Effects of Different Manures in Combination with Fulvic Acid on the Abundance of N-Cycling Functional Genes in Greenhouse Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Collection and Analysis of Soil Samples
2.3.1. Soil Samples Collection
2.3.2. Determination of Soil and Manure Properties
2.3.3. Soil DNA Extraction
2.3.4. Quantification of N-Cycle Functional Genes
2.4. Data Processing and Statistical Analysis
3. Results and Analysis
3.1. Effects of Different Treatments on Soil Basic Properties
3.2. Effects of Different Treatments on the Abundance of 16S rRNA Gene in Soil
3.3. Effects of Different Treatments on the Abundance of gdhA Gene in Soil
3.4. Effects of Different Treatments on the Abundance of nifH Gene in Soil
3.5. Effects of Different Treatments on the Abundance of Nitrification Genes in Soil
3.6. Effects of Different Treatments on the Abundance of Denitrification Genes in Soil
3.7. Differences of N-Cycling Genes in Different Fertilization Treatments
3.8. Effects of Environmental Factors on N-Cycle Functional Genes
4. Discussion
4.1. Effects of Fertilization on N-Cycle Functional Genes
4.2. Effects of Fertilization on N-Cycle
4.3. Effects of Environmental Factors on N-Cycle Functional Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, M.M.; Tong, C.X.; Hu, K.; Zhou, B.Q.; Xing, S.H.; Mao, Y.L. Biochar-fertilizer interaction modifies N-sorption, enzyme activities and microbial functional abundance regulating nitrogen retention in rhizosphere soil. Sci. Total Environ. 2020, 739, 140065. [Google Scholar] [CrossRef] [PubMed]
- Qasim, W.; Xia, L.; Lin, S.; Wan, L.; Zhao, Y.; Butterbach-Bahl, K. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environ. Pollut. 2021, 272, 116372. [Google Scholar] [CrossRef] [PubMed]
- Elrys, A.S.; Wang, J.; Metwally, M.A.S.; Cheng, Y.; Zhang, J.B.; Cai, Z.C.; Chang, S.X.; Müller, C. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen. Glob. Chang. Biol. 2021, 27, 6512–6524. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Tang, Y.; Chen, R.; Xu, F.; Wu, Q.; He, Y.; Xiao, W.; Li, J.; Liu, Z.; Chen, Y. Metabolism characteristics of nitrogen functional microorganisms in bioretention system under multiple dry-wet alternation. J. Water Process Eng. 2023, 53, 103685. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, C.; Wei, X.; Liu, Y.; Chen, X.; Qin, H.; Wu, J.; Su, Y.; Ge, T.; Hu, Y. Characterization of nirS- and nirK-containing communities and potential denitrification activity in paddy soil from eastern China. Agric. Ecosyst. Environ. 2021, 319, 107561. [Google Scholar] [CrossRef]
- Ouyang, Y.; Norton, J.M.; Stark, J.M.; Reeve, J.R.; Habteselassie, M.Y. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol. Biochem. 2016, 96, 4–15. [Google Scholar] [CrossRef]
- Lin, J.; Xu, Z.; Xue, Y.; Sun, R.; Yang, R.; Cao, X.; Li, H.; Shao, Q.; Lou, Y.; Wang, H.; et al. N2O emissions from soils under short-term straw return in a wheat-corn rotation system are associated with changes in the abundance of functional microbes. Agric. Ecosyst. Environ. 2023, 341, 108217. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Song, W.; Wen, S.; Wang, B.; Zhu, C.; Shen, R. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol. Biochem. 2017, 113, 240–249. [Google Scholar] [CrossRef]
- Levy-Booth, D.J.; Prescott, C.E.; Grayston, S.J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 2014, 75, 11–25. [Google Scholar] [CrossRef]
- Lin, Y.; Ye, G.; Liu, D.; Ledgard, S.; Luo, J.; Fan, J.; Yuan, J.; Chen, Z.; Ding, W. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol. Soil Biol. Biochem. 2018, 123, 218–228. [Google Scholar] [CrossRef]
- Li, Z.; Tian, D.; Wang, B.; Wang, J.; Wang, S.; Chen, H.Y.H.; Xu, X.; Wang, C.; He, N.; Niu, S. Microbes drive global soil nitrogen mineralization and availability. Glob. Chang. Biol. 2019, 25, 1078–1088. [Google Scholar] [CrossRef]
- Song, L.; Niu, S. Increased soil microbial AOB amoA and narG abundances sustain long-term positive responses of nitrification and denitrification to N deposition. Soil Biol. Biochem. 2022, 166, 108539. [Google Scholar] [CrossRef]
- Fan, Z.; Li, R.; Guan, E.; Chen, H.; Zhao, X.; Wei, G.; Shu, D. Fertilization regimes affect crop yields through changes of diazotrophic community and gene abundance in soil aggregation. Sci. Total Environ. 2023, 866, 161359. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Gao, W.; Luan, H.; Tang, J.; Li, M.; Huang, S. Effects of partial substitution of chemical fertilizer with manure and/or straw on the abundance of functional genes related to soil N-cycling. J. Plant Nutr. Fertitizer 2021, 27, 1767–1778. [Google Scholar]
- Ouyang, Y.; Evans, S.E.; Friesen, M.L.; Tiemann, L.K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem. 2018, 127, 71–78. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Song, L.; Wang, S.; Yin, C. Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil. J. Basic Microbiol. 2014, 54, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Norton, J.M. Short-Term Nitrogen Fertilization Affects Microbial Community Composition and Nitrogen Mineralization Functions in an Agricultural Soil. Appl. Environ. Microbiol. 2020, 86, e02278-19. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yang, C.; Sainju, U.M.M.; Zhang, N.; Zhao, F.; Wang, W.; Wang, J. Differential Responses of Soil Microbial N-Cycling Functional Genes to 35 yr Applications of Chemical Fertilizer and Organic Manure in Wheat Field Soil on Loess Plateau. Agronomy 2023, 13, 1516. [Google Scholar] [CrossRef]
- Li, W.X.; Wang, C.; Zheng, M.M.; Cai, Z.J.; Wang, B.R.; Shen, R.F. Fertilization strategies affect soil properties and abundance of N-cycling functional genes in an acidic agricultural soil. Appl. Soil Ecol. 2020, 156, 103704. [Google Scholar] [CrossRef]
- Li, X.; Han, S.; Wan, W.; Zheng, L.; Chen, W.; Huang, Q. Manure fertilizes alter the nitrite oxidizer and comammox community composition and increase nitrification rates. Soil Tillage Res. 2020, 204, 104701. [Google Scholar] [CrossRef]
- Gao, Y.; He, J.; He, Z.; Li, Z.; Zhao, B.; Mu, Y.; Lee, J.-Y.; Chu, Z. Effects of fulvic acid on growth performance and intestinal health of juvenile loath Paramisgurnus dabryanus (Sauvage). Fish Shellfish Immunol. 2017, 62, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ding, F.; Zhang, J.; Qi, X.; Gu, D.; Wu, Q.; Li, C. Effect of activated humic acid-urea on nitrogen use efficiency and its driving factors under wheat-maize rotation system. Zhongguo Shengtai Nongye Xuebao/Chin. J. Eco-Agric. 2016, 24, 1310–1319. [Google Scholar]
- Liu, X.; Zhang, M.; Li, Z.; Zhang, C.; Wan, C.; Zhang, Y.; Lee, D.-J. Inhibition of urease activity by humic acid extracted from sludge fermentation liquid. Bioresour. Technol. 2019, 290, 121767. [Google Scholar] [CrossRef] [PubMed]
- Xi, Q.; Yang, T.; Zhou, F.; Wang, D.; Ye, H.; Xu, S.; Yang, B. Effect of the liquid fertilizer containing fulvic acid on metabolism of cembratrien-diols in flue-cured tobacco. J. Plant Nutr. Fertitizer 2018, 24, 981–991. [Google Scholar]
- Priya, B.N.V.; Mahavishnan, K.; Gurumurthy, D.S.; Bindumadhava, H.; Upadhyay, A.P.; Sharma, N.K. Fulvic Acid (FA) for Enhanced Nutrient Uptake and Growth: Insights from Biochemical and Genomic Studies. J. Crop Improv. 2014, 28, 740–757. [Google Scholar] [CrossRef]
- Balazs, M.; Ronavari, A.; Nemeth, A.; Bihari, Z.; Rutkai, E.; Bartos, P.; Kiss, I.; Szvetnik, A. Effect of DNA polymerases on PCR-DGGE patterns. Int. Biodeterior. Biodegrad. 2013, 84, 244–249. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, M.; Dai, W.; Xiang, C.; Li, B.; Jia, Q. Antidiarrhoeal mechanism study of fulvic acids based on molecular weight fractionation. Fitoterapia 2019, 137, 104270. [Google Scholar] [CrossRef]
- Rukun, L. Analysis Method of Agricultural Chemistry in Soil; Agriculture and Science Press: Beijing, China, 1999. [Google Scholar]
- Ouyang, W.-Y.; Huang, F.-Y.; Zhao, Y.; Li, H.; Su, J.-Q. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl. Microbiol. Biotechnol. 2015, 99, 5697–5707. [Google Scholar] [CrossRef]
- Zheng, B.; Zhu, Y.; Sardans, J.; Penuelas, J.; Su, J. QMEC: A tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci. China-Life Sci. 2018, 61, 1451–1462. [Google Scholar] [CrossRef]
- Francis, C.A.; Roberts, K.J.; Beman, J.M.; Santoro, A.E.; Oakley, B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 14683–14688. [Google Scholar] [CrossRef] [PubMed]
- Rotthauwe, J.H.; Witzel, K.P.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712. [Google Scholar] [CrossRef] [PubMed]
- Calvó, L.; Garcia-Gil, L.J. Use of amoB as a new molecular marker for ammonia-oxidizing bacteria (vol 57, pg 69, 2004). J. Microbiol. Methods 2005, 61, 291. [Google Scholar] [CrossRef]
- Koper, T.E.; El-Sheikh, A.F.; Norton, J.M.; Klotz, M.G. Urease-encoding genes in ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 2004, 70, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- Braker, G.; Fesefeldt, A.; Witzel, K.P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 1998, 64, 3769–3775. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Isobe, K.; Nishizawa, T.; Zhu, L.; Shiratori, Y.; Ohte, N.; Koba, K.; Otsuka, S.; Senoo, K. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. Isme J. 2015, 9, 1954–1965. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Yeom, J.; Kim, J.; Han, J.; Lim, H.S.; Park, H.; Hyun, S.; Park, W. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res. Microbiol. 2011, 162, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Throbäck, I.N.; Enwall, K.; Jarvis, Å.; Hallin, S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. Fems Microbiol. Ecol. 2004, 49, 401–417. [Google Scholar] [CrossRef]
- Rösch, C.; Bothe, H. Improved assessment of denitrifying, N2-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl. Environ. Microbiol. 2005, 71, 2026–2035. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Ma, Y.; Zhang, N.; Pang, Q.; Xie, X.; Li, Y.; Jia, J. Response of Anammox biofilm to antibiotics in trace concentration: Microbial activity, diversity and antibiotic resistance genes. J. Hazard. Mater. 2019, 367, 182–187. [Google Scholar] [CrossRef]
- Sun, R.; Guo, X.; Wang, D.; Chu, H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 2015, 95, 171–178. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, C.; Liu, W.; Wang, J.; Ling, N.; Guo, S. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle. J. Plant Nutr. Fertitizer 2021, 27, 751–759. [Google Scholar]
- Chew, K.W.; Chia, S.R.; Yen, H.-W.; Nomanbhay, S.; Ho, Y.-C.; Show, P.L. Transformation of Biomass Waste into Sustainable Organic Fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef]
- Ai, C.; Liang, G.; Sun, J.; Wang, X.; He, P.; Zhou, W. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biol. Biochem. 2013, 57, 30–42. [Google Scholar] [CrossRef]
- Wan, L.-J.; Tian, Y.; He, M.; Zheng, Y.-Q.; Lyu, Q.; Xie, R.-J.; Ma, Y.-Y.; Deng, L.; Yi, S.-L. Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield. Agriculture 2021, 11, 1207. [Google Scholar] [CrossRef]
- Pan, B.; Xia, L.; Wang, E.; Zhang, Y.; Mosier, A.; Chen, D.; Lam, S.K. A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agric. Ecosyst. Environ. 2022, 327, 107850. [Google Scholar] [CrossRef]
- Xiao, Z.; Rasmann, S.; Yue, L.; Lian, F.; Zou, H.; Wang, Z. The effect of biochar amendment on N-cycling genes in soils: A meta-analysis. Sci. Total Environ. 2019, 696, 133984. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, H.; Wu, G.; Chen, X.; Gruda, N.; Li, X.; Dong, J.; Duan, Z. Dose-Dependent Application of Straw-Derived Fulvic Acid on Yield and Quality of Tomato Plants Grown in a Greenhouse. Front. Plant Sci. 2021, 12, 736613. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Xu, X. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytol. 2013, 198, 656–669. [Google Scholar] [CrossRef]
- Coonan, E.C.; Kirkby, C.A.; Kirkegaard, J.A.; Amidy, M.R.; Strong, C.L.; Richardson, A.E. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutr. Cycl. Agroecosystems 2020, 117, 273–298. [Google Scholar] [CrossRef]
- Mahal, N.K.; Osterholz, W.R.; Miguez, F.E.; Poffenbarger, H.J.; Sawyer, J.E.; Olk, D.C.; Archontoulis, S.V.; Castellano, M.J. Nitrogen Fertilizer Suppresses Mineralization of Soil Organic Matter in Maize Agroecosystems. Front. Ecol. Evol. 2019, 7. [Google Scholar] [CrossRef]
- Hu, H.-W.; Xu, Z.-H.; He, J.-Z. Ammonia-Oxidizing Archaea Play a Predominant Role in Acid Soil Nitrification. Adv. Agron. 2014, 125, 261–302. [Google Scholar]
- Xu, P.; Jiang, M.; Khan, I.; Zhao, J.; Yang, T.; Tu, J.; Hu, R. Available nitrogen and ammonia-oxidizing archaea in soil regulated N2O emissions regardless of rice planting under a double rice cropping-fallow system. Agric. Ecosyst. Environ. 2022, 340, 108166. [Google Scholar] [CrossRef]
- Luo, Y.; Yu, Z.; Zhang, K.; Xu, J.; Brookes, P.C. The properties and functions of biochars in forest ecosystems. J. Soils Sediments 2016, 16, 2005–2020. [Google Scholar] [CrossRef]
- Li, D.; Ren, Z.; Zhou, Y.; Jiang, L.; Zheng, M.; Liu, G. Comammox Nitrospira and Ammonia-Oxidizing Archaea Are Dominant Ammonia Oxidizers in Sediments of an Acid Mine Lake Containing High Ammonium Concentrations. Appl. Environ. Microbiol. 2023, 89, e0004723. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, Y.; Duan, C.; Wang, X.; Zhang, X.; Ju, W.; Chen, H.; Yue, S.; Wang, Y.; Li, S.; et al. Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil Tillage Res. 2020, 197, 104463. [Google Scholar] [CrossRef]
- Nie, L.; Wan, W. Nutrient-cycling functional gene diversity mirrors phosphorus transformation during chicken manure composting. Bioresour. Technol. 2023, 386, 129504. [Google Scholar] [CrossRef]
- Williams, A.; Hedlund, K. Indicators and trade-offs of ecosystem services in agricultural soils along a landscape heterogeneity gradient. Appl. Soil Ecol. 2014, 77, 1–8. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Li, Y.; Chen, D.; Ao, J.; Zhou, W.; Shen, D.; Li, Q.; Huang, Z.; Jiang, Y. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Sci. Total Environ. 2018, 619, 1530–1537. [Google Scholar] [CrossRef]
- Cheng, Y.; Wan, W. Strong linkage between nutrient-cycling functional gene diversity and ecosystem multifunctionality during winter composting with pig manure and fallen leaves. Sci. Total Environ. 2023, 867, 161529. [Google Scholar] [CrossRef]
- Lan, M. Research on remediation the NO3−-N polluted groundwater by the synergistic effect of autotrophic and heterotrophic denitrification. Abstr. Pap. Am. Chem. Soc. 2018, 255, 1155. [Google Scholar]
- Wang, J.; Yang, T.; Zhu, K.; Shao, C.; Zhu, W.; Hou, G.; Sun, Z. A novel retrieval model for soil salinity from CYGNSS: Algorithm and test in the Yellow River Delta. Geoderma 2023, 432, 116417. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Li, X.; Qiao, L.; Huang, Y.; Li, D.; Xu, M.; Ge, T.; Meersmans, J.; Zhang, W. Manuring improves soil health by sustaining multifunction at relatively high levels in subtropical area. Agric. Ecosyst. Environ. 2023, 353, 108539. [Google Scholar] [CrossRef]
- Blaud, A.; van der Zaan, B.; Menon, M.; Lair, G.J.; Zhang, D.; Huber, P.; Schiefer, J.; Blum, W.E.H.; Kitzler, B.; Huang, W.E.; et al. The abundance of nitrogen cycle genes and potential greenhouse gas fluxes depends on land use type and little on soil aggregate size. Appl. Soil Ecol. 2018, 125, 1–11. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Y.; Gu, H.; Liu, Z.; Hu, X.; Yu, Z.; Li, Y.; Li, L.; Sui, Y.; Jin, J.; et al. Conversion of steppe to cropland increases spatial heterogeneity of soil functional genes. Isme J. 2023, 17, 1–12. [Google Scholar] [CrossRef]
- Hao, J.; Feng, Y.; Wang, X.; Yu, Q.; Zhang, F.; Yang, G.; Ren, G.; Han, X.; Wang, X.; Ren, C. Soil microbial nitrogen-cycling gene abundances in response to crop diversification: A meta-analysis. Sci. Total Environ. 2022, 838, 156621. [Google Scholar] [CrossRef]
Parameter | BD (g/cm3) | FC (%) | OM (g/kg) | pH / | EC (dS/m) | NH4+-N (mg/kg) | NO3−-N (mg/kg) | AP (mg/kg) | AK (mg/kg) | TN (g/kg) |
---|---|---|---|---|---|---|---|---|---|---|
0–10 cm | 1.34 | 27.98 | 25.24 | 8.35 | 0.29 | 0.98 | 128.12 | 34.33 | 366.00 | 0.85 |
The First Growing Season | The Second Growing Season | The Third Growing Season | ||||||
---|---|---|---|---|---|---|---|---|
Total Treatments | Manure Types—Fertilization (t/ha) | TN Inputs (kg/ha) | Manure Types—Fertilization (t/ha) | Fulvic Acid (kg/ha) | TN Inputs (kg/ha) | Manure Types—Fertilization (t/ha) | Fulvic Acid (kg/ha) | TN Inputs (kg/ha) |
CK | - | - | - | - | - | - | - | - |
PH | Pig manure—15 | 70.5 | Pig manure—31.9 | 7.5 | 150 | Pig manure—31.9 | 7.5 | 150 |
P | Pig manure—9 | 42.3 | Pig manure—31.9 | - | 150 | Pig manure—31.9 | - | 150 |
CH | Chicken manure—5 | 29.5 | Chicken manure—25.4 | 7.5 | 150 | Chicken manure—25.4 | 7.5 | 150 |
C | Chicken manure—3 | 17.7 | Chicken manure—25.4 | - | 150 | Chicken manure—25.4 | - | 150 |
SH | Sheep manure—11 | 52.8 | Sheep manure—31.3 | 7.5 | 150 | Sheep manure—31.3 | 7.5 | 150 |
S | Sheep manure—6 | 28.8 | Sheep manure—31.3 | - | 150 | Sheep manure—31.3 | - | 150 |
Manure Type | pH / | EC (dS/m) | OM (g/kg) | TN (g/kg) | TP (g/kg) | TK (g/kg) |
---|---|---|---|---|---|---|
Pig manure | 8.68 | 5.66 | 32.7 | 4.7 | 4.0 | 9.6 |
Chicken manure | 8.42 | 7.22 | 35.9 | 5.9 | 5.4 | 11.3 |
Sheep manure | 8.88 | 6.77 | 29.9 | 4.8 | 4.1 | 8.5 |
Water Source | pH / | Electrical Conductivity (dS/m) | NO3−-N (mg/L) | NH4+-N (mg/L) |
---|---|---|---|---|
Groundwater | 7.25 | 2.81 | 0.22 | 1.94 |
Target Genes | Sequence (5′-3′) | References |
---|---|---|
gdhA | GCCATCGGYCCWTACAAGGG | [31] |
ATGTCRCCNGCCGGAACGTC | ||
amoA-1 | STAATGGTCTGGCTTAGACG | [32] |
GCGGCCATCCATCTGTATGT | ||
amoA-2 | GGGGTTTCTACTGGTGGT | [33] |
CCCCTCKGSAAAGCCTTCTT | ||
amoB | TGGTAYGACATKAWATGG | [34] |
RCGSGGCARGAACATSGG | ||
narG | TAYGTSGGGCAGGARAAACTG | [35] |
CGTAGAAGAAGCTGGTGCTGT | ||
nirK-1 | GGMATGGTKCCSTGGCA | [36] |
GCCTCGATCAGRTTRTGGTT | ||
nirK-2 | ATGGCGCCATCATGGTNYTNCC | [37] |
TCGAAGGCCTCGATNARRTTRTG | ||
nirK-3 | TGCACATCGCCAACGGNATGTWYGG | [37] |
GGCGCGGAAGATGSHRTGRTCNAC | ||
nirS-1 | GTSAACGTSAAGGARACSGG | [38] |
GASTTCGGRTGSGTCTTGA | ||
nirS-2 | ATCGTCAACGTCAARGARACVGG | [37] |
TTCGGGTGCGTCTTSABGAASAG | ||
nirS-3 | TGGAGAACGCCGGNCARGTNTGG | [37] |
GATGATGTCCACGGCNACRTANGG | ||
nosZ | CGYTGTTCMTCGACAGCCAG | [39] |
CGSACCTTSTTGCCSTYGCG | ||
nifH | AAAGGYGGWATCGGYAARTCCACCAC | [40] |
TGSGCYTTGTCYTCRCGGATBGGCAT | ||
16S rRNA | GGGTTGCGCTCGTTGC | [41] |
ATGGYTGTCGTCAGCTCGTG |
Treatment / | WC (%) | EC (dS/m) | pH / | OM (g/kg) | NH4+-N (mg/kg) | NO3−-N (mg/kg) | AP (mg/kg) | AK (mg/kg) | TN (g/kg) |
---|---|---|---|---|---|---|---|---|---|
OS | 20.68 ± 0.01 | 0.29 ± 0.02 | 8.35 ± 0.05 | 25.24 ± 2.93 | 0.98 ± 0.25 | 128.12 ± 21.45 | 34.33 ± 8.01 | 366.00 ± 63.38 | 0.85 ± 0.04 |
CK | 14.05 ± 0.56 b | 1.25 ± 0.08 ab | 8.21 ± 0.24 a | 22.18 ± 0.54 c | 18.10 ± 1.75 b | 71.72 ± 14.17 c | 36.90 ± 1.66 b | 671.06 ± 34.12 b | 1.11 ± 0.01 b |
PH | 15.73 ± 0.91 ab | 1.57 ± 0.06 a | 8.15 ± 0.06 a | 26.09 ± 1.05 ab | 20.14 ± 1.98 b | 169.69 ± 8.90 ab | 69.04 ± 0.94 a | 733.65 ± 20.97 b | 1.52 ± 0.08 a |
P | 15.23 ± 0.72ab | 1.07 ± 0.08 b | 8.29 ± 0.11 a | 25.75 ± 0.85 ab | 30.08 ± 2.35 ab | 199.53 ± 9.99 ab | 69.21 ± 1.00 a | 776.01 ± 33.89 b | 1.44 ± 0.10 a |
CH | 13.97 ± 0.70 b | 1.52 ± 0.05 ab | 8.21 ± 0.11a | 25.17 ± 0.95 b | 37.25 ± 2.56 a | 182.57 ± 4.18 ab | 58.24 ± 2.13 a | 932.75 ± 42.80 a | 1.46 ± 0.06 a |
C | 15.24 ± 0.54ab | 1.40 ± 0.05 ab | 8.30 ± 0.13 a | 25.53 ± 0.39 b | 33.20 ± 3.31 a | 118.56 ± 14.96 bc | 59.74 ± 0.86 a | 781.17 ± 39.07 b | 1.42 ± 0.03 a |
SH | 16.66 ± 0.88 a | 1.07 ± 0.07 b | 8.31 ± 0.02 a | 28.22 ± 0.14 a | 37.45 ± 2.24 a | 134.73 ± 15.16 bc | 66.77 ± 1.73 a | 751.71 ± 25.28 b | 1.38 ± 0.07 a |
S | 14.88 ± 0.87 ab | 1.27 ± 0.04 ab | 8.33 ± 0.11 a | 27.21 ± 1.07 ab | 26.25 ± 3.00 ab | 230.05 ± 7.40 a | 66.18 ± 1.73 a | 778.49 ± 30.85 b | 1.41 ± 0.05 a |
PH | P | CH | C | SH | S | Average Increase 2 | |
---|---|---|---|---|---|---|---|
16S rRNA | 54.36 | 67.05 | −7.11 | 42.87 | 85.65 | 106.97 | 58.30 |
gdhA | 41.69 | 48.73 | −2.11 | 78.47 | 152.58 | 174.26 | 82.27 |
amoA-1 | 13.11 | 2.09 | 11.92 | 103.90 | 44.79 | 131.24 | 51.18 |
amoA-2 | 143.40 | 174.50 | 67.14 | 123.89 | 47.35 | 358.21 | 152.42 |
amoB | 97.38 | 777.90 | 109.63 | 234.31 | 279.46 | 376.06 | 312.46 |
narG | 135.90 | 90.10 | −7.32 | 118.31 | 131.87 | 148.05 | 102.82 |
nirK-1 | 154.52 | 601.59 | −30.01 | 20.47 | 135.71 | 150.59 | 172.15 |
nirK-2 | −1.60 | 167.68 | −48.01 | 86.29 | 102.90 | 62.30 | 61.59 |
nirK-3 | 83.76 | 143.62 | 2.73 | 0.27 | 82.19 | 229.51 | 90.35 |
nirS-1 | 126.20 | 121.06 | 31.39 | 148.43 | 109.83 | 207.01 | 123.99 |
nirS-2 | 99.22 | 161.03 | 32.96 | 85.26 | 129.31 | 187.55 | 115.89 |
nirS-3 | 64.77 | 218.86 | −8.22 | 148.42 | 53.58 | 120.84 | 99.71 |
nosZ-2 | 8.33 | 50.67 | −24.47 | 8.00 | 73.18 | 107.89 | 37.27 |
nifH | −3.52 | 84.33 | −14.35 | 144.69 | 74.17 | 83.85 | 61.53 |
Average increase 1 | 72.68 | 193.52 | 8.16 | 95.97 | 107.33 | 174.60 |
Genes | Explanatory Variables | R2 |
---|---|---|
16s rRNA | NO3−-N, OM, AK | 0.77 *** |
gdhA | pH, OM | 0.60 *** |
amoA-1 | NA | |
amoA-2 | NO3−-N | 0.59 *** |
amoB | WC, EC, OM, AP | 0.77 *** |
narG | NH4+-N, NO3−-N, OM, AP | 0.72 *** |
nirK-1 | WC, pH, EC, OM, AP, AK | 0.85 *** |
nirK-2 | EC, AP | 0.59 *** |
nirK-3 | NO3−-N, OM, AK, TN | 0.86 *** |
nirS-1 | AP | 0.46 *** |
nirS-2 | EC, NO3−-N, AP, AK | 0.84 *** |
nirS-3 | AP | 0.26 * |
nosZ | EC, OM, AP, AK | 0.69 *** |
nifH | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Li, Z.; Liu, C.; Sun, J.; Song, J.; Li, X.; Liu, Y. Effects of Different Manures in Combination with Fulvic Acid on the Abundance of N-Cycling Functional Genes in Greenhouse Soils. Agriculture 2023, 13, 2224. https://doi.org/10.3390/agriculture13122224
Zhao S, Li Z, Liu C, Sun J, Song J, Li X, Liu Y. Effects of Different Manures in Combination with Fulvic Acid on the Abundance of N-Cycling Functional Genes in Greenhouse Soils. Agriculture. 2023; 13(12):2224. https://doi.org/10.3390/agriculture13122224
Chicago/Turabian StyleZhao, Shouqiang, Zhongyang Li, Chuncheng Liu, Jiuming Sun, Jibin Song, Xiaotong Li, and Yuan Liu. 2023. "Effects of Different Manures in Combination with Fulvic Acid on the Abundance of N-Cycling Functional Genes in Greenhouse Soils" Agriculture 13, no. 12: 2224. https://doi.org/10.3390/agriculture13122224
APA StyleZhao, S., Li, Z., Liu, C., Sun, J., Song, J., Li, X., & Liu, Y. (2023). Effects of Different Manures in Combination with Fulvic Acid on the Abundance of N-Cycling Functional Genes in Greenhouse Soils. Agriculture, 13(12), 2224. https://doi.org/10.3390/agriculture13122224