase of 0.0585 in SSIM, and a decrease of 2.0421 in MSE. These results indicate
that the proposed method has the best performance for lesion extraction in wheat stripe
rust, providing advantages in terms of accuracy and objectivity by reducing the influence
of human factors.

3.4. Results of the Wheat Stripe Rust Severity Identification

After obtaining complete wheat stripe rust leaf images, the images were segmented
into visually similar superpixel blocks using the SLIC superpixel segmentation algorithm.
Then, the random forest model was used to predict the categories of the superpixel blocks,
and the lesion areas and healthy regions were merged based on the classification results.
Next, the pixel counting method was used to count the number of pixels in the merged
lesion area and the healthy region. The severity percentage s, representing the lesion area
as a percentage of the total leaf area, was calculated using Equation (3). Finally, based on
the severity percentage, the severity level of wheat stripe rust could be determined. The
merged image results and severity level determination are shown in Figure 9.
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4. Conclusions

In response to the current status of wheat stripe rust severity recognition research,
there is a lack of high-precision severity recognition methods for small-sample data and
the irregular edge of wheat stripe rust lesions is difficult to outline and extract. Based on a
small-volume public dataset “Wheat Leaf Dataset”, this study conducts research on the
detailed segmentation and extraction of wheat stripe rust lesion areas and proposes a wheat
stripe rust severity recognition method that combines the SLIC superpixel segmentation
method with the random forest algorithm. The main conclusions are as follows:

(1) Based on the idea of segmenting images before merging them, the SLIC superpixel
segmentation method realizes pixel-level sub-regional image segmentation of wheat leaves
by determining the optimal segmentation parameters of the image. Without manual
intervention, the edge of the lesion area can be well outlined and extracted, achieving
good segmentation results. Furthermore, the segmented images can be used as samples to
expand the dataset, making it highly practical.

(2) To achieve refined extraction of wheat stripe rust lesions, a sample set was con-
structed based on segmented subregion images. Random Forest, XGBoost, and AdaBoost
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models were separately established for accuracy comparison. The results indicate that the
Random Forest model performs the best, with a classification accuracy of 93.22% and a
cross-validation score of 90.47%. It shows a significant improvement compared to the two
contrasting models, demonstrating the Random Forest classification algorithm as the most
suitable for this study. The model’s classification results can serve as the basis for merging
various lesion subregions, thereby achieving the segmentation of leaf lesions and healthy
regions. The proposed lesion extraction method in this paper reduces the impact of human
factors, enhancing the objectivity and reliability of the research results.

(3) Taking the manually observed results as ground truth, the proposed method was
compared with the K-Means clustering method and the watershed segmentation method.
The results show that the proposed method achieves the best image quality in lesion
extraction, with the smallest image differences and the closest resemblance to the structure
and integrity of the real lesions. Therefore, the proposed method demonstrates the best
intelligent extraction performance for wheat stripe rust lesions. Based on this, the area
proportion of the lesion region is calculated using pixel statistics, enabling the classification
and identification of the severity of wheat stripe rust. The proposed method provides
an accurate method for severity identification based on area proportion at the leaf scale,
allowing for finer disease recognition and providing a scientific basis for green prevention
and precise medication. Furthermore, the method can be integrated and developed into a
mobile application for farmers and grassroots agricultural technicians, providing scientific
guidance for the prevention and control of wheat stripe rust for farmers.
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