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Abstract: The Loess Plateau, known for its fragile ecosystems, is one of the traditional apple-
producing regions in China. Although some management measures are needed to enhance sus-
tainable agriculture in response to the rising pressure of climate change, the geographic distribution
of apple trees considering multiple variables has not been considered. In this study, we used three
software (the maximum entropy model, IDRISI, and ArcGIS) to simulate the potential distribution of
suitable habitats and range shifts of apple trees in the near present and near future (i.e., the 2030s and
the 2050s) under two climate scenarios (the Shared Socioeconomic Pathways (SSP)1-26 and SSP5-85),
while taking a variety of environmental factors into account (e.g., temperature, precipitation, and
terrain). After optimization, the class unsuitable habitat (CUH) changed the potential distribution
pattern of apple trees on the Loess Plateau. Currently, the areas of lowly suitable habitat (LSH), mod-
erately suitable habitat (MSH), highly suitable habitat (HSH), and CUH were 7.66 × 104, 2.80 × 104,
0.23 × 104, and 18.05 × 104 km2, respectively. Compared to the centroid estimated under the climate
of 1970–2000, the suitability range of apple trees was displaced to the northwest in both the 2030s and
the 2050s in SSP5-85 (i.e., 63.88~81.30 km), causing a larger displacement in distance than SSP1-26 (i.e.,
40.05~50.32 km). This study demonstrates the possible changes in the spatial distribution of apple
trees on the Loess Plateau in the near future and may provide a strong basis for future policy making.

Keywords: suitable habitat; climate scenario; range shift; ArcGIS; MaxEnt; apple trees

1. Introduction

The Loess Plateau is located in the arid and semi-arid regions of Northwest China. Its
world-famous loess deposition, soil erosion, and huge spatial heterogeneity in precipitation
have resulted in a unique and fragile plateau ecosystem [1]. In the 20th century, soil
degradation and dust storms were further aggravated by the unsustainable land use
practices of local farmers and herdsmen (overgrazing and farmland reclamation, etc.) as
a result of their intense struggle to survive [2–4]. Additionally, since the 1970s, after the
implementation of several ecological improvement projects (e.g., the Grain for Green Project,
the Natural Forest Project [5]), soil erosion in this region has been significantly reduced [6],
and a large amount of farmland has been transformed into forests and grasslands [7]. Thus,
the ecological environment has been significantly improved, and the economic forestry
and fruit industries have rapidly developed [8,9]. The primary responsibilities of the
Chinese government in this century are gradually turning to maintaining the work of
soil and water conservation [10], increasing ecosystem biodiversity [11], raising incomes
of local inhabitants [12], and developing sustainable ecological agriculture [6]. Global
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apple consumption is increasing annually [13], and the Loess Plateau has become the
largest apple production area in China and even in the world [14]. As the main income-
generating economic fruit in the region, the development of the apple industry is of great
significance to reduce poverty [14,15]. The rational planning of cultivation patterns, as the
cornerstone of realizing the healthy and stable development of the apple industry [16],
plays an important role in achieving the long-term goal of sustainable development in the
Loess Plateau. However, few studies have focused on the suitable habitats (SH) of this
economic tree in this region, particularly in the context of climate change [17].

The continuous pressure of climate change and rapid social development affect the
structure and function of global ecosystems [18], and are changing the distribution range of
species to a great extent [19]. Throughout the past 100 years, the global average temperature
has risen by about 0.85 ◦C [20], and is expected to rise by 1.5–2.1 ◦C by 2050 [21]. Until now,
CO2 concentrations have increased from 280 parts per million (ppm, the pre-industrial
level) to around 408 ppm, and may reach 560 ppm (double pre-industrial levels) by 2060
without actions to reduce emissions [22]. Due to the adaption of the natural environment
to human activities, the land use and cover change (LUCC) has become the most obvious
alteration in natural ecological environments [23,24], especially in fragile ecosystems close
to the range of human activities [25,26]. However, the LUCC may exacerbate climate
change, limit human activities [18], and threaten global biodiversity [21].

Plant pathogens are generally ignored in the research and planning of the SH of
economic trees [27] despite the fact that they have a powerful effect on the distribution of
their host plants [28]. Valsa mali, a necrotrophic fungus belonging to ascomycete [29], causes
the apple valsa canker (AVC). AVC is a serious disease affecting the quality and yields of
apples [30,31], and seriously restricts the sustainable development of the apple industry
in the Loess Plateau [32,33]. At the same time, relevant policies [34] and other biological
factors [29] also have important impacts on the apple cultivation areas [18,19]. However, to
the best of our knowledge, studies mainly focus on the geographic distribution of apple
trees relying on environmental factors only (e.g., temperature, precipitation, terrain), while
no attempts have been performed for coupling this with land use types and plant pathogens.
Without considering these multiple related factors, the persuasiveness and accuracy of
simulation results may be seriously affected.

The development of computer technology has promoted a variety of species distribu-
tion models (SDMs) [35,36]. These SDMs mainly model and calculate the distribution of
species with georeferenced presence/absence data and their interrelated environmental
layers (e.g., meteorological data, terrain data, and social data) [37,38]. The maximum
entropy model (MaxEnt), a program that relies on continuous/classified environmental
variables and associated occurrence data, produces highly precise predictions [38–42]. It
should be noted that many environmental factors that are difficult to collect and quantify
(e.g., impacts from the related biological species and policies such as land-use planning)
are not easily taken into account by MaxEnt [29]. Hence, in order to better mimic the
distribution of species, it required a technique to discern the effects of interactions between
species and variables that are difficult to quantify.

In this study, we simulate the SH of apple trees while taking relevant policies and
plant pathogens into account in the context of climate change. To reach this goal, we:
(1) independently simulated the distribution pattern of an economically important plant
species (i.e., Malus pumila Mill.) and its pathogen (i.e., V. mali); (2) evaluated and selected
the limits of ranges of abiotic factors (i.e., LUCC) and biographic factors (i.e., V. mali) that
influence the distribution pattern of an economically important plant species; (3) optimized
the SH of apple trees by integrating the effects of those abiotic and biotic factors. The
purpose of this study was to better understand how apple trees on the Loess Plateau will
respond to climate change in the near future, and to offer a theoretical foundation for
apple cultivation, structural adjustment, and policy-making in the connected businesses in
this region.
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2. Materials and Methods
2.1. Collection of Occurrence Data of Species and Environmental Variables

In this study, the occurrence data of apple trees and its plant pathogen (V. mali) in the
northern area of the Yangtze River (China) were collected with field surveys, published arti-
cles, and online databases (for details see: [17,29]). In total, we collected 260 georeferenced
present-only records on apple trees and 211 georeferenced present-only records on V. mali.

In the Coupled Model Intercomparison Projects phase 6 (CMIP6), 49 different mod-
elling groups from different countries contributed around 100 unique climate models to
represent the change in the future climate. In this initiative, the Representative Concen-
tration Pathways used in phase 5 have been replaced by the new Shared Socioeconomic
Pathways (SSP) that have approaches to different radiative forcing levels that depend
on the emissions of greenhouse gases (SSP1-26: 2.6 wm−2, SSP2-45: 4.5 wm−2, SSP3-70:
7.0 wm−2, and SSP5-85: 8.5 wm−2), which in turn lead to increasing warming [43,44]. In
terms of intergovernmental energy conservation and emissions reduction, SSP1-26 offers
the most optimistic scenario for achieving the goal of limiting the temperature rise to 2 ◦C
by 2100 [43], whereas SSP5-85 represents the worst case. In this study, two extreme SSPs
(i.e., SSP1-26 and SSP5-85) were chosen to depict the future distribution pattern of M. pumila
on the Loess Plateau. We chose the climate system model of the Beijing Climate Center
(BCC-CSM2-MR) as the source data for this study as it has been widely utilized in previous
studies [45,46] in East Asia. We downloaded nineteen bioclimate layers (i.e., bio1-bio19)
with a spatial resolution of 2.5 arc-min from the WorldClim (www.worldclim.org/, accessed
on 18 May 2020) [47]. These geodatabases include the climatic conditions of the near to
present period (period 1970–2000) and climatic conditions estimated for the near future
(results of simulations for period 2021–2040 and period 2041–2060). In this article, we
use the 2030s and the 2050s for referring to the time periods 2021–2040 and 2041–2060
respectively. Moreover, we downloaded one elevation datum (1 km) from the RESDC
(http://www.resdc.cn/, accessed on 19 May 2020), three soil texture data (clay, sand, and
silt, 1 km), and one soil type datum (1 km) from the FAO (www.fao.org/soils-portal/, ac-
cessed on 11 May 2020). Including the bioclimatic layers, we prepared a total of 27 variables
for MaxEnt: bioclimatic layers (19: bio1–bio19), terrain data (4: one elevation datum and its
three derived terrain variables: aspect, curvature, and slope), and soil data (4: three soil
texture data and one soil type datum) to MaxEnt (Table 1).

Table 1. The environmental factors used in the corresponding simulation (variables with labels of “+”
for Valsa mali, “−” for Malus pumila Mill., and “*” for land use).

Factor Variables Description Unit Resolution Labels Sources

Bioclimatic
layers

bio1 Annual Mean Temperature ◦C 2.5 arc-min ±

www.worldclim.
org/, accessed on

18 May 2020

bio5 Max Temperature of
Warmest Month

◦C 2.5 arc-min −

bio6 Min Temperature of
Coldest Month

◦C 2.5 arc-min ±

bio11 Mean Temperature of
Coldest Quarter

◦C 2.5 arc-min +

bio12 Annual Mean Precipitation mm 2.5 arc-min ±
bio15 Precipitation Seasonality 2.5 arc-min +

bio16 Precipitation of Wettest
Quarter mm 2.5 arc-min −

bio17 Precipitation of Driest
Quarter mm 2.5 arc-min −

www.worldclim.org/
http://www.resdc.cn/
www.fao.org/soils-portal/
www.worldclim.org/
www.worldclim.org/
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Table 1. Cont.

Factor Variables Description Unit Resolution Labels Sources

Terrain data

aspect Aspect ±
www.resdc.cn/,

accessed on
19 May 2020

curvature Curvature ±
elevation Elevation m 1 km ±

slope Slope ◦ ±

Soil data
sand Soil Texture 1 km ± www.fao.org/soils-

portal/, accessed
on 11 May 2020soil Soil Type 1 km ±

Land use data land use Land Use and Cover
Change 300 m *

www.climate.
copernicus.eu/,

accessed on
8 August 2020

2.2. The Screening and Pre-Processing of Data

Model overfitting can be decreased by variable screening [48,49]. We first removed
duplicated records [21] from the occurrence data of the species. The occurrence data were
then evaluated in compliance with the requirements of the subsequent study simulations.
Considering the geographic location of the Loess Plateau, we transformed the environmen-
tal layers with a resolution of 2.5 arc-min into the Asia North Albers Equal Area Conic
(ANAEAC) with the resolution of ~4857 m. We then filtered the species occurrence data
with a boundary distance of 5000 m to ensure that each grid involved in the model simula-
tion at most covers a single species occurrence point. We obtained 158 points for V. mali and
107 points for apple trees (Figure 1) after filtering species occurrence data using the SDMs
toolbox (version 2.4) of ArcGIS 10.2 (ESRI, Redlands, CA, USA) (more details see [17,29]).
By using the toolbox of ArcGIS to further analyse the elevation layer, we obtained three
more terrain factors: aspect, curvature, and slope. To avoid multicollinearity [50,51], we
conducted a correlation analysis [48] on 27 variables of bioclimatic layers, terrain data,
and soil data. We retained the Annual Mean Temperature (bio1) and Annual Mean Pre-
cipitation (bio12), and eliminated other bioclimatic variables with a correlation coefficient
value greater than 0.8 (Table 1, see details in [29]). Based on the physiological growth
requirements of apple trees [50] and the incidence rate trends of V. mali [32], we added
six extra bioclimatic variables and finally obtained eight bioclimatic variables for MaxEnt
(Table 1). This study also made the assumption that these terrain variables will not change
in the near future due to the long-term stability of the terrain [48]. We then resampled
the environmental variables (i.e., terrain data and soil data) into a spatial resolution of
2.5 arc-min and converted all the layers used in this study into WGS1984 (the geographic
coordinate system) and ANAEAC (the projection coordinate system) to ensure that all
software did not need to consider coordinate system transformation.

2.3. Model Processing
2.3.1. Processing with the Binary Maps of MaxEnt and Land Use Data

The self-evaluation capability facilites of MaxEnt [18,52] were used to assess the
accuracy of the resulting models, including receiver operating characteristic (ROC) curves
and the area under these curves (AUC). The AUC values range between 0 and 1, with higher
AUC values indicating more accurate simulation results [53,54]. When the AUC value is
more than 0.8, the result is good; when it is higher than 0.9, the result is excellent [38]. In
this study, we selected the automatic mode, setting 10,000 as the maximum number of
background points, and choosing a random seed for MaxEnt simulation. For the occurrence
data of V. mali and M. pumila, we randomly selected 30% of them as test data to assess the
accuracy of the model, while the remaining 70% were used to calibrate it. Five bootstrap
replications (exported in ASCII) were performed and the simulation results were exported
in ArcGIS for further analysis.

www.resdc.cn/
www.fao.org/soils-portal/
www.fao.org/soils-portal/
www.climate.copernicus.eu/
www.climate.copernicus.eu/


Agriculture 2023, 13, 291 5 of 14

Agriculture 2023, 13, 291  4  of  14 
 

 

Soil data 
sand  Soil Texture    1 km  + ‐  www.fao.org/soils‐portal/, 

accessed on 11 May 2020 soil  Soil Type    1 km  + ‐ 

Land use data  land use  Land Use and Cover Change    300 m  * 
www.climate.copernicus.eu/, 

accessed on 8 August 2020 

2.2. The Screening and Pre‐Processing of Data 

Model overfitting can be decreased by variable screening [48, 49]. We first removed 

duplicated records [21] from the occurrence data of the species. The occurrence data were 

then evaluated in compliance with the requirements of the subsequent study simulations. 

Considering the geographic  location of the Loess Plateau, we transformed the environ‐

mental layers with a resolution of 2.5 arc‐min into the Asia North Albers Equal Area Conic 

(ANAEAC) with the resolution of ~4857 m. We then filtered the species occurrence data 

with a boundary distance of 5000 m to ensure that each grid involved in the model simu‐

lation at most covers a single species occurrence point. We obtained 158 points for V. mali 

and 107 points for apple trees (Figure 1) after filtering species occurrence data using the 

SDMs toolbox (version 2.4) of ArcGIS 10.2 (ESRI, Redlands, CA, USA) (more details see 

[17, 29]). By using the toolbox of ArcGIS to further analyse the elevation layer, we obtained 

three more terrain factors: aspect, curvature, and slope. To avoid multicollinearity [50, 51], 

we conducted a correlation analysis [48] on 27 variables of bioclimatic layers, terrain data, 

and soil data. We retained the Annual Mean Temperature (bio1) and Annual Mean Pre‐

cipitation (bio12), and eliminated other bioclimatic variables with a correlation coefficient 

value greater than 0.8 (Table 1, see details in [29]). Based on the physiological growth re‐

quirements of apple trees [50] and the incidence rate trends of V. mali [32], we added six 

extra bioclimatic variables and finally obtained eight bioclimatic variables for MaxEnt (Ta‐

ble 1). This study also made the assumption that these terrain variables will not change in 

the near future due to the long‐term stability of the terrain [48]. We then resampled the 

environmental variables (i.e., terrain data and soil data) into a spatial resolution of 2.5 arc‐

min and converted all the layers used in this study into WGS1984 (the geographic coordi‐

nate system) and ANAEAC (the projection coordinate system) to ensure that all software 

did not need to consider coordinate system transformation. 

 

Figure 1. The occurrence data of Malus pumila Mill. and Valsa mali in China. Figure 1. The occurrence data of Malus pumila Mill. and Valsa mali in China.

The selection of threshold values could improve the stability of the MaxEnt model [55].
In this study, we initially averaged the floating-point values of the acquired simulation
results in order to discern between the presence and absence of species in the distribution
maps. Then, the species floating matrix was divided into two types: the unsuitable part
and the suitable part. For apple trees, M. pumila, the maximized sensitivity and specificity
value (maxss, 0.2385) was set as the threshold [16,20,56]. The part with a floating value
greater than the threshold was the suitable portion, and the remainder was the unsuitable
portion. The suitable portion was then divided into three classes by occurrence probability
values of 0.4 and 0.6 in lowly suitable, moderately suitable, and highly suitable habitats.
For V. mali, the major plant pathogen of the AVC, the threshold was changed from its maxss
value (0.160) to a new threshold (i.e., 80% of the floating value of the grid map) in order
to establish the high-risk habitat of pathogen (HRHP). In other words, the HRHP only
included values larger than 80% of the floating value. Additionally, the centroid of habitats
was used as an essential metric to measure the range variations of the SH [57]. Hence, in
this study, we also measured the centroids of apple trees in different climate conditions and
drew their distribution maps with the help of the ArcGIS toolbox.

Land use data from various sources often have varying resolutions and translation
criteria. Based on the land resources categorization method of the Chinese Academy of
Sciences, this study reclassified the land use data from the European Aeronautics and Space
Administration (given in Table S1) into seven categories (i.e., cropland, forest, grassland,
mosaic area, bare area, built-up area, and water area). To create the plausible land use
distribution maps for the near future, we first estimated the land use transfer matrix and
transfer probability using the Markov model of IDRISI 17.0 (Clark Labs, Clark University,
Worcester, MA, USA) between 2000 and 2010. The CA-Markov model of IDRISI was then
utilized to complete the prediction of land use in 2030 and 2050 with a 10-year intermittent
iteration, using the land use map of the starting period (years 2000 and 2010) and the newly
established land use transfer and probability matrix.

2.3.2. Build the Mask Layer and Optimize the Suitable Habitats of Apple Trees

Unreasonable fruit tree management (e.g., pruning, [58]) and precipitation are major
transmission pathways of V. mali [29]. In light of the size of orchards and the effect distance
of V. mali, experts recommended establishing a buffer space for the HRHP with a distance
of 300 m in order to avoid the AVC. With the help of the ArcGIS toolbox, we resampled the
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floating-point maps into about 323 m and screened the HRHP. We then added a high-risk
buffer for the HRHP by setting the grids adjacent to the HRHP to be HRHP. We reclassified
all values inside the high-risk buffer range in the ArcGIS toolbox, regardless of whether
their attributes had previously been classified as high-risk (Figure S2).

In order to optimize the layout of urban and rural structures and promote the verifi-
cation and rectification of permanent basic farmland (PBF), the Chinese government con-
ducted their third national land survey (from 2017 to 2021) and designated 1.28× 106 km2 of
national cultivated land (including 1.03 × 106 km2 of actual PBF; see http://www.gov.cn/,
accessed on 27 March 2021). Lacking current accurate digital distribution maps of PBF, this
study initially used the land use map of 2015 as its research object and made the assumption
that all farmland on the Loess Plateau was PBF. After that, the PBF of 2015 was transformed
into a mask layer with a permanent transfer barrier. We finally produced the digital PBF
maps for 2030 and 2050 (Figure S3) by overlapping the mask map with the predicted land
use maps of the near future. Due to their unsuitability for the large-scale development of
apple orchards, in this study, the built-up areas, water areas, and PBF were all reclassified
as unsuitable land use types (ULUT, Figure S3).

To optimize the distribution pattern of apple trees under the two near future climate
scenarios, we overlaid the ULUT mask, the HRHP mask, and the distribution map of apple
trees. If the region matched at least one ULUT and HRHP, we defined it as an unsuitable
habitat (CUH) for the cultivation of apple trees. Thereafter, the optimized maps were
divided into the following five classes: unsuitable habitat (USH), lowly suitable habitat
(LSH), moderately suitable habitat (MSH), highly suitable habitat (HSH), and CUH. Despite
the fact that neither the USH nor the CUH were suitable for growing apple trees, there
were important differences: the USHs were divided based on the outputs of the original
model simulation, while the CUHs were split according to the distribution of the ULUT
and HRHP.

3. Results
3.1. Model Robustness and the Independent Distribution Patterns of Apple Trees, ULUT
and HRHP

Throughout the simulations, MaxEnt provided excellent predictions, with average
AUC values of the apple trees (i.e., M. pumila) and their vital pathogen (i.e., V. mali) of
0.946 ± 0.02 and 0.965 ± 0.013 (mean ± SD), respectively. Without considering the effects
of the ULUT and HRHP, the spatial distribution patterns of apple trees indicated that the
MSH and HSH were mainly distributed in the south and southeast of the Loess Plateau,
and the HSH increased in the west under both SSP1-26 and SSP5-85 in the 2030s and the
2050s (Figure S1). In all time periods (i.e., 1970–2000, the 2030s, and the 2050s), V. mali was
mostly located in the central and southern Loess Plateau (Figure S2). The most noticeable
changes in the modelling of future land use were the decrease in forests and the increase
in built-up areas from the 1970–2000 period to the 2030s and the 2050s (Figure S3a–c). For
apple trees, the ULUT was mainly dispersed in the south and southeast of the Loess Plateau
in the three periods, and increased in the north from the 1970–2000 period to both the 2030s
and the 2050s (Figure S3d,e).

3.2. Suitable Habitats under the Effects of Multiple Environmental Factors

The optimized results showed that, in the 1970–2000 period, the areas of USH,
LSH, MSH, HSH, and CUH were 36.15 × 104, 7.66 × 104, 2.80 × 104, 0.23 × 104, and
18.05 × 104 km2, respectively. In the south and southeast of the Loess Plateau, the CUH led
to a significant decline in MSH (−5.14 × 104 km2, ~−64.74%) and HSH (−0.63 × 104 km2,
~−74.12%) (Figure 2). Under SSP1-26 and SSP5-85, the inclusion of the CUH resulted in
an area decline of the SH in various degrees in the 2030s and the 2050s (Figure 2). In the
near future, under SSP1-26, the USH, LSH, MSH, and HSH decreased by 8.75~10.58 × 104,
6.20~7.28 × 104, 3.06~3.40 × 104, and 0.04~0.25 × 104 km2, respectively (Figure 2a,b).
In the 2030s and the 2050s, the reduction in the MSH was 50.00% and 45.76%, respec-

http://www.gov.cn/
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tively, whereas it was 50.00% and 59.52% for the HSH. Compared to the MSH and HSH,
the LSH was less affected by the CUH, as the proportion of habitat decline in the near
future was 39.61% (the 2030s) and 40.68% (the 2050s). Under SSP5-85, the USH, LSH,
MSH, and HSH decreased by 8.65~11.07 × 104, 5.73~6.18 × 104 (−34.30%~−34.71%),
3.37~4.11 × 104 (−32.31%~−42.02%) and 0.21~0.26 × 104 km2 (−36.62%~−53.85%), re-
spectively (Figures 2d,e and 3).
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Figure 2. The spatial patterns of apple trees in the 1970–2000 (c) and near future under two scenarios
((a,b) SSP1-26, (d,e) SSP5-85).

According to the optimized results of the distribution of apple trees, the CUH mainly
spread in the east, south, southeast, southwest, west, north, and northwest of the Loess
Plateau (Figures 2 and S3). Currently, the CUH, within 1.81 × 105 km2 (Figure 3), is
predominantly contiguously distributed in the south, southeast, and southwest of the Loess
Plateau, is sporadic in the central area, and is patchy in the west, northwest, north, and
northeast; the MSH and HSH were mainly scattered in the southeast, and the LSH was
mainly located in the central area (Figure 2). Compared with the 1970–2000 period, the
area of the CUH expanded in different degrees in the 2030s and the 2050s under both
SSP1-26 (1.07~2.37 × 104 km2) and SSP5-85 (1.10~2.38 × 104 km2, Figure 3). The CUH
mostly extended in the east, north, and northeast of the Loess Plateau, while the changes in
the south, southeast, southwest, and west were relatively slight (Figure S3). In contrast,
under the two SSPs, the distribution range of the LSH and MSH were expanded to different
degrees in the south, central, and southwest areas in the near future (Figure 2, Table S2).
The HSH area change trend showed a V-shaped curve from the 1970–2000 period to the
2030s and the 2050s, while its area under SSP1-26 was still lower than it was under near
present climatic conditions (Table S2).
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Figure 3. The habitat area of apple trees in three periods (1970–2000, the 2030s, and the 2050s) under
two climate scenarios (SSP1-26 and SSP5-85).

3.3. Shifts of Centroids in the near Future under Two Climate Scenarios

The changes in the distribution patterns of SHs resulted in shifts of their centroids.
Currently, the suitability centroid of apple trees is located at 109◦22′11.79” E, 36◦21′11.92”
N (Figure 4). Under SSP1-26, the shift distances for the suitability centroid in the 2030s and
the 2050s were 40.05 km and 50.32 km, respectively. Under SSP5-85, the shift distances
were 63.88 km and 81.30 km, respectively (Figure 4). In particular, we noticed that, un-
der both SSP1-26 and SSP5-85, all suitability centroids of apple trees displaced towards
the northwest.
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4. Discussion
4.1. Effects of the USH and Range Shifts in Suitable Habitats of Apple Trees

In this study, the geographic distribution patterns of one economically important tree
(i.e., M. pumila) and one of its vital pathogens (i.e., V. mali) under SSP1-26 and SSP5-85,
as well as the corresponding land use patterns, were simulated using MaxEnt and the
CA–Markov model. Based on this, more detailed maps of the geographic distribution
of apple trees were produced. After considering the CUH (i.e., ULUT and HRHP), the
distribution patterns of apple trees on the Loess Plateau became more fragmented as a
result of the increase in the classification criteria from four SHs to five. Compared with
its 1970–2000 range, the SH (i.e., the LSH, MSH, and part of the HSH in the 2050s period
under SSP5-85) expanded to different degrees in the south and southwest of the Loess
Plateau. This is consistent with the impact of the southeast monsoon on the direction of
precipitation inside the Loess Plateau range [59]. Moreover, the geographical distribution
of the Qinling Mountains (on the south and spanning from west to east, [1]) may have some
impact on this. Furthermore, while not negligible, the influence of regional topography
on regional climate change (i.e., temperature and precipitation, [59]) is often difficult to
measure precisely.

Global climate change has brought challenges for the cultivation of apple trees on
the Loess Plateau. From the 1970–2000 period to the 2030s and the 2050s, the area of the
SH under SSP5-85 increased more than under SSP1-26. Under SSP1-26 and SSP5-85, the
ideal cultivation habitat of apple trees on the Loess Plateau will shift northwest in the
near future compared to their near present distribution. In addition, because the Loess
Plateau is one of the most important apple-producing regions in China [14], a series of
adaptation measures will be required to maintain the size and yield of the apple industry.
In recent decades, the average elevation of apple orchards in Northern India has displaced
upward by about 800 m [15], and it has moved northward and westward in China [17].
Across the period from the 2030s to the 2050s, the shift distances of suitability centroids
increased between SSP1-26 and SSP5-85. We hypothesize that this may be related to the
temperature influence on the growth and development of apple trees: similar to how
temperature thresholds influence the development activities of particular pest species [60],
an appropriate temperature increase will enhance the distribution of apple trees on the
Loess Plateau, but when the temperature change exceeds a certain threshold, the promoting
effect of temperature increase is likely to shift from the positive to negative. This is
contrary to the practical experience of economically important forest trees seeking the most
environmentally similar habitats when facing climate change [15,45].

4.2. Effects of Abiotic and Biological Factors on the CUH

Compared with the distribution patterns of the CUH in the 1970–2000 period, it
will expand in different degrees in the near future. Furthermore, its expansion trends
were mainly concentrated in the east, northeast, and north of the Loess Plateau, while
the changes occurring in the south, southeast, southwest, west, and northwest directions
were minimal. However, considering the delineation of the CUH, there were two potential
causes for uncertainty in the simulations. On the one hand, the simulation uncertainty of
the ULST may lead to the uncertainty in the CUH. Both natural controlling factors (i.e.,
temperature, precipitation, terrain, etc.) and socio-economic driving factors have impacts
on the LUCC [61], and their effects vary depending on the land use type [62]. This is
partly because some land use types (e.g., orchards) have more economic benefits than those
with more ecological functions (e.g., forests and grasslands). This study assumed that the
terrain factors would remain stable in the near future, and on this basis, the climatic factors,
such as temperature and precipitation, could be the dominant natural factors impacting
the Loess Plateau ecosystem. Meanwhile, given the significant impacts of socio-economic
factors (i.e., policies, regulations, and systems, [63]) on the LUCC, it cannot be ignored.
National ecological projects have significantly changed the land use patterns in the north,
northwest, and northeast of China during the last 50 years [7], as well as the creation of
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nature reserves [64]. These are significant examples of how socio-economic factors have
influenced the LUCC [61,63]. Hence, limited by land use policy, predicting future land
use changes based on current regulations, although essential and indispensable at this
point, cannot overlook the tremendous uncertainty caused by itself. On the other hand, the
simulation uncertainty of the HRHP may lead to extra uncertainty in the range of the CUH.
In the 2030s and the 2050s, the CUH range differs slightly between SSP1-26 and SSP5-85
(Figure 2). To lessen the computational burden of the simulation, the impact of the two
SSPs on land use change was not considered separately in this study (i.e., the same land use
simulations were used in both SSP1-26 and SSP5-85). Therefore, the difference in the range
of the CUH under similar SSPs was caused by their HRHP range (Figure S2). For the plant
pathogen V. mali, details about its host (i.e., apple trees, plum trees, etc.), biological factors
(such as insect behaviour), and its potential transmission routes (such as seeds and stocks
with the pathogen [58]) need to be considered in future studies to obtain more convincing
simulation results. In addition, further research is required on the reaction of V. mali to
temperature and precipitation. An essential factor in the prevention and treatment of the
AVC is setting an adequate buffer distance for V. mali. Hence, future research should also
pay more attention to how many relevant environmental factors such as land types, terrain,
and other geographic barriers (e.g., seasonal wind, river, etc.) affect the buffer distance of
V. mali.

4.3. Strategies to Improve the Accuracy of Simulations

This study produced an excellent simulation of the potential geographic distribution
of apple trees in the near present and near future on the Loess Plateau. However, to increase
its accuracy, three uncertainties should be overcome in follow-up studies. First, there are
uncertainties within the MaxEnt model itself. Species occurrence data and environmental
variables are the fundamental inputs of MaxEnt. Before building the model, we screened the
species occurrence data (based on environmental data resolution) and environmental data
(i.e., principal component analysis and correlation coefficient) separately [65]. However,
it is still necessary to make sure that this is the best strategy to utilize these occurrence
data. Additionally, merely considering the correlation and overlap between environmental
factors may neglect crucial factors [57] that might have potential impacts on the distribution
patterns of species. In order to reasonably filter environmental variables and enhance the
stability and precision of the simulation of species distribution, future studies may need
more extensive assessment strategies (e.g., evaluate the weight of environmental variables
in the model, [66,67]). Second, there are uncertainties in dividing SHs. Though maxss has
been commonly applied in SDM studies to distinguish between the potential of presence
and absence of species [56], its stability in various hydrothermal environments remains
uncertain. Future studies should focus more on improving and enhancing the indicators
used to assess the presence and absence situation of species. Third, there are uncertainties
in the mask maps. Some natural, inevitable uncertainties existed in the simulation of
climate scenarios by the climate prediction organisations, resulting in the uncertainty in
the mask maps of the HRHP. Human activities, policies, and climate change all have an
impact on the LUCC [19,61]. However, their effects vary from ecosystem to ecosystem,
especially in those that are regularly impacted by human activities [26]. The Loess Plateau
ecosystem is particularly sensitive due to its peculiar climatic conditions [6,12]. It should
be noted that the modelling estimates of land use in the near future in this study did not
sufficiently account for relevant environmental factors. In order to increase the accuracy
of modelling in this region, future studies may need to perform more in-depth related
research on the driving forces [62]. At the moment, the LUCC predictions of the Loess
Plateau under different climate change scenarios are still lacking, and hence their potential
impacts are overlooked in this work.
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5. Conclusions

In this study, we developed a model that took multiple environmental factors into
account, such as temperature, precipitation, terrain, soil, climate change, and human
activities, to simulate the distribution pattern of apple trees on the Loess Plateau in the
near present and near future under two Shared Socioeconomic Pathways (i.e., SSP1-26 and
SSP5-85). The increase in the SH in SSP5-85 was larger than in SSP1-26. In the near future,
the CUH increased in different degrees in the east, northeast, and north of the Loess Plateau.
The LSH, MSH, and HSH shrunk to varied degrees after optimization, taking the CUH into
consideration, and their decrease in percentage was larger than that of the USH. Under
the two SSPs, all suitability centroids shifted to the northwest in the near future relative
to the 1970–2000 centroid. As the pressures of climate change increased from SSP1-26 to
SSP5-85, the shift distances of centroids increased in both the 2030s and the 2050s. Under
the same climate change pressures, the shift distance increased more in the 2050s than it
did in the 2030s.
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Mali in the 1970–2000 and near future (the 2030s and 2050s) under two climate scenarios (SSP1-26:
(a,b); SSP5-85: (d,e)); Figure S3. The land use patterns (a–c) and the unsuitable land use type for
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and 2050s); Table S1: The correspondence of the reclassification of the land use and cover changes;
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