Development of Ethyl Formate Disinfestation Treatment Methods for the Prevention of the Introduction and Establishment of Exotic Insect Pests in Greenhouse Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fumigants
2.2. Organisms
2.3. Efficacy of EF on A. gossypii, F. occidentalis, and T. urticae
2.4. Residue Analysis of EF on Crops and Soil
2.5. Greenhouse Cultivation Field Trials with Efficacy and Phytotoxic Assessments
2.6. Acute Toxicity Testing of EF on Non-Target Organisms
2.7. Statistical Analysis
3. Results
3.1. Efficacy of EF on A. gossypi, F. occidentalis, and T. urticae
3.2. Residue Analysis of EF on Crops and Soil
3.3. Field Trials in Greenhouse Cultivation
3.4. Acute EF Toxicity toward Agriculturally Beneficial Organisms
4. Discussion
4.1. Lab-Scale and Field Efficacy of EF against A. gossypii, F. occidentalis, and T. urticae
4.2. Miscellaneous Considerations for EF Fumigation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Animal and Plant Quarantine Agency (APQA). Available online: http://www.qia.go.kr/animal/prevent/listwebQiaCom.do?type=3_51jycs&clear=1 (accessed on 10 May 2023).
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; De Barroe, P.J.; Wornerf, S.P.; Thomasg, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef] [PubMed]
- Floerl, O.; Inglis, G.J.; Dey, K.; Smith, A. The importance of transport hubs in stepping-stone invasion. J. Appl. Ecol. 2009, 46, 37–45. [Google Scholar] [CrossRef]
- Hulme, P.E. Trade, transport and trouble: Managing invasive species pathway in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Bell, C.H. Fumigation in the 21st century. Crop Prot. 2000, 19, 563–569. [Google Scholar] [CrossRef]
- Campbell, J.F.; Toews, M.D.; Arthur, F.H.; Arbogast, R.T. Long-term monitoring of Tribolium castaneum in two flour mills: Seasonal patterns and impact of fumigation. J. Econ. Entomol. 2010, 103, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Rambeau, M.B.; Benitez, D.P.; Dupuis, S.; Ducom, P. Hydrogen cyanide as an immediate alternative to methyl bromide for structural fumigations. In Proceedings of the International Conference on Controlled Atmosphere and Fumigation in Stored Products, Fresno, CA, USA, 29 October–3 November 2000; Donahaye, E.J., Navarro, S., Leesch, J.G., Eds.; Executive Printing Services: Clovis, CA, USA, 2001; pp. 101–111. [Google Scholar]
- Ramadan, G.R.M.; Abdelgaleil, S.A.M.; Shawir, M.S.; El-bakary, A.S.; Edde, P.A.; Phillips, T.W. Residue analysis of the fumigant pesticide ethanedinitrile in different agricultural commodities using ether extraction and GC-MS. J. Stored Prod. Res. 2019, 83, 331–337. [Google Scholar] [CrossRef]
- Kim, B.; Song, J.-E.; Park, J.S.; Park, Y.; Shin, E.-M.; Yang, J. Insecticidal Effects of Fumigants (EF, MB, and PH3) towards Phosphine-Susceptible and -Resistant Sitophilus oryzae (Coleoptera: Curculionidae). Insects 2019, 10, 327. [Google Scholar] [CrossRef]
- Park, M.G.; Choi, J.; Hong, Y.S.; Park, C.G.; Kim, B.G.; Lee, S.Y.; Lim, H.J.; Mo, H.H.; Lim, E.; Cha, W. Negative effect of methyl bromide fumigation work on the central nervous system. PLoS ONE 2020, 15, e0236694. [Google Scholar] [CrossRef]
- Kaur, R.; Subbarayalu, M.; Jagadeesan, R.; Daglish, G.J.; Nayak, M.K.; Naik, H.R.; Ramasamy, S.; Subramanian, C.; Ebert, P.R.; Schlipalius, D.I. Phosphine resistance in India is characterized by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes. Heredity 2015, 115, 188–194. [Google Scholar] [CrossRef]
- Simpson, T.; Bikoba, V.; Tipping, C.; Mitcham, E.J. Ethyl formate as a postharvest fumigant for selected pests of table grapes. J. Econ. Entomol. 2007, 100, 1084–1090. [Google Scholar] [CrossRef]
- Misumi, T.; Ogawa, N.; Yamada, K.; Shukuya, T. Susceptibilities of five species of scales (Diaspididae and Coccidae) and mealybugs (Pseudococcidae) to fumigation with a gas mixture of ethyl formate and carbon dioxide under normal atmospheric pressure or vacuum. Res. Bull. Plant Prot. Jpn. 2013, 49, 1–9. [Google Scholar]
- Griffin, M.J.; Jamieson, L.E.; Chhagan, A.; Page-Weir, N.E.M.; Poulton, J.; Davis, V.A.; Zulhendri, F.; Connolly, P.G. The potential of ethyl formate + carbon dioxide to control a range of horticultural pests. NZ Plant Prot. 2013, 66, 54–62. [Google Scholar] [CrossRef]
- Agarwal, M.; Ren, Y.; Newman, J.; Learmonth, S. Ethyl formate: A potential disinfestation treatment of Eucalyptus weevil (Gonipterus platensis) (Coleoptera: Curculionidae) in apples. J. Econ. Entomol. 2015, 108, 2566–2571. [Google Scholar] [CrossRef] [PubMed]
- Kyung, Y.; Kim, H.K.; Cho, S.W.; Kim, B.S.; Yang, J.O.; Koo, H.N.; Kim, G.H. Comparison of the Efficacy and Phytotoxicity of Phosphine and Ethyl Formate for Controlling Pseudococcus longispinus (Hemiptera: Pseudococcidae) and Pseudococcus orchidicola on Imported Foliage Nursery Plants. J. Econ. Entomol. 2019, 112, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, C.; Kwon, T.H.; Jeon, H.J.; Kim, Y.; Cho, Y.; Kim, D.; Lee, Y.; Kim, D.; Lee, B.H.; et al. Optimizing Ethyl Formate Fumigation in Greenhouse Cucurbit Crops for Efficient Control of Major Agricultural Pests, Myzus persicae and Thrips palmi. Chem. Biol. Technol. Agric. 2023, 10, 112. [Google Scholar] [CrossRef]
- National Institute of Horticultural and Herbal Science (NIHHS). Available online: https://www.nihhs.go.kr/farmer/statistics/statistics.do?t_cd=0203 (accessed on 5 June 2023).
- Vasquez, G.M.; Orr, D.B.; Baker, J.R. Efficacy assessment of Aphidius colemani (Hymenoptera: Braconidae) for suppression of Aphis gossypii (Homoptera: Aphididae) in greenhouse-grown chrysanthemum. J. Econ. Entomol. 2006, 99, 1104–1111. [Google Scholar] [CrossRef]
- Song, S.H.; Kim, K.Y.; Kim, Y.S.; Ryu, K.S.; Kang, M.S.; Lim, J.H.; Yoo, N.Y.; Han, Y.L.; Choi, H.J.; Kang, C.W.; et al. Comparative Analysis of Pesticide Residues in Agricultural Products in Circulation in Gyeonggi-do Before and After Positive List System Enforcement. J. Food Hyg. Saf. 2021, 36, 239–247. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd ed.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Campolo, O.; Chiera, E.; Malacrino, A.; Laudani, F.; Fontana, A.; Albanese, G.R. Acquisition and transmission of selected CTV isolates by Aphis gossypii. J. Asia-Pac. Entomol. 2014, 17, 493–498. [Google Scholar] [CrossRef]
- Kim, J.J.; Lee, M.H.; Yoon, C.S.; Kim, H.S.; Yoo, J.K.; Kim, K.S. Control of cotton Aphid and greenhouse whitefly with a fungal pathogen. J. Natl. Inst. Agric. Sci. Technol. 2002, 118, 7–14. [Google Scholar]
- Carletto, J.; Martin, T.; Vanlerberghe-Masutti, F.; Brevault, T. Insecticide resistance traits among and within host races in Aphis gossypii. Pest. Manag. Sci. 2009, 66, 301–307. [Google Scholar] [CrossRef]
- Kirişik, M.; Erler, F. The usage possibilities of entomopathogenic fungi in the control of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Turk. J. Entomol. 2017, 7, 293–303. [Google Scholar] [CrossRef]
- Cloyd, R.A. Western flower thrips (Frankliniella occidentalis) management on ornamental crops grown in greenhouses: Have we reached an impasse? Pest. Technol. 2009, 3, 1–9. [Google Scholar]
- Lee, G.S.; Lee, J.H.; Kang, S.H.; Woo, K.S. Thrips species (Thysanoptera: Thripidae) in winter season and their vernal activities on Jeju island, Korea. J. Asia-Pac. Entomol. 2001, 4, 115–122. [Google Scholar] [CrossRef]
- Park, Y.G.; Lee, J.H. Life history characteristics of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), under fluctuating conditions of temperature or relative humidity. J. Asia-Pac. Entomol. 2020, 23, 606–611. [Google Scholar] [CrossRef]
- Gao, Y.; Yoon, K.A.; Lee, J.H.; Kim, J.H.; Lee, S.H. Overexpression of glutamate-gated chloride channel in the integument is mainly responsible for emamectin benzoate resistance in the western flower thrips Frankliniella occidentalis. Pest. Manag. Sci. 2022, 78, 4140–4150. [Google Scholar] [CrossRef] [PubMed]
- Sanad, A.S.; Hassan, G.M. Controlling the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) by releasing the predatory phytoseiid mites and pesticides on pepper in a greenhouse. Egypt. J. Biol. Pest. Control 2019, 29, 95. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, X.; Wang, J.; Qian, K.; Feng, J.; Zhang, Y.; Zhang, K.; Zhang, Y.; Liang, P.; Wu, Q. Insecticide resistance of western flower thrips, Frankliniella occidentalis (Pergande) in China. Crop Prot. 2023, 172, 106339. [Google Scholar] [CrossRef]
- Kim, M.; Shin, D.; Suh, E.; Cho, K. An assessment of the chronic toxicity of fenpyroximate and pyridaben to Tetranychus urticae using a demographic bioassay. Appl. Entomol. Zool. 2004, 39, 401–409. [Google Scholar] [CrossRef]
- Xue, W.; Snoeck, S.; Njiru, C.; Inak, E.; Dermauw, W.; Van Leeuwen, T. Geographical distribution and molecular insights into abamectin and milbemectin cross-resistance in European field populations of Tetranychus urticae. Pest. Manag. Sci. 2020, 76, 2569–2581. [Google Scholar] [CrossRef]
- Bensoussan, N.; Santamaria, M.E.; Zhurov, V.; Diaz, I.; Grbic, M.; Grbic, V. Plant-herbivore interaction: Dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Front. Plant Sci. 2016, 7, 1105. [Google Scholar] [CrossRef]
- Migeon, A.; Nouguier, E.; Dorkeld, F.; Cbgp, U.M.R.; Ird, I.; Montpellier, C.; Cedex, M. Spider Mites Web: A comprehensive database for the Tetranychidae Alain. In Trends in Acarology; Springer: Dordrecht, The Netherlands, 2010; pp. 557–560. [Google Scholar] [CrossRef]
- Park, Y.L.; Lee, J.H. Leaf cell and tissue damage of cucumber caused by two spotted spider mite (Acari: Tetranychidae). J. Econ. Entomol. 2002, 95, 952–957. [Google Scholar] [CrossRef]
- Adesanya, A.W.; Beauchamp, M.J.; Lavine, M.D.; Zhu, F.; Walsh, D.B. Physiological resistance alters behavioral response of Tetranychus urticae to acaricides. Sci. Rep. 2019, 9, 19308. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Vontas, J.; Tsagkarakou, A.; Dermauw, W.; Tirry, L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 2010, 40, 563–572. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, H.M.; Kim, B.S.; Yang, J.O.; Moon, Y.M.; Ren, Y. Evaluation of the Synergistic Effect Between Ethyl Formate and Phospine for Control of Aphis gossypii (Homoptera: Aphididae). J. Econ. Entomol. 2016, 109, 143–147. [Google Scholar] [CrossRef]
- Pupin, F.; Bikoba, V.; Biasi, W.B.; Pedroso, G.M.; Ouyang, Y.; Grafton-Cardwell, E.E.; Mitcham, E.J. Postharvest control of western flower thrips (Thysanoptera: Thripidae) and California red scale (Hemiptera: Diaspididae) with ethyl formate and its impact on citrus fruit quality. J. Econ. Entomol. 2013, 106, 2341–2348. [Google Scholar] [CrossRef] [PubMed]
- Subramanyam, B.; Hagstrum, D.W. Integrated Management of Insects in Stored Products, 1st ed.; Marcel Dakker, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Kwon, T.H.; Jeong, I.H.; Lee, B.H.; Park, C.G. A new disinfestation approach against some greenhouse pests using ethyl formate fumigation. Korean J. Appl. Entomol. 2019, 58, 341–345. [Google Scholar]
- Kim, B.S.; Yang, J.O.; Roh, G.H.; Ren, Y.; Lee, B.H.; Lee, S.E. Reciprocal effects of ethyl formate and phosphine gas on two quarantine pests, Tetranychus urticae (Acari: Tetranychidae) and Myzus persicae (Hemiptera: Aphididae). Korean J. Environ. Biol. 2021, 39, 336–343. [Google Scholar] [CrossRef]
- Bikoba, V.N.; Pupin, F.; Biasi, W.V.; Rutaganira, F.U.; Mitcham, E.J. Use of Ethyl Formate Fumigation to Control Adult Bean Thrips in Navel Oranges. J. Econ. Entomol. 2019, 112, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Grout, T.G.; Stoltz, K.C. Eliminating Macchiademus diplopterus (Hemiptera: Lygaeidae) and Siculobata sicula (Acari: Oribatulidae) From Export Fruit Using Ethyl Formate. J. Econ. Entomol. 2016, 109, 2329–2333. [Google Scholar] [CrossRef] [PubMed]
Insect Pest | a LCt50 (g h/m3, 95% CI b) | LCt99 (g h/m3, 95% CI) | Slope ± SE | df | X2 |
---|---|---|---|---|---|
A. gossypii | 3.12 (2.63–3.48) | 8.96 (6.58–12.2) | 3.54 ± 0.60 | 7 | 32.4 |
F. occidentalis | 3.71 (3.17–4.24) | 14.0 (11.4–18.7) | 4.03 ± 0.38 | 7 | 27.5 |
T. urticae | 5.34 (4.77–5.89) | 19.1 (15.9–24.6) | 4.21 ± 0.39 | 7 | 14.8 |
Applied Dose (g/m3) | Exposure Time (h) | EF Concentration (Mean ± SE, g/m3) | Target Insect (Mortality, %) | ||||
---|---|---|---|---|---|---|---|
Top | Middle | Bottom | A. gossypii | F. occidentalis | T. urticae | ||
0 | 0 | 0 | 0 | 0 | 1.6 ± 0.7 | 0.4 ± 0.4 | 1.2 ± 0.5 |
4 | 0.1 | 3.6 ± 0.1 | 3.8 ± 0.1 | 3.9 ± 0.1 | 100 ± 0.0 | N/A * | N/A |
1.0 | 2.6 ± 0.1 | 2.8 ± 0.1 | 2.9 ± 0.1 | ||||
2.0 | 2.0 ± 0.2 | 2.2 ± 0.1 | 2.2 ± 0.1 | ||||
4.0 | 1.7 ± 0.1 | 1.7 ± 0.0 | 1.7 ± 0.1 | ||||
Ct products (g h/m3) | 8.8 ± 0.1 | 9.2 ± 0.1 | 9.5 ± 0.1 | ||||
15 | 0.1 | 14.5 ± 0.1 | 14.5 ± 0.1 | 14.6 ± 0.1 | N/A | 100 ± 0.0 | 100 ± 0.0 |
1.0 | 9.0 ± 0.1 | 9.2 ± 0.0 | 9.4 ± 0.0 | ||||
2.0 | 7.0 ± 0.1 | 7.1 ± 0.0 | 7.3 ± 0.1 | ||||
4.0 | 5.1 ± 0.0 | 5.6 ± 0.0 | 5.7 ± 0.0 | ||||
Ct products (g h/m3) | 31.3 ± 0.1 | 32.2 ± 0.0 | 32.9 ± 0.0 |
Applied Dose (g/m3) | Crops | Developmental Stage | Damage Index a | Chlorophyll Content | Hue Value b | |||
---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |||
4 | Melon | Seedling | 0.0 ± 0.0 | 0.0 ± 0.0 ns | 44.0 ± 2.3 | 42.6 ± 0.6 ns | 63.6 ± 2.1 | 58.1 ± 3.0 ns |
Flowering | 0.0 ± 0.0 | 0.0 ± 0.0 ns | 41.5 ± 0.6 | 43.0 ± 0.9 ns | 61.0 ± 2.3 | 57.5 ± 1.0 ns | ||
Fruiting | 0.0 ± 0.0 | 0.0 ± 0.0 ns | 44.1 ± 0.8 | 45.6 ± 0.7 ns | 55.3 ± 2.4 | 55.3 ± 0.7 ns | ||
Zucchini | Seedling | 0.0 ± 0.0 | 0.0 ± 0.0 ns | 41.6 ± 0.4 | 43.3 ± 1.3 ns | 57.9 ± 1.7 | 62.9 ± 2.4 ns | |
Flowering | 0.0 ± 0.0 | 0.0 ± 0.0 ns | 42.7 ± 1.1 | 43.5 ± 0.7 ns | 63.6 ± 1.4 | 61.8 ± 1.6 ns | ||
Fruiting | 0.0 ± 0.0 | 0.0 ± 0.0 ns | 44.1 ± 1.0 | 45.4 ± 0.4 ns | 58.2 ± 1.8 | 59.9 ± 1.2 ns | ||
Watermelon | Seedling | 0.0 ± 0.0 | 1.0 ± 0.0 * | 42.8 ± 1.0 | 43.8 ± 1.1 ns | 59.6 ± 2.4 | 60.5 ± 3.5 ns | |
Flowering | 0.0 ± 0.0 | 1.0 ± 0.0 * | 43.8 ± 1.4 | 44.1 ± 1.8 ns | 60.7 ± 4.9 | 58.9 ± 1.8 ns | ||
Fruiting | 0.0 ± 0.0 | 1.0 ± 0.0 * | 44.5 ± 0.5 | 44.5 ± 0.4 ns | 57.4 ± 1.0 | 62.3 ± 1.2 ns | ||
15 | Melon | Seedling | 0.0 ± 0.0 | 5.0 ± 0.0 **** | 44.5 ± 1.2 | - c | 60.6 ± 2.4 | - |
Flowering | 0.0 ± 0.0 | 5.0 ± 0.0 **** | 42.6 ± 1.1 | - | 61.2 ± 2.3 | - | ||
Fruiting | 0.0 ± 0.0 | 4.0 ± 0.0 **** | 44.7 ± 0.7 | - | 61.9 ± 2.2 | - | ||
Zucchini | Seedling | 0.0 ± 0.0 | 5.0 ± 0.0 **** | 45.1 ± 0.9 | - | 60.6 ± 2.9 | - | |
Flowering | 0.0 ± 0.0 | 4.0 ± 0.0 **** | 46.6 ± 0.8 | - | 61.6 ± 2.4 | - | ||
Fruiting | 0.0 ± 0.0 | 4.0 ± 0.0 **** | 45.4 ± 1.0 | - | 63.3 ± 2.4 | - | ||
Watermelon | Seedling | 0.0 ± 0.0 | 5.0 ± 0.0 **** | 41.5 ± 1.3 | - | 58.8 ± 1.5 | - | |
Flowering | 0.0 ± 0.0 | 5.0 ± 0.0 **** | 42.9 ± 1.1 | - | 59.1 ± 0.8 | - | ||
Fruiting | 0.0 ± 0.0 | 4.0 ± 0.0 **** | 44.8 ± 0.8 | - | 58.9 ± 1.9 | - |
Crops or Soil | Developmental Stage | Control | EF-Treated | ||
---|---|---|---|---|---|
Sample (g) | EF (µg/g) | Sample (g) | EF (µg/g) | ||
Melon | Seedling | 1.04 ± 0.01 | ND * | 1.01 ± 0.01 | ND |
Flowering | 1.01 ± 0.03 | ND | |||
Fruiting | 1.03 ± 0.02 | ND | |||
Zucchini | Seedling | 1.04 ± 0.01 | ND | 1.02 ± 0.03 | ND |
Flowering | 1.01 ± 0.02 | ND | |||
Fruiting | 1.02 ± 0.01 | ND | |||
Watermelon | Seedling | 1.06 ± 0.01 | ND | 1.02 ± 0.02 | ND |
Flowering | 1.01 ± 0.01 | ND | |||
Fruiting | 1.03 ± 0.01 | ND | |||
Soil | 1.00 ± 0.02 | ND | 1.03 ± 0.02 | ND |
Organism | LCtx (g h/m3, 95% CI a) | Slope ± SE | df | X2 | |||
---|---|---|---|---|---|---|---|
10 | 50 | 90 | 99 | ||||
Honeybee | 11.3 (7.31–13.3) | 15.1 (12.6–17.4) | 20.1 (17.4–28.7) | 27.8 (22.0–55.8) | −20.7 ± 4.56 | 25 | 351 |
Silkworm | 16.8 (11.0–20.4) | 26.5 (22.4–31.3) | 41.9 (34.7–62.9) | 68.9 (50.2–150) | −15.8 ± 3.41 | 22 | 167 |
Earthworm | 12.1 (2.97–22.2) | 48.9 (29.2–66.4) | 198 (137–414) | 910 (429–5290) | −6.11 ± 1.43 | 34 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Kim, D.; Kim, C.; Kim, D.; Kim, B.; Lee, B.-H.; Lee, S.-E. Development of Ethyl Formate Disinfestation Treatment Methods for the Prevention of the Introduction and Establishment of Exotic Insect Pests in Greenhouse Cultivation. Agriculture 2023, 13, 2251. https://doi.org/10.3390/agriculture13122251
Kim K, Kim D, Kim C, Kim D, Kim B, Lee B-H, Lee S-E. Development of Ethyl Formate Disinfestation Treatment Methods for the Prevention of the Introduction and Establishment of Exotic Insect Pests in Greenhouse Cultivation. Agriculture. 2023; 13(12):2251. https://doi.org/10.3390/agriculture13122251
Chicago/Turabian StyleKim, Kyeongnam, Dongbin Kim, Chaeeun Kim, Donghyeon Kim, Byeongjun Kim, Byung-Ho Lee, and Sung-Eun Lee. 2023. "Development of Ethyl Formate Disinfestation Treatment Methods for the Prevention of the Introduction and Establishment of Exotic Insect Pests in Greenhouse Cultivation" Agriculture 13, no. 12: 2251. https://doi.org/10.3390/agriculture13122251
APA StyleKim, K., Kim, D., Kim, C., Kim, D., Kim, B., Lee, B. -H., & Lee, S. -E. (2023). Development of Ethyl Formate Disinfestation Treatment Methods for the Prevention of the Introduction and Establishment of Exotic Insect Pests in Greenhouse Cultivation. Agriculture, 13(12), 2251. https://doi.org/10.3390/agriculture13122251