An ANSYS/LS-DYNA Simulation and Experimental Study of Sectional Hob Type Laver Harvesting Device
Abstract
:1. Introduction
2. Structure and Working Principle of the Harvester
2.1. Physical Property and Harvesting Requirements of Laver
2.2. Structure and Principle of the Harvester
3. Theoretical Analysis of the Harvesting Process
3.1. Knife Movement Trajectory Analysis
3.2. Force Analysis in the Cutting Process
4. Laver Cutting Simulation Study
4.1. Model Establishment and Simulation Results
4.2. Response Surface Test Design
4.3. Test Results and Analysis
4.4. Parameter Optimization
5. Bench Test
5.1. Test Materials and Methods
5.1.1. Harvesting Bench Test
5.1.2. Cutting Fracture Detection Test
5.2. Test Evaluation Index
5.3. Test Results and Analysis
5.3.1. Influence of the Rotation Speed on Harvesting Effects
5.3.2. Influence of the Traveling Speed on Harvesting Effects
5.3.3. Influence of Speed Ratio on the Proportion of Cutting and Pulling
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J.Y.; Yan, X.H.; Ding, L.P. Color Atlas of Chinese Laver, 1st ed.; China Agriculture Press: Beijing, China, 2016; pp. 28–33. [Google Scholar]
- Zhou, W.; Hu, C.M.; Lu, Q.Q. Germplasm Innovation and Application of Pyropia yezoensis. J. Guangxi Acad. Sci. 2021, 37, 46–52. [Google Scholar]
- Agriculture and Rural Fisheries Administration. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2021; pp. 23–50. [Google Scholar]
- Zhang, L.J.; Li, Y.C. ZS160-1.8 type laver harvester. Agric. Food Mach. 1994, 2, 33–34. [Google Scholar]
- Huang, X.P. Conveniently Pull Laver Harvester of Planting Frame. C.N. Patent 2,052,841,88U, 8 June 2016. [Google Scholar]
- Cai, Q.W. Seaweed Gathters in Clear Head All-in-One Machine. C.N. Patent 2,088,912,16U, 24 May 2019. [Google Scholar]
- Wang, Z.C.; Liu, T.Y.; Hu, Y.Z. Study on the Quality Status of Porphyra yezoensis in Jiangsu Province. J. Anhui Agric. Sci. 2018, 46, 207–209. [Google Scholar]
- Chen, X.Z.; Qin, X.; Luo, Q.J. Harvesting trials of cultivated Porphyra haitanensis. Sci. Fish Farming 2021, 6, 61–62. [Google Scholar]
- Chen, G.F.; Rao, D.Z. Application of mechanized harvesting technology for Porphyra haitanensis. Aquaculture 2013, 6, 37–38. [Google Scholar]
- Yada, S.; Chen, J.K.; Toda, M. Analysis of cutting mechanism of the roll type nori harvester. La Mer 1996, 34, 25–32. [Google Scholar]
- Kim, O.S.; Min, E.B.; Hwang, D.J. A study on the harvesting process and operating behavior of working ships for farming laver. J. Korean Soc. Fish. Ocean Technol. 2020, 56, 223–229. [Google Scholar] [CrossRef]
- Wang, X.N. Current status of research on Laver. China Food Saf. Mag. 2020, 14, 33. [Google Scholar]
- He, P.M.; Zhang, Z.Y.; Zhang, X.C. Seaweed Cultivation, 1st ed.; Science Press: Beijing, China, 2018; pp. 174–295. [Google Scholar]
- Wang, Y.D.; Zhu, Y.X. Study on Half-floating Cultivation Laver Harvester Solution for Beaches. Fish. Mod. 2004, 5, 29–30. [Google Scholar]
- Xu, P.; Zhang, X.C.; Wang, S.J. Reproduction and Development of Major Economic Marine Algae in China, 1st ed.; China Agriculture Press: Beijing, China, 2013; pp. 101–104. [Google Scholar]
- Yada, S.; Chen, J.K.; Toda, M. A study on cutting mechanism of the suction type nori harvester. La Mer 1995, 33, 177–184. [Google Scholar]
- Cao, W.B.; Sun, W.L.; Niu, C. Combed Safflower Picking Device Based on ANSYS/LS-DYNA. Trans. Chin. Soc. Agric. Mach. 2018, 49, 123–131. [Google Scholar]
- Bílek, O.; Kovařík, M. Stress analysis of the rotating circular saw blade. Solid State Phenom. 2017, 261, 259–266. [Google Scholar]
- Meng, Y.M.; Wei, J.D.; Wei, J. An ANSYS/LS-DYNA simulation and experimental study of circular saw blade cutting system of mulberry cutting machine. Comput. Electron. Agric. 2019, 157, 38–48. [Google Scholar] [CrossRef]
- Zhao, K.J. Research on Dynan1ics Characteristics of Rigid-F1exible Coupling of Camellia Oleifera Picking Mechanism-Fruit Tree. Master’s Thesis, Central South University of Forestry and Technology, Hunan, China, 2020. [Google Scholar]
- Dun, G.Q.; Yang, Y.Z.; Li, H.S. Working parameters optimization of soybean serration rotarycutter by ANSYS / LS-DYNA. J. Henan Agric. Univ. 2019, 53, 739–744. [Google Scholar]
- Wu, K.; Song, Y.P. Research progress analysis of crop stalk cutting theory and method. Trans. Chin. Soc. Agric. Mach. 2022, 53, 1–20. [Google Scholar]
- Zhejiang Marine Fisheries Research Institute. The Culture of Laver in Zhejiang, 1st ed.; Zhejiang Publishing United Group: Zhejiang, China, 1973; pp. 56–63. [Google Scholar]
- Zhao, C.N.; Wu, Y.L.; Cai, Z.Q. Experimental Study on Deep-water Rollover Type Cultivation of Porphyra yezoensis. J. Anhui Agric. Sci. 2020, 48, 107–109. [Google Scholar]
- Zhang, Y.J. Laver Culture, 1st ed.; Agriculture Press: Beijing, China, 1988; pp. 143–149. [Google Scholar]
- Zhang, X.W.; Chen, X.Z.; Chu, M.B. The technology of stem culture of Porphyra haitanensis. Sci. Fish Farming 2021, 3, 63–64. [Google Scholar]
- Yu, J. Laver harvester made in Daishan. Fish. Mod. 1982, 1, 61. [Google Scholar]
- Zhang, K.F.; Liu, Y.F. A comparative trial of two cultivation patterns of Porphyra haitanensis in Weitou Bay. J. Aquac. 2020, 10, 35–37. [Google Scholar]
- Lu, W.; Li, X.C.; Zhang, G.C.; Tang, J.H.; Ni, S.; Zhang, H.B.; Zhang, Q.; Zhai, Y.L.; Mu, G. Research on biomechanical properties of laver (Porphyra yezoensis Ueda) for mechanical harvesting and postharvest transportation. AgriEngineering 2022, 41, 48–66. [Google Scholar] [CrossRef]
- Li, B.F. Agromechanics, 1st ed.; China Agricultural Press: Beijing, China, 2018. [Google Scholar]
- Li, X.D. Research on Stalk Cutting Device of Corn and Stalk Combine Harvester. Master’s Thesis, Chinese Academy of Agricultural Mechanization Sciences Group Co., Ltd., Beijing, China, 2015. [Google Scholar]
- Zhang, X.G.; Du, L.X.; Jia, S.Z. Study on the control and analysis of Ips Subelongatus. Xiandai Nongye Keji 2016, 11, 157+164. [Google Scholar]
Parameters | Values |
---|---|
Frond overall length (mm) | 78.3~236.65 |
Frond head width (mm) | 4.2~14.9 |
Frond middle width (mm) | 10~21.4 |
Frond root width (mm) | 8.8~19.6 |
Frond head thickness (mm) | 0.013~0.028 |
Frond middle thickness (mm) | 0.02~0.035 |
Frond root thickness (mm) | 0.016~0.033 |
Density (wet) (g∙cm−3) | 0.208~0.596 |
Density (dry) (g∙cm−3) | 0.571~1.684 |
Parameter | Laver [29] | Cutter |
---|---|---|
Poisson’s ratio | 0.33 | 0.33 |
Shear modulus (Pa) | 3.26 × 107 | - |
Elastic modulus (Pa) | 2.54 × 106 | 2.00 × 1011 |
Tensile strength (MPa) | 0.95 | - |
Shear strength (MPa) | 2.33 | - |
Density (kg·m−3) | 0.96 | 7850 |
Level | Factor | |||
---|---|---|---|---|
Inclination Angle A (°) | Extension Length B (mm) | Traveling Speed C (m∙s−1) | Rotation Speed D (r∙min−1) | |
−1 | 100 | 35 | 0.51 | 700 |
0 | 110 | 40 | 0.77 | 900 |
1 | 120 | 45 | 1.03 | 1100 |
Test No. | Inclination Angle A (°) | Extension Length B (mm) | Traveling Speed C (m∙s−1) | Rotation Speed D (r∙min−1) | Cutting Force (N) |
---|---|---|---|---|---|
1 | 110.00 | 40.00 | 0.77 | 900.00 | 4.96 |
2 | 110.00 | 35.00 | 0.51 | 900.00 | 4.66 |
3 | 110.00 | 40.00 | 0.77 | 900.00 | 5.41 |
4 | 100.00 | 45.00 | 0.77 | 900.00 | 5.04 |
5 | 110.00 | 45.00 | 0.51 | 900.00 | 4.42 |
6 | 120.00 | 45.00 | 0.77 | 900.00 | 6.64 |
7 | 100.00 | 40.00 | 0.77 | 1100.00 | 6.00 |
8 | 100.00 | 40.00 | 0.51 | 900.00 | 4.24 |
9 | 110.00 | 45.00 | 0.77 | 1100.00 | 5.48 |
10 | 110.00 | 35.00 | 0.77 | 1100.00 | 5.88 |
11 | 110.00 | 40.00 | 0.77 | 900.00 | 5.16 |
12 | 120.00 | 40.00 | 0.77 | 1100.00 | 8.13 |
13 | 110.00 | 45.00 | 1.03 | 900.00 | 6.14 |
14 | 120.00 | 40.00 | 0.77 | 700.00 | 4.17 |
15 | 110.00 | 40.00 | 0.77 | 900.00 | 5.00 |
16 | 110.00 | 35.00 | 1.03 | 900.00 | 3.31 |
17 | 110.00 | 40.00 | 1.03 | 700.00 | 2.79 |
18 | 120.00 | 40.00 | 1.03 | 900.00 | 3.89 |
19 | 110.00 | 35.00 | 0.77 | 700.00 | 3.19 |
20 | 120.00 | 40.00 | 0.51 | 900.00 | 4.90 |
21 | 110.00 | 40.00 | 0.51 | 700.00 | 3.16 |
22 | 100.00 | 40.00 | 1.03 | 900.00 | 4.34 |
23 | 110.00 | 40.00 | 0.77 | 900.00 | 4.21 |
24 | 100.00 | 40.00 | 0.77 | 700.00 | 3.34 |
25 | 120.00 | 35.00 | 0.77 | 900.00 | 3.77 |
26 | 100.00 | 35.00 | 0.77 | 900.00 | 5.43 |
27 | 110.00 | 45.00 | 0.77 | 700.00 | 3.63 |
28 | 110.00 | 40.00 | 1.03 | 1100.00 | 5.83 |
29 | 110.00 | 40.00 | 0.51 | 1100.00 | 5.45 |
Index | Source | Squares | df | Mean Square | F | p |
---|---|---|---|---|---|---|
Y | Model | 34.86 | 14 | 2.49 | 6.52 | 0.0006 ** |
A | 0.81 | 1 | 0.81 | 2.11 | 0.1684 | |
B | 2.18 | 1 | 2.18 | 5.69 | 0.0317 * | |
C | 0.023 | 1 | 0.023 | 0.061 | 0.8081 | |
D | 22.66 | 1 | 22.66 | 59.30 | <0.0001 ** | |
AB | 2.66 | 1 | 2.66 | 6.95 | 0.0195 * | |
AC | 0.31 | 1 | 0.31 | 0.81 | 0.3845 | |
AD | 0.42 | 1 | 0.42 | 1.11 | 0.3108 | |
BC | 2.36 | 1 | 2.36 | 6.17 | 0.0263 * | |
BD | 0.18 | 1 | 0.18 | 0.46 | 0.5079 | |
CD | 0.14 | 1 | 0.14 | 0.37 | 0.5538 | |
A2 | 0.47 | 1 | 0.47 | 1.23 | 0.2858 | |
B2 | 0.002 | 1 | 0.002 | 0.006 | 0.9414 | |
C2 | 2.15 | 1 | 2.15 | 5.63 | 0.0326 * | |
D2 | 0.048 | 1 | 0.048 | 0.12 | 0.7294 | |
Residual error | 5.35 | 14 | 0.38 | |||
Lack of fit | 4.54 | 10 | 0.45 | 2.26 | 0.2250 | |
Error | 0.81 | 4 | 0.20 | Not significant | ||
Sum | 40.21 | 28 |
Test No. | Rotation Speed (r∙min−1) | Traveling Speed (m∙s−1) | Speed Ratio (λ) |
---|---|---|---|
1 | 800 | 0.51 | λ1 |
2 | 900 | λ2 | |
3 | 1000 | λ3 | |
4 | 900 | 0.77 | λ4 |
5 | 1.03 | λ5 | |
6 | 800 | 1.03 | λ6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Li, X.; Zhang, G.; Lu, W.; Ni, S.; Sun, Z.; Li, H.; Zhao, C.; Zhang, H.; Zhang, Q.; et al. An ANSYS/LS-DYNA Simulation and Experimental Study of Sectional Hob Type Laver Harvesting Device. Agriculture 2023, 13, 361. https://doi.org/10.3390/agriculture13020361
Tang J, Li X, Zhang G, Lu W, Ni S, Sun Z, Li H, Zhao C, Zhang H, Zhang Q, et al. An ANSYS/LS-DYNA Simulation and Experimental Study of Sectional Hob Type Laver Harvesting Device. Agriculture. 2023; 13(2):361. https://doi.org/10.3390/agriculture13020361
Chicago/Turabian StyleTang, Jiahong, Xiuchen Li, Guochen Zhang, Wei Lu, Shang Ni, Zhenyin Sun, Haidong Li, Cheng Zhao, Hanbing Zhang, Qian Zhang, and et al. 2023. "An ANSYS/LS-DYNA Simulation and Experimental Study of Sectional Hob Type Laver Harvesting Device" Agriculture 13, no. 2: 361. https://doi.org/10.3390/agriculture13020361
APA StyleTang, J., Li, X., Zhang, G., Lu, W., Ni, S., Sun, Z., Li, H., Zhao, C., Zhang, H., Zhang, Q., & Mu, G. (2023). An ANSYS/LS-DYNA Simulation and Experimental Study of Sectional Hob Type Laver Harvesting Device. Agriculture, 13(2), 361. https://doi.org/10.3390/agriculture13020361