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Abstract: Real-time knowledge of kernel breakage during corn harvesting plays a significant role
in the adjustment of operational parameters of corn kernel harvesters. (1) Transfer learning by
initializing the DenseNet121 network with pre-trained weights for training and validating a dataset
of corn kernels was adopted. Additionally, the feature extraction capability of DenseNet121 was
improved by incorporating the attention mechanism of a Convolutional Block Attention Module
(CBAM) and a Feature Pyramid Network (FPN) structure. (2) The quality of intact and broken corn
kernels and their pixels were found to be coupled, and a linear regression model was established
using the least squares method. The results of the test showed that: (1) The MAPb50 and MAPm50 of
the improved Mask Region-based Convolutional Neural Network (RCNN) model were 97.62% and
98.70%, in comparison to the original Mask Region-based Convolutional Neural Network (RCNN)
model, which were improved by 0.34% and 0.37%, respectively; the backbone FLOPs and Params
were 3.09 GMac and 9.31 M, and the feature extraction time was 206 ms; compared to the original
backbone, these were reduced by 3.87 GMac and 17.32 M, respectively. The training of the obtained
prediction weights for the detection of a picture of the corn kernel took 76 ms, so compared to
the Mask RCNN model, it was reduced by 375 ms; based on the concept of transfer learning, the
improved Mask RCNN model converged twice as quickly with the loss function using pre-training
weights than the loss function without pre-training weights during training. (2) The coefficients of
determination R2 of the two models, when the regression models of the pixels and the quality of
intact and broken corn kernels were analyzed, were 0.958 and 0.992, respectively. These findings
indicate a strong correlation between the pixel characteristics and the quality of corn kernels. The
improved Mask RCNN model was used to segment mask pixels to calculate the corn kernel breakage
rate. The verified error between the machine vision and the real breakage rate ranged from −0.72%
to 0.65%, and the detection time of the corn kernel breakage rate was only 76 ms, which could meet
the requirements for real-time detection. According to the test results, the improved Mask RCNN
method had the advantages of a fast detection speed and high accuracy, and can be used as a data
basis for adjusting the operation parameters of corn kernel harvesters.

Keywords: Mask RCNN; machine vision; corn kernels; breakage rate

1. Introduction

In China, corn is a significant feed, economic product, and food crop [1]. China has
intensively marketed corn harvesters as mechanization has advanced. However, corn
breakage can be easily caused by improperly adjusting the operational parameters of corn
harvesters [2]. According to the national standard “GB/T 21962-2020” [3], corn harvester
breakage rates must not exceed 5%. Therefore, to decrease the breakage rate when the
corn breakage rate is high, the operational parameters of corn kernel harvesters must be
changed. Traditional methods of measuring the corn kernel breakage rate include picking,
weighing, and calculating by hand, which is labor- and time-intensive and does not allow
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for real-time detection of and feedback on the breakage rate. There is an urgent demand for
innovative techniques and approaches. Using machine vision technology to recognize and
segment intact and broken corn kernels to calculate the breakage rate not only improves
efficiency but also has advantages such as precision and non-destructive testing. With
recent advancements in machine vision technology, techniques like segmentation, object
identification, and image classification have achieved prominence in the agricultural sector.
The utilization of machine vision technology for crop detection has been the subject of
extensive research conducted by both domestic and international scholars.

Regarding crop identification, Qiu [4] et al. used a convolutional neural network
(CNN) to detect rice seeds of four different types and compared it to closest-neighbor KNN
and support vector machine (SVM) methods with various training sample sizes. In the
validation set, the CNN had a recognition accuracy of 87.0%; Han [5] et al. identified peanut
samples containing aflatoxin using hyperspectral imaging and CNN techniques, with a
recognition accuracy of 90.0%; Przybyo [6] and colleagues employed a CNN to learn both
the local and global properties of acorns, which were then used to distinguish between
healthy and broken acorns, with an accuracy of 85.0%; Zhang [7] et al. improved the
AlexNet model to recognize five levels of peanut pods, with an average accuracy of 95.43%;
Mao [8] et al. identified moderate, severe, and yellow dwarf illness using an improved
faster RCNN, with an average accuracy of 91.06%.

In grain integrity recognition, Ni [9] et al. used a hierarchical system research method to
establish a prototype detection visual system for corn kernels, which was used to distinguish
between intact and broken corn kernels, with an accuracy of 87%. The detection time for a
single corn kernel was between 1.5 s and 1.8 s; Steenhoek [10] et al. explored the detection
of broken and moldy corn kernels. They utilized the color difference between broken and
moldy corn kernels and intact kernels, and used the RGB pixel value of the image as a
feature parameter. The recognition accuracy for broken and moldy corn kernels using neural
networks reached 92%, but different lighting and camera depth effects could lead to image
segmentation errors; Zhao [11] et al. used convolutional neural networks to recognize the
integrity of peanut seeds, with a classification accuracy of 98.18% and an average detection
time of 18 ms for a single peanut image; Chen [12] et al. adopted the multi-scale retinex
with a color restoration algorithm to enhance the images and distinguish between intact
and broken rice grains by color. The final segmentation result was then obtained using
morphological processing. When encountering situations where impurities were similar
to the color of the grains, classification and recognition errors arose readily; Song [13] et al.
used the watershed approach and an improved object segmentation algorithm based on the
OpenCV image processing package to extract the contours of soybean seeds in the image.
Respectively, 95.2% and 91.25% of intact and broken soybean seeds were recognized. An
image took an average time of 1.16 s to process, which is far too long.

In terms of calculation of the breakage rate, Mahirah et al. [14,15] proposed a dual
light source illumination monitoring system for grain breakage and impurity content in
the grain bin of a grain combine harvester, but did not calculate the grain breakage rate
and impurity content; Yang [16] et al. created an online sampling tool for the corn kernel
breakage rate, which was only used to sample grains in the grain bin of the corn kernel
harvester and did not detect the status of the corn kernel breakage rate; Chen [17] et al. used
an improved watershed algorithm to segment soybean seed images. The accuracy rates for
intact and broken seeds were 87.26% and 86.45%, respectively. Based on the constructed
quantitative model for the soybean seed breakage rate, the relative error between the
calculated breakage rate and the actual breakage rate was 0.79%; Jin [18] et al. used an
improved U-Net network to detect and classify intact and broken soybean seeds. The
values of the comprehensive evaluation index were 95.50% and 91.88%, respectively. The
bench test results showed that the absolute error of the mean for detecting the soybean seed
breakage rate was 0.13% compared to the mean absolute error for manual detection; Liu [19]
et al. segmented soybean seed images based on the DeepLabV3+segmentation network.
The comprehensive evaluation index F1 values for intact and broken seeds were 89.49%
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and 93.93%. The relative error between the breakage rate calculated by the constructed
quantitative model and the actual breakage rate was 0.36%.

Machine vision technology is still immature in terms of its application to the detection
of grain breakage rate. Most researchers have adopted the traditional machine learning
method, but this form of recognition did not have a generalization ability, so it is necessary
to develop a real-time method for the detection of the grain breakage rate using a deep
learning algorithm. In this study, an improved Mask RCNN [20] model was proposed,
which can reduce the computational burden (and the number of parameters), and improve
the detection accuracy and detection speed. The improved Mask RCNN can realize fast
and accurate identification and segmentation of corn kernels, and achieve the purpose of
the real-time detection of the breakage rate.

2. Materials and Methods
2.1. Description of the Mask RCNN

The Mask RCNN model is a two-stage algorithm employed for a range of tasks,
including target classification, detection, and semantic segmentation. Based on the Faster
RCNN [21] model, it adds a pixel for classifying the region of interest, predicts the branches
of the target mask, and realizes the goals of classification, localization, and segmentation.
The backbone feature extraction network, the Region Proposal Network, the Region of
Interest Align (ROI Align) layer, the fully connected network, and the fully convolutional
neural networks comprise the majority of the network structure of the Mask RCNN, as
shown in Figure 1. The image is first entered into the ResNet50 feature extraction network
to obtain feature maps of various stages, and then it enters the Feature Pyramid Network
(FPN) structure to fuse features of various scales to obtain a common feature map that
has strong semantic and spatial information simultaneously. Second, the common feature
map is used to create anchor boxes of various sizes and proportions under the impact of
the Region Proposal Network. Multiple candidate regions of various sizes are created by
computing the Intersection Over Union (IOU) between each anchor box and the annotated
real box in the image. On the one hand, boundary box regression is conducted after
classifying the candidate regions into foreground and background. On the other hand,
the ROI Align layer receives the feature pictures corresponding to the candidate boxes,
which are then maximum or average pooled using bilinear interpolation to make them
uniform in size. The target categorization, bounding box regression, and exact pixel-level
segmentation of the target are accomplished using fully connected neural networks and
fully convolutional networks.
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2.2. Improving the Mask RCNN

Despite the Mask RCNN model returning a high detection accuracy, its sluggish
detection speed makes it challenging to achieve real-time detection of the corn kernel
breakage rate, and it is strongly dependent on the computer hardware’s computational
capacity. This study aims to improve the Mask RCNN by reducing the parameters and
improving the detection speed for the recognition and segmentation tasks of intact and
broken corn kernels. First, replacing ResNet50_FPN with DenseNet121 [22] served as the
backbone feature extraction network, accelerating the speed of feature extraction, and
the Convolutional Block Attention Module (CBAM) [23] attention mechanism and FPN
structure were added to improve the feature extraction on the basis of DenseNet121 to
increase the detection accuracy, resulting in a DenseNet121_CBAM_FPN backbone feature
extraction network (Figure 2). To reduce the training time and accelerate the convergence
of the loss function, pre-training weights were loaded using the transfer learning concept.
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2.2.1. Replacing the Backbone Feature Extraction Network DenseNet

The complexity of the backbone feature extraction network increases in response to
ongoing hardware upgrades. The ResNet network, which includes a residual structure as
shown in Figure 3a, serves as the primary feature extraction network of the original Mask
RCNN. The major benefit is that it can preserve the original features, prevent network
deterioration, and overcome the gradient-vanishing issue often arising in deep neural
network training by leveraging residual connections. However, a deep ResNet network
necessitates intense computational power for training and reasoning, imposing onerous
requirements in terms of the choice of hardware.
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DenseNet, which begins with feature maps and uses a denser connection approach, is
mostly based on the concept of the residual structure of ResNet. To ensure the maximal
information flow between each layer (Figure 3b), forward propagation concatenates the
feature maps of each layer with those of the other levels in the channel dimension.

DenseNet’s network topology outperforms ResNet’s in three key areas: (1) improving
the feature propagation between networks; (2) implementing feature reuse while leverag-
ing both low-level and high-level features; and (3) significantly lowering the number of
parameters. Therefore, the study used DenseNet121 to replace ResNet50_ FPN to serve as
the backbone feature extraction network of the Mask RNN for extracting specific features
of the corn kernels. As shown in Figure 4, DenseBlock and transition structures comprise
the majority of the topology of the DenseNet121 network.
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The DenseBlock structure has a BN + ReLU + 1 × 1Conv + BN + ReLU + 3 × 3Conv
composition, where the input of each layer comes from the feature maps of all the layers in
front of it, and the output of each layer is directly connected to the input of all layers behind
it to achieve feature reuse. To connect two neighboring DenseBlock structures, integrate
the derived features, decrease the width and height of the feature map, and achieve the
effect of downsampling and compressing the model, a transition layer structure with the
formula BN + ReLU + 1 × 1Conv + 2 × 2 AvgPooling is employed.

2.2.2. CBAM Attention Mechanism

The attention mechanism is a network structure integrated into a model, designed
to emphasize pertinent information, filter out less relevant details, and aid the model
in choosing effective and appropriately sized features. This allows the model to extract
features efficiently, allowing downstream tasks to focus on signals that are more closely
related to the task at hand. As illustrated in Figure 5, the attention mechanism of the CBAM
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is a compact convolutional attention module that consists of the Channel Attention Module
(CAM) and the Spatial Attention Module (SAM). The role of the CAM here is to process
feature maps from different channels and focus on the meaningful feature map information.
After that, the channel compression weight matrix is output, and then multiplied by
the original input feature characteristic matrix. When the feature map adjusted by the
CAM enters the spatial attention sub-module, the SAM will process the feature region of
meaningful information in the feature map, generate the spatial compression weight matrix,
and perform the same multiplication operation. And finally, the refined feature map is
obtained. It is challenging for the feature extraction network to extract useful information
from slightly broken corn kernels since their characteristics resemble those of intact corn
kernels. The CBAM attention mechanism helps the network pay more attention to the
damage in the corn kernels; even if their characteristics are similar to intact corn kernels,
it can achieve differentiation. To filter out the unimportant information in the feature
layer and extract the more effective features of corn kernels, this paper added the CBAM
attention mechanism layer after the fourth DenseBlock layer of DenseNet121 to obtain the
DenseNet121_CBAM backbone feature extraction network.
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2.2.3. Multi-Scale Fusion FPN

The corn kernel feature maps extracted by the backbone feature network were rela-
tively simple, and the lower-layer feature map had a higher resolution, containing more
corn kernel locations and detailed information. However, due to the reduction in convolu-
tion, its semantics were lower and the noise greater. The high-level feature maps had strong
semantic information, but the resolution was extremely low, and the perception of details
was poor. The efficient fusion of the two-layer feature map can obtain more comprehensive
corn kernel characteristics. To obtain more informative corn kernel feature maps, this paper
adds an FPN structure after DenseNet121_CBAM to construct a DenseNet121_CBAM_FPN
network (Figure 6). The corn kernel feature maps obtained from the second transition
layer, the third transition layer, and the CBAM layer of the DenseNet_CBAM network
were convolved and fused to obtain the M1, M2, and M3 feature maps. Following the
convolution of the M1, M2, and M3 feature maps, P1, P2, and P3 feature maps with more
abundant corn kernel information could be obtained.
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2.2.4. Transfer Learning

The lack of intact and broken corn kernel data made the training of an optimum recog-
nition and segmentation model difficult. The issue of having fewer datasets can be resolved
using the transfer learning method. Transfer learning is the process of using previously
learned model weights and characteristics to detect new tasks. Large-scale datasets were
used to train the weights to improve their ability to express features. Additionally, it could
efficiently cut the training time and accelerate the loss function convergence. As a result,
DenseNet121 weights that were trained on the expansive ImageNet dataset were used.
The pre-training weights were loaded to train and validate the corn kernel dataset using
transfer learning.

2.3. Construction of a Corn Kernel Dataset and Establishment of the Pixel–Mass Relationship
2.3.1. Data Collection

A Grain King TB70 grain combine harvester modified with a 4YB-4A corn header
was used to gather the corn kernels for this study in Laowangji Town, Zhecheng County,
Shangqiu City, Henan Province (34◦07′3.11′′ N, 115◦30′23.84′′ E, at an altitude of approx-
imately 44 m above mean sea level), China. The variety is Xianyu 335. A black cloth
was covered with the requisite grains after the corn harvester had unloaded the grain. A
Shunhuali 500W industrial camera (8 mm focal length lens, Shenzhen Shunhuali Electronics
Co., LTD., Shenzhen, China.) was used to randomly record 600 photographs of the grains
at various exposure levels and with various contaminants (Figure 7). Table 1 displays the
specific image distribution.
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and prediction performance of the network model. To improve the generalization ability 
and robustness of the network model and obtain more features of the corn kernels, 600 
original images were appropriately expanded using traditional data augmentation meth-
ods such as adding noise, changing the brightness, horizontal flipping, vertical flipping, 
image shifts, etc. (Figure 9) to obtain 1200 enhanced images. The 1200 processed images 
were manually annotated using the Lableme tool software for the corn kernels. As this 
study aimed to achieve recognition and segmentation of the corn kernels, it was necessary 
to use the contour of corn kernels as a boundary for polygon annotation. Annotation tar-
gets can be divided into two categories, including intact and broken corn kernels. The 

Figure 7. Images of corn grains under different conditions. (a) Low-exposure image of small amount
of impurities. (b) Low-exposure excess-impurity image. (c) Normal-exposure image of small amounts
of impurities. (d) Normal exposure of excess impurity image. (e) High-exposure images of small
amounts of impurities. (f) High-exposure images of excess impurities.

Table 1. Corn kernel images under different conditions.

Impurity Condition Exposure Condition Number of Images Total

Minor impurity
Low exposure 43

600

Normal exposure 80
High exposure 55

Excess impurity
Low exposure 37

Normal exposure 60
High exposure 25

Following the acquisition of the grain images, 200 intact and 160 broken corn kernels
(Figure 8) were chosen and brought to the laboratory.
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2.3.2. Data Preprocessing

For deep learning algorithms, the quality of the dataset directly affects the training and
prediction performance of the network model. To improve the generalization ability and
robustness of the network model and obtain more features of the corn kernels, 600 original
images were appropriately expanded using traditional data augmentation methods such
as adding noise, changing the brightness, horizontal flipping, vertical flipping, image
shifts, etc. (Figure 9) to obtain 1200 enhanced images. The 1200 processed images were
manually annotated using the Lableme tool software for the corn kernels. As this study
aimed to achieve recognition and segmentation of the corn kernels, it was necessary to
use the contour of corn kernels as a boundary for polygon annotation. Annotation targets
can be divided into two categories, including intact and broken corn kernels. The broken
corn kernels included cracks, root fractures, top damage, side damage, and so on. After
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image annotation, a JSON file containing the annotation information was obtained. Then, a
specific script written in Python was used to convert the JSON file into a COCO dataset
format that could be used to train the Mask RCNN model. The created dataset was then
split (in a 7:2:1 ratio) into training, validation, and testing sets.
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2.3.3. Establishment of the Pixel–Mass Relationship

Since the pixels and the quality of corn kernels fall into two different categories, it
was necessary to develop a coupling relationship between the two to explain quality using
pixels. Some of the corn kernels that were brought back were picked out and scattered
evenly on a black cloth in the laboratory under natural daylight. Using a bracket, we
secured the industrial camera above the velvet material and photographed the corn kernels
with the lens some 150 mm vertically above the fabric (Figure 10). The corn kernels on the
velvet material had to be removed after each image was captured, and a few more of the
corn kernels that were dispersed there were chosen. We took 50 photographs of intact and
broken corn kernels, respectively, and weighed each of them, recording the information
associated with each photo using an electronic precision scale (to ±0.001 g).

The captured corn kernel images were imported into the Adobe Photoshop software,
the pixels of the intact kernels and broken kernels were obtained based on the histogram
information, and then the coupling relationship between the pixels and quality was estab-
lished and a one-way linear regression fit was plotted (Figure 11).

The results from the least squares regression analysis, examining the relationship
between pixel and mass for the corn kernels, revealed coefficients of determination values
(R2) of 0.958 for the intact kernels and 0.992 for the broken kernels. The coefficient of
determination measures the degree of correlation between the two variables, and the closer
it is to 1, the stronger the correlation between the two variables, confirming that corn kernel
pixels are highly correlated with quality. The univariate linear regression model was able
to reflect the quantitative relationship between the kernel pixels and quality, which was
expressed as:

Mb = 4.3273× 10−5Pb − 0.1626 (1)
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M f = 5.773× 10−5Pf − 0.1644 (2)

where Mb is the quality of the broken corn kernels, in g; Pb denotes the broken corn kernel
pixel count, in pixels; Mf represents the quality of the intact corn kernels, in g; and Pf is the
intact corn kernel pixel count, in pixels.
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2.4. Calculation Method of the Corn Kernel Breakage Rate

The corn kernel breakage rate may be calculated using Python language programming
based on the established association between the corn kernel pixel counts and quality after
segmenting the pixel mask of the intact and broken corn kernels using the improved Mask
RCNN model, as given by:

Zs =
ms

mi
× 100% (3)
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where Zs is the grain breakage rate, %; ms stands for the mass of broken corn kernels, g; mi
is the total mass of sample corn kernels, g.

3. Results and Discussion
3.1. Experimental Environment and Model Training Parameter Settings

The experiment used a 64-bit Windows 11 system, equipped with a 12th Gen Intel
(R) Core (TM) i7-12700KF CPU, with a main frequency of 3.61 GHz, 32 GB of memory, an
NVIDIA 3080Ti graphics processing unit (GPU), and 12 GB of graphics memory. The deep
learning framework was Python 1.10.0+Cuda11.3, the programming language was Python
3.8.0, and the programming environment was PyCharm Community Edition. Based on
the results of multiple tests, we set the number of iterations (epoch) to 50, the attenuation
factor to 0.1, the initial learning rate of the model parameters to 0.008, the batch size of
training data to 8, and the training set to be randomly mixed before each iteration. The
optimizer selected SGD and the momentum factor was set to 0.9; mixed precision training
was adopted.

3.2. Evaluation Indicators

The percentage of actual positive samples in the predicted sample to all positive
samples is known as precision, whereas the percentage of actual positive samples in the
predicted sample to all predicted samples is known as recall, as given by:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

where, True Positive (TP) is the correct recognition of positive samples as positive samples;
True Negative (TN) is the correct recognition of negative samples as negative samples; False
Positive (FP) is a negative sample that is incorrectly recognized as a positive sample; a d False
Negative (FN) is when a positive sample is mistakenly identified as a negative sample.

Mean Average Precision (MAP) is an important indicator used to measure the perfor-
mance of network models, as given by:

AP =
∫ 1

0
p(r)dr (6)

MAP =
∑k

i=1 APi

k
(7)

where, Average Precision (AP) is the average accuracy of identifying a certain class, and k
is the total number of classifications.

Five indicators were used in this experiment to analyze and compare the experimental
results with the original network: MAPb50 (IoU = 0.50), MAPm50 (IoU = 0.50), the compu-
tational complexity (FLOPs), the parameter complexity (Params) of the backbone feature
extraction network, and the feature extraction time (Time).

3.3. Model Training

Five sets of experiments were designed to train various backbone feature extraction
networks of the Mask RNN model on the corn seed dataset while using the same experimental
environment and training parameters, to test the efficacy of using DenseNet121_CBAM_FPN
as the backbone feature extraction network of the Mask RNN model. The apparent effects of
various backbone feature extraction networks on detection performance are shown in Table 2.
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Table 2. Experimental results of different feature extraction networks on corn kernel dataset.

Backbone MAPb50 (%) MAPm50 (%) FLOPs (GMac) Params (M) Time (ms)

ResNet50_FPN 97.28 98.33 6.96 26.63 228
DenseNet121 97.16 98.18 2.88 6.95 170

DenseNet121_CBAM 97.32 98.29 2.88 7.08 176
DenseNet121_FPN 97.28 98.35 3.09 9.18 202

DenseNet121_CBAM_FPN 97.62 98.70 3.09 9.31 206

The results in Table 2 showed the following:

(1) The Mask RCNN model, which uses DenseNet121 as the backbone feature extraction
network, was 97.16% and 98.18% on MAPb50 and MAPm50, respectively, its compu-
tation amount and parameter number were 2.88 GMac and 6.95 M, and the feature
extraction time was 170 ms;

(2) The Mask RCNN model incorporating the CBAM attention mechanism into
the DenseNet121 network structure achieved 97.32% and 98.29% on MAPb50 and
MAPm50, respectively, with a computational and parameter load of 2.88 GMAc and
7.08 M, and a feature extraction time of 176 ms;

(3) The Mask RCNN model using an FPN structure in the DenseNet121 network structure
had a performance of 97.28% and 98.35% on MAPb50 and MAPm50, respectively, with
a computational and parameter load of 3.09 GMAc and 9.18 M, and a feature extraction
time of 202 ms;

(4) The Mask RCNN model incorporating the CBAM attention mechanism and FPN
structure into the DenseNet121 network structure achieved 97.62% and 98.70%, re-
spectively, on MAPb50 and MAPm50, with a computational and parameter load of
3.09 GMAc and 9.31 M, and a feature extraction time of 206 ms. Compared to the
ResNet50_FPN backbone feature extraction network, it improved by 0.34% and 0.37%
on MAPb50 and MAPm50, respectively, and reduced the computational complexity
by 3.87 GMac, the parameter size by 17.32 M, and the feature extraction time by
22 ms. The results showed that DenseNet121_CBAM_FPN, as the backbone feature
extraction network, improved the accuracy of corn kernel recognition and segmenta-
tion compared to the original Mask RCNN model, and reduced the computational
burden, parameter quantity, and feature extraction time, proving the effectiveness of
the improved Mask RCNN model.

As shown in Figure 12, during the training process of the corn kernel dataset, the improved
Mask RCNN model outperformed the original network model, even though MAPb50 and
MAPm50 increased more slowly and tended to stabilize between 20 and 50 iterations.
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Using the idea of transfer learning to load the pre-trained weights of DenseNet121 for
training, it can be seen from Figure 13a,b that the loss function of the model without pre-
trained weights converged slowly, reaching complete convergence after about 40 iterations.
The loss function of the model with pre-trained weights converged faster, reaching complete
convergence after about 20 iterations. In comparison, the convergence of the loss function
using pre-trained weights was twice as fast as that without pre-trained weights.
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3.4. Visualization Analysis of Different Segmented Networks

The corn kernel dataset was trained using the original Mask RCNN, improved Mask
RCNN, and YOLACT (You Only Look At CoefficienTs) [24] network models. YOLACT is a
classic real-time segmentation model, which has the characteristics of a good segmentation
effect and rapid detection; the results are displayed in Table 3. The improved Mask RCNN
model had an increase of 0.34% and 0.37% in MAPb50 and MAPm50 compared to the
original Mask RCNN model, and a reduction of 375 ms in the testing time for one image,
as shown by the findings in the table. The MAPb50 and MAPm50 exhibited increases of
0.83% and 0.92%, respectively, and a reduction in the testing time of 17 ms for one image
when compared to the YOLACT network model.

Table 3. Training and verification results of three different network models.

Network Model MAPb50 (%) MAPm50 (%) Time (ms)

Original Mask RCNN 97.28 98.33 451
Improved Mask

RCNN 97.62 98.70 76

Yolact 96.21 97.34 93

Figure 14 displays the visualization outcomes for the three network models. The
segmentation of intact and broken corn kernels by the original Mask RCNN model and the
improved Mask RCNN model both yielded masks that were better suited to corn kernels.
The detection performance of the YOLACT network model was subpar, with recognition
mistakes and evident rough edges visible on the segmentation mask that deviated some-
what from the corn kernels. The improved Mask RCNN model outperformed the YOLACT
network model in terms of the visual effect. Compared with the traditional machine learn-
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ing algorithm of Yang [25], the improved Mask RCNN increased the recognition accuracy
of corn kernels and optimized the segmentation of corn kernels.
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Images with various exposure intensities and other contaminants were chosen for
segmentation and recognition to better demonstrate the robustness of the enhanced Mask
RCNN model. As shown in Figure 15, in photos in challenging settings, intact and broken
corn kernels could still be recognized and separated, and the pixel segmentation result was
quite accurate, demonstrating the improved durability of the Mask RCNN model.
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3.5. Real-Time Detection of the Corn Kernel Breakage Rate

We chose five times at random and selected any hybrid corn kernels, both healthy or
damaged, then photographed them using an industrial camera positioned 150 mm above
them, and sent the images to an enhanced Mask RCNN model for breakage rate detection.
Then, corn kernels were manually selected to determine the breakage rate, and the time
was logged. Table 4 lists a comparison of the outcomes. The statistics in Table 4 show that
the detection was substantially faster than that realized using manual calculation, and the
error range between the machine vision detection and manual calculation was between
0.72% and 0.65%. Therefore, human computation of the corn kernel breakage rates can be
replaced by machine vision detecting technology.

Table 4. Comparison results of different detection methods of breakage rate.

Serial Number Machine Vision (%) Detection Time (ms) Actual Calculation (%) Calculation Time (ms)

1 12.36 64 11.89 6725
2 8.57 88 9.29 8452
3 15.29 69 14.91 7684
4 20.16 79 19.51 7332
5 6.52 78 7.05 9246

4. Conclusions

Building upon the Mask RCNN concept, this study introduced the DenseNet121 backbone
feature extraction network as the fundamental framework. The DenseNet121_CBAM_FPN
backbone feature extraction network was established by adding the CBAM attention mech-
anism and FPN structure. The improved Mask RCNN model outperformed the baseline
model on MAPb50 and MAPm50 by 0.34% and 0.37%, respectively. The computational and
parameter quantities dropped by 3.87 GMAc and 17.32 M, respectively, when compared to the
ResNet50_FPN backbone feature extraction network. The time taken to extract features lowered
by 22 ms, while the time taken to detect images decreased by 395 ms. The improved Mask
RCNN model had a higher accuracy of recognition and faster speed of detection, which proved
the effectiveness of the improved network.

The relationship between the quality of corn kernels and pixel characteristics was
established. Machine vision had a detection error of between −0.72% and 0.65% for the
corn kernel breakage rate. The typical detection time for a given image of corn kernels was
76 ms, which can be used to replace the manual measurement of the breakage rate of corn
kernels with machine vision detection technology.

In the next research work, a corn kernel sampling device fixed to a corn kernel har-
vester will be designed to detect the breakage rate of corn kernels in real time in conjunction
with the improved Mask RCNN model.

This study did not address the overlap among the corn kernels, focusing solely on the
classification and division of broken corn kernels on the surface. Investigating this situation
in greater detail is suggested as a fruitful direction for future research.
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