Response of Maize Yield and Nutrient Uptake to Indigenous Organic Fertilizer from Corn Cobs
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Content of Corn Cob Organic Fertilizer
3.2. Corn Growth
3.3. Corn Chlorophyll
3.4. Corn Yield
3.5. Plant Nutrient Uptake
3.6. Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BPS. Indonesian Corn Production; Central Bureau of Statistics: Jakarta, Indonesia, 2021. [Google Scholar]
- Tian, X.; Engel, B.A.; Qian, H.; Hua, E.; Sun, S.; Wang, Y. Will reaching the maximum achievable yield potential meet future global food demand? J. Clean. Prod. 2021, 294, 126285. [Google Scholar] [CrossRef]
- Libutti, A.; Trotta, V.; Rivelli, A.R. Biochar, vermicompost, and compost as soil organic amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla). Agronomy 2020, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Baghel, V.; Thakur, J.K.; Yadav, S.S.; Manna, M.C.; Mandal, A.; Shirale, A.O.; Sharma, P.; Sinha, N.K.; Mohanty, M.; Singh, A.B.; et al. Phosphorus and Potassium Solubilization From Rock Minerals by Endophytic Burkholderia sp. Strain FDN2-1 in Soil and Shift in Diversity of Bacterial Endophytes of Corn Root Tissue with Crop Growth Stage. Geomicrobiol. J. 2020, 37, 550–563. [Google Scholar] [CrossRef]
- Joy, B.; Sudirja, R.; Sofyan, E.T.; Harriyanto, R.; Mulyani, O.; Herdiansyah, G. Evaluation of soil fertility status for rice, corn, soybean on suboptimal land in West Java Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 393, 012030. [Google Scholar] [CrossRef]
- Budiastuti, M.; Purnomo, D.; Setyaningrum, D. Agroforestry System as the Best Vegetation Management to Face Forest Degradation in Indonesia. Rev. Agric. Sci. 2022, 10, 14–23. [Google Scholar] [CrossRef]
- Kiloes, A.M.; Puspitasari; Mulyono, D.; Syah, M.J.A. Land resources management of shallots farming: A case study in the highlands of Solok Regency, West Sumatera. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012097. [Google Scholar] [CrossRef]
- Djaman, K.; Allen, S.; Djaman, D.S.; Koudahe, K.; Irmak, S.; Puppala, N.; Darapuneni, M.K.; Angadi, S.V. Planting date and plant density effects on maize growth, yield and water use efficiency. Environ. Chall. 2022, 6, 100417. [Google Scholar] [CrossRef]
- Song, L.; Jin, J. Improving CERES-Maize for simulating maize growth and yield under water stress conditions. Eur. J. Agron. 2020, 117, 126072. [Google Scholar] [CrossRef]
- Zhang, W.; Xiong, Y.; Li, Y.; Qiu, Y.; Huang, G. Effects of organic amendment incorporation on maize (Zea mays L.) growth, yield and water-fertilizer productivity under arid conditions. Agric. Water Manag. 2022, 269, 107663. [Google Scholar] [CrossRef]
- Liu, J.; Shu, A.; Song, W.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S.; et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma 2021, 404, 115287. [Google Scholar] [CrossRef]
- Liu, B.; Gao, P.; Zhang, S. Photosynthesis and Fine Root Growth Dynamics of Soybean in Walnut-Soybean Agroforestry System. Comput. Intell. Neurosci. 2022, 2022, 2246824. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hao, Z.; Sha, Y.; Huang, Y.; Guo, W.; Ke, L.; Chen, F.; Yuan, L.; Mi, G. High responsiveness of maize grain yield to nitrogen supply is explained by high ear growth rate and efficient ear nitrogen allocation. Field Crops Res. 2022, 286, 108610. [Google Scholar] [CrossRef]
- Yang, F.; Shen, S.; Gao, W.; Ma, Y.; Han, B.; Ding, Y.; Wang, X.; Zhang, K. Deciphering discriminative antibiotic resistance genes and pathogens in agricultural soil following chemical and organic fertilizer. J. Environ. Manag. 2022, 322, 116110. [Google Scholar] [CrossRef] [PubMed]
- Arifah, S.M.; Sri Budiastuti, M.T.; Dewi, W.S. Supriyadi Vermicompost formulation based on soybean husk and cow manure on shallots. Int. J. Des. Nat. Ecodynamics 2021, 16, 327–333. [Google Scholar] [CrossRef]
- Boldrin, A.; Andersen, J.K.; Møller, J.; Christensen, T.H.; Favoino, E. Composting and compost utilization: Accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 2009, 27, 800–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.C.; Cao, Z.H.; Li, Z.G.; Cheung, K.C.; Wong, M.H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 2005, 125, 155–166. [Google Scholar] [CrossRef]
- Jamison, J.; Khanal, S.K.; Nguyen, N.H.; Deenik, J.L. Assessing the effects of digestates and combinations of digestates and fertilizer on yield and nutrient use of Brassica juncea (Kai choy). Agronomy 2021, 11, 509. [Google Scholar] [CrossRef]
- Galsim, F.; Golabi, M.H.; Kim, Y.S.; Iyekar, C. Comparative effects of composted organic waste and inorganic fertilizer on nitrate leachate from the farm soils of northern Guam. Int. Soil Water Conserv. Res. 2021, 9, 87–102. [Google Scholar] [CrossRef]
- Castillo-González, E.; De Medina-Salas, L.; Giraldi-Díaz, M.R.; Sánchez-Noguez, C. Vermicomposting: A valorization alternative for corn cob waste. Appl. Sci. 2021, 11, 5692. [Google Scholar] [CrossRef]
- Liew, J.X.; Loy, A.C.M.; Chin, B.L.F.; AlNouss, A.; Shahbaz, M.; Al-Ansari, T.; Govindan, R.; Chai, Y.H. Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renew. Energy 2021, 170, 948–963. [Google Scholar] [CrossRef]
- Budiastuti, M.T.S.; Thaidy, S.; Sulistyo, T.D.; Manurung, I.R.; Setyaningrum, D. The effectiveness of organic fertilizer from natural dyes waste on the growth of Indigofera tinctoria L. IOP Conf. Ser. Earth Environ. Sci. 2022, 1016, 012014. [Google Scholar] [CrossRef]
- Pandit, N.R.; Schmidt, H.P.; Mulder, J.; Hale, S.E.; Husson, O.; Cornelissen, G. Nutrient effect of various composting methods with and without biochar on soil fertility and maize growth. Arch. Agron. Soil Sci. 2020, 66, 250–265. [Google Scholar] [CrossRef] [Green Version]
- Budiastuti, M.; Pujiasmanto, B.; Sulistyo, T.D.; Ike, A.; Agroteknologi, P.S.; Pertanian, F.; Maret, U.S.; Agronomi, P.M.; Pertanian, F.; Maret, U.S. Pemanfaatan Limbah Ekstraksi Indigofera tinctoria L. sebagai Pupuk Organik pada Usaha Batik Pewarna Alami di Sukoharjo. PRIMA J. Community Empower. Serv. 2020, 4, 109–119. [Google Scholar] [CrossRef]
- Cucina, M.; De Nisi, P.; Trombino, L.; Tambone, F.; Adani, F. Degradation of bioplastics in organic waste by mesophilic anaerobic digestion, composting and soil incubation. Waste Manag. 2021, 134, 67–77. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Shang, W.; Wang, Z.; He, S.; Sun, Y.; Shi, L.; Shen, Y.; He, D. Functional Analysis of Glucose-6-Phosphate Translocator PoGPT1 in Embryogenic Callus Formation of Tree Peony. Horticulturae 2022, 8, 957. [Google Scholar] [CrossRef]
- Du, J.; Chang, Y.; Zhang, X.; Hu, C. Development of a method of analysis for profiling of the impurities in phenoxymethylpenicillin potassium based on the analytical quality by design concept combined with the degradation mechanism of penicillins. J. Pharm. Biomed. Anal. 2020, 186, 113309. [Google Scholar] [CrossRef]
- Vida, C.; de Vicente, A.; Cazorla, F.M. The role of organic amendments to soil for crop protection: Induction of suppression of soilborne pathogens. Ann. Appl. Biol. 2020, 176, 1–15. [Google Scholar] [CrossRef]
- Paterson, E.; Sim, A. Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Glob. Chang. Biol. 2013, 19, 1562–1571. [Google Scholar] [CrossRef]
- Soria, R.; Ortega, R.; Bastida, F.; Miralles, I. Role of organic amendment application on soil quality, functionality and greenhouse emission in a limestone quarry from semiarid ecosystems. Appl. Soil Ecol. 2021, 164, 103925. [Google Scholar] [CrossRef]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Shaji, H.; Chandran, V.; Mathew, L. Organic Fertilizers as a Route to Controlled Release of Nutrients; Elsevier Inc.: Amsterdam, The Netherlands, 2021; ISBN 9780128195550. [Google Scholar]
- Leno, N.; Sudharmaidevi, C.R. Physicochemical and Nutrient Release Characteristics of a Thermochemical Organic Fertilizer Produced from Degradable Solid Waste and Its Effect on Productivity of Banana. Commun. Soil Sci. Plant Anal. 2021, 52, 2562–2577. [Google Scholar] [CrossRef]
- Naumann, M.; Koch, M.; Thiel, H.; Gransee, A.; Pawelzik, E. The Importance of Nutrient Management for Potato Production Part II: Plant Nutrition and Tuber Quality. Potato Res. 2020, 63, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; McNairn, H.; Mitchell, S.; Robertson, L.D.; Davidson, A.; Ahmadian, N.; Bhattacharya, A.; Borg, E.; Conrad, C.; Dabrowska-Zielinska, K.; et al. A comparison between support vector machine and water cloud model for estimating crop leaf area index. Remote Sens. 2021, 13, 1348. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, C.; Zhang, X.; Sha, Y.; Feng, G.; Gao, Q. Quantifying the relationships of soil properties and crop growth with yield in a NPK fertilizer application maize field. Comput. Electron. Agric. 2022, 198, 107011. [Google Scholar] [CrossRef]
- Raj, R.; Walker, J.P.; Pingale, R.; Nandan, R.; Naik, B.; Jagarlapudi, A. Leaf area index estimation using top-of-canopy airborne RGB images. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102282. [Google Scholar] [CrossRef]
- Shao, G.; Han, W.; Zhang, H.; Liu, S.; Wang, Y.; Zhang, L.; Cui, X. Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices. Agric. Water Manag. 2021, 252, 106906. [Google Scholar] [CrossRef]
- Zhang, J.; Bei, S.; Li, B.; Zhang, J.; Christie, P.; Li, X. Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Appl. Soil Ecol. 2019, 136, 67–79. [Google Scholar] [CrossRef]
- Salehi, A.; Tasdighi, H.; Gholamhoseini, M. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac. J. Trop. Biomed. 2016, 6, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Sorkhi, F. Effect of Vermicompost Fertilizer on Antioxidant Enzymes and Chlorophyll Contents of Borago Officinalis Under Salinity Stress. Iran. J. Plant Physiol. 2021, 11, 3559–3598. [Google Scholar] [CrossRef]
- Zafar-ul-hye, M.; Naeem, M.; Danish, S.; Khan, M.J.; Fahad, S.; Datta, R.; Brtnicky, M.; Kintl, A.; Hussain, M.S.; El-esawi, M.A. Effect of cadmium-tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants 2020, 9, 1386. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Jiang, J.; Liu, J. Spectroscopic determination of leaf chlorophyll content and color for genetic selection on Sassafras tzumu. Plant Methods 2019, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Jama-Rodzeńska, A.; Chohura, P.; Gałka, B.; Szuba-Trznadel, A.; Falkiewicz, A.; Białkowska, M. Effect of Different Doses of Phosgreen Fertilization on Chlorophyll, K, and Ca Content in Butterhead Lettuce (Lactuca sativa L.) Grown in Peat Substrate. Agriculture 2022, 12, 788. [Google Scholar] [CrossRef]
- Ghorbanzadeh, P.; Aliniaeifard, S.; Esmaeili, M.; Mashal, M.; Azadegan, B.; Seif, M. Dependency of Growth, Water Use Efficiency, Chlorophyll Fluorescence, and Stomatal Characteristics of Lettuce Plants to Light Intensity. J. Plant Growth Regul. 2021, 40, 2191–2207. [Google Scholar] [CrossRef]
- Fang, H.; Luo, F.; Li, P.; Zhou, Q.; Zhou, X.; Wei, B.; Cheng, S.; Zhou, H.; Ji, S. Potential of jasmonic acid (JA) in accelerating postharvest yellowing of broccoli by promoting its chlorophyll degradation. Food Chem. 2020, 309, 125737. [Google Scholar] [CrossRef]
- Li, Y.; Song, H.; Zhou, L.; Xu, Z.; Zhou, G. Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field. Agric. Water Manag. 2019, 211, 190–201. [Google Scholar] [CrossRef]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic acid signaling pathway in plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Zandvakili, O.R.; Barker, A.V.; Hashemi, M.; Etemadi, F. Biomass and nutrient concentration of lettuce grown with organic fertilizers. J. Plant Nutr. 2019, 42, 444–457. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Lanzén, A.; Mijangos, I.; Garbisu, C. The application of fresh and composted horse and chicken manure affects soil quality, microbial composition and antibiotic resistance. Appl. Soil Ecol. 2019, 135, 73–84. [Google Scholar] [CrossRef]
- Dahunsi, S.O.; Oranusi, S.; Efeovbokhan, V.E.; Adesulu-Dahunsi, A.T.; Ogunwole, J.O. Crop performance and soil fertility improvement using organic fertilizer produced from valorization of Carica papaya fruit peel. Sci. Rep. 2021, 11, 4696. [Google Scholar] [CrossRef]
- Qiu, Y.; Fall, T.; Su, Z.; Bortolozo, F.; Mussoline, W.; England, G.; Dinkins, D.; Morgan, K.; Clark, M.; Liu, G. Effect of Phosphorus Fertilization on Yield of Chipping Potato Grown on High Legacy Phosphorus Soil. Agronomy 2022, 12, 812. [Google Scholar] [CrossRef]
- Nunes, R.D.S.; de Sousa, D.M.G.; Goedert, W.J.; de Oliveira, L.E.Z.; Pavinato, P.S.; Pinheiro, T.D. Distribution of Soil Phosphorus Fractions as a Function of Long-Term Soil Tillage and Phosphate Fertilization Management. Front. Earth Sci. 2020, 8, 350. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Yan, S.; Li, Y.; Zhang, P. Biochar-amended composting of lincomycin fermentation dregs promoted microbial metabolism and reduced antibiotic. Bioresour. Technol. 2022, 367, 128253. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, P.; Zhao, B.; Zhang, J.; Ren, B.; Li, Z.; Wang, Z. Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L.) and their dependency on phosphorus placement depth. Field Crops Res. 2022, 276, 108378. [Google Scholar] [CrossRef]
- Pereira, S.I.A.; Abreu, D.; Moreira, H.; Vega, A.; Castro, P.M.L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon 2020, 6, e05106. [Google Scholar] [CrossRef] [PubMed]
- Saia, S.; Aissa, E.; Luziatelli, F.; Ruzzi, M.; Colla, G.; Ficca, A.G.; Cardarelli, M.; Rouphael, Y. Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza 2020, 30, 133–147. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Khan, A.; Wei, S.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q.; Jiang, L. Organic manure coupled with inorganic fertilizer: An approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy 2019, 9, 651. [Google Scholar] [CrossRef] [Green Version]
- Nacoon, S.; Jogloy, S.; Riddech, N.; Mongkolthanaruk, W.; Kuyper, T.W.; Boonlue, S. Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Sci. Rep. 2020, 10, 4916. [Google Scholar] [CrossRef] [Green Version]
- Boring, T.J.; Thelen, K.D.; Board, J.E.; De Bruin, J.L.; Lee, C.D.; Naeve, S.L.; Ross, W.J.; Kent, W.A.; Ries, L.L. Phosphorus and potassium fertilizer application strategies in corn–soybean rotations. Agronomy 2018, 8, 195. [Google Scholar] [CrossRef]
- Chehab, H.; Tekaya, M.; Ouhibi, M.; Gouiaa, M.; Zakhama, H.; Mahjoub, Z.; Laamari, S.; Sfina, H.; Chihaoui, B.; Boujnah, D.; et al. Effects of compost, olive mill wastewater and legume cover cropson soil characteristics, tree performance and oil quality of olive trees cv. Chemlali grown under organic farming system. Sci. Hortic. (Amsterdam) 2019, 253, 163–171. [Google Scholar] [CrossRef]
- Chang, E.H.; Chung, R.S.; Tsai, Y.H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population: Original article. Soil Sci. Plant Nutr. 2007, 53, 132–140. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Baran, A. Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Appl. Soil Ecol. 2016, 105, 144–150. [Google Scholar] [CrossRef]
- Jabborova, D.; Annapurna, K.; Paul, S.; Kumar, S.; Saad, H.A.; Desouky, S.; Ibrahim, M.F.M.; Elkelish, A. Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities. J. Fungi 2021, 7, 571. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wu, S.C.; Nie, X.P.; Yediler, A.; Wong, M.H. The effects of residual tetracycline on soil enzymatic activities and plant growth. J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes 2009, 44, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.; Naqvi, S.R.; Mehran, M.T.; Khoja, A.H.; Khan Niazi, M.B.; Juchelková, D.; Atabani, A. A performance evaluation study of nano-biochar as a potential slow-release nano-fertilizer from wheat straw residue for sustainable agriculture. Chemosphere 2021, 285, 131382. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef]
- Yang, B.; Kun, D.; Han, L.; Heo, K.; Biging, G. The effects of tree characteristics on rainfall interception in urban areas. Landsc. Ecol. Eng. 2019, 15, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.; Bose, S.K.; Sangwan, N.S. Comparative investigation of therapeutic plant Withania somnifera for yield, productivity, withanolide content, and expression of pathway genes during contrasting seasons. Ind. Crops Prod. 2020, 154, 112508. [Google Scholar] [CrossRef]
- He, Y.; Xie, K.; Xu, P.; Huang, X.; Gu, W.; Zhang, F.; Tang, S. Evolution of microbial community diversity and enzymatic activity during composting. Res. Microbiol. 2013, 164, 189–198. [Google Scholar] [CrossRef]
Parameter | Unit | Test Result | Standard * | Information |
---|---|---|---|---|
Water content | % | 20.6 | 15–25 | Meets the standards |
pH | 7.34 | 4–9 | Meets the standards | |
Organic C | % | 62.21 | Minimum 1515 | Meets the standards |
Organic ingredients | % | 85.71 | - | Meets the standards |
Total nitrogen | % | 1.44 | Macro nutrients (N + P2O5 + K2O) minimum 4% | Meets the standards |
Total phosphate | % | 1.43 | Meets the standards | |
Total potassium | % | 2.17 | Meets the standards | |
Nitrogen available | % | 2.10 | - | Meets the standards |
Phosphate available | % | 0.98 | - | Meets the standards |
Potassium available | % | 1.75 | - | Meets the standards |
Cation exchange Capacity | (cmol/kg) | 65 | - | Meets the standards |
Treatment | Plant Height (cm) | Number of Leaves (Strand) | Leaf Area Index (cm2) | Root Length (cm) |
---|---|---|---|---|
Chemical fertilizer | 122.67 | 13.00 b | 3.14 ab | 70.93 a |
Organic corn cob fertilizer at dose of 2.5 tons/ha | 118.43 | 8.33 a | 2.64 a | 90.67 ab |
Organic corn cob fertilizer at dose of 5 tons/ha | 108.166 | 8.67 a | 2.94 ab | 95.40 ab |
Organic corn cob fertilizer at dose of 7.5 tons/ha | 121.67 | 8.33 a | 2.91 ab | 87.00 ab |
Organic corn cob fertilizer at dose of 10 tons/ha | 116.53 | 9.57 a | 3.01 ab | 96.90 ab |
Organic corn cob fertilizer at dose of 12.5 tons/ha | 113.67 | 9.33 a | 3.76 b | 111.06 b |
Treatments | Chlorophyll a (mg.g−1) | Chlorophyll b (mg.g−1) | Total Chlorophyll (mg.g−1) |
---|---|---|---|
Chemical fertilizer | 0.4307 a | 1.117 a | 1.5763 b |
Organic corn cob fertilizer at dose of 2.5 tons/ha | 0.4406 ab | 1.0841 a | 1.5339 ab |
Organic corn cob fertilizer at dose of 5 tons/ha | 0.4477 b | 1.1191 a | 1.5746 b |
Organic corn cob fertilizer at dose of 7.5 tons/ha | 0.4499 b | 1.1974 ab | 1.5394 ab |
Organic corn cob fertilizer at dose of 10 tons/ha | 0.4535 b | 1.2265 ab | 1.5228 a |
Organic corn cob fertilizer at dose of 12.5 tons/ha | 0.4685 c | 1.3889 b | 1.5474 ab |
Treatments | Plant Fresh Weight (g) | Plant Biomass (g) | Weight of 100 Seeds (g) | Cob Diameter (mm) | Cob Weight with Cornhusk (g) |
---|---|---|---|---|---|
Chemical fertilizer | 127.91 | 26.62 | 27.97 c | 44.53 ab | 174.55 |
Organic corn cob fertilizer at dose of 2.5 tons/ha | 91.63 | 27.78 | 19.02 a | 42.33 ab | 92.93 |
Organic corn cob fertilizer at dose of 5 tons/ha | 95.21 | 25.92 | 19.23 a | 32.23 a | 94.98 |
Organic corn cob fertilizer at dose of 7.5 tons/ha | 141.86 | 41.43 | 21.77 ab | 38.80 ab | 91.38 |
Organic corn cob fertilizer at dose of 10 tons/ha | 95.13 | 27.20 | 25.22 bc | 37.40 ab | 93.32 |
Organic corn cob fertilizer at dose of 12.5 tons/ha | 112.28 | 31.91 | 26.89 c | 47.40 b | 162.92 |
Treatments | Phosphate Uptake (g.plant−1) | Potassium Uptake (g.plant−1) |
---|---|---|
Chemical fertilizer | 0.8528 a | 3.5354 |
Organic corn cob fertilizer at dose of 2.5 tons/ha | 1.1456 ab | 4.8206 |
Organic corn cob fertilizer at dose of 5 tons/ha | 1.0191 ab | 3.4415 |
Organic corn cob fertilizer at dose of 7.5 tons/ha | 1.0706 ab | 4.6906 |
Organic corn cob fertilizer at dose of 10 tons/ha | 1.0411 ab | 4.5381 |
Organic corn cob fertilizer at dose of 12.5 tons/ha | 1.4339 b | 5.7712 |
Plant Biomass | Root Length | Weight of 100 Seeds | Phosphate Uptake | Potassium Uptake | Chlorophyll a | Chlorophyll b | |
---|---|---|---|---|---|---|---|
Plant biomass | 1 | 0.582 * | 0.403 | 0.725 ** | 0.720 ** | 0.100 | 0.084 |
Root length | 0.582 * | 1 | 0.170 | 0.658 ** | 0.579 ** | 0.075 | 0.065 |
Weight of 100 seeds | 0.403 | 0.170 | 1 | −0.029 | −0.106 | 0.050 | 0.046 |
Phosphate uptake | 0.725 ** | 0.658 ** | −0.029 | 1 | 0.832 ** | 0.113 | 0.109 |
Potassium uptake | 0.720 ** | 0.579 ** | −0.106 | 0.832 ** | 1 | 0.112 | 0.100 |
Chlorophyll a | 0.100 | 0.075 | 0.050 | 0.113 | 0.112 | 1 | 0.724 ** |
Chlorophyll b | 0.084 | 0.065 | 0.046 | 0.109 | 0.100 | 0.724 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budiastuti, M.T.S.; Purnomo, D.; Pujiasmanto, B.; Setyaningrum, D. Response of Maize Yield and Nutrient Uptake to Indigenous Organic Fertilizer from Corn Cobs. Agriculture 2023, 13, 309. https://doi.org/10.3390/agriculture13020309
Budiastuti MTS, Purnomo D, Pujiasmanto B, Setyaningrum D. Response of Maize Yield and Nutrient Uptake to Indigenous Organic Fertilizer from Corn Cobs. Agriculture. 2023; 13(2):309. https://doi.org/10.3390/agriculture13020309
Chicago/Turabian StyleBudiastuti, Maria Theresia Sri, Djoko Purnomo, Bambang Pujiasmanto, and Desy Setyaningrum. 2023. "Response of Maize Yield and Nutrient Uptake to Indigenous Organic Fertilizer from Corn Cobs" Agriculture 13, no. 2: 309. https://doi.org/10.3390/agriculture13020309
APA StyleBudiastuti, M. T. S., Purnomo, D., Pujiasmanto, B., & Setyaningrum, D. (2023). Response of Maize Yield and Nutrient Uptake to Indigenous Organic Fertilizer from Corn Cobs. Agriculture, 13(2), 309. https://doi.org/10.3390/agriculture13020309