Identification of Constructive Species and Degraded Plant Species in the Temperate Typical Grassland of Inner Mongolia Based on Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Data Acquisition
2.2.2. Data Preprocessing
2.3. Methodology
2.3.1. Feature Extraction of Ground-Measured Data
2.3.2. Establishment of Grassland Species Recognition Models
3. Results
3.1. Ground-Measured Data Feature Analysis
3.1.1. Grass Species Spectra Analysis
3.1.2. Spectral Derivative Feature Analysis
3.1.3. Continuum Removal Analysis
3.1.4. Spectral Characteristic Parameters
3.1.5. Vegetation Index
3.2. Grassland Species Identification Based on Ground-Measured Spectral Data
3.2.1. Feature Extraction Results and Analysis
3.2.2. Identify Results and Accuracy Analysis
4. Discussion
5. Conclusions
- In the recognition results based on ground-measured spectral data, for the spectral characteristic parameters + vegetation index dataset, the highest OA of the improved CNN model was 90.91% and its recognition ability for each grass species was more balanced, with an average accuracy of 91.23%; for the FD dataset, the OA of the improved CNN model was the highest at 97.37%, and the accuracy of its recognition of SG, AF, AL, CL and AT was 98.7%; for the CR dataset, the OA of the improved CNN model increased to 98.70%, and the accuracies of all grass species except CS reached 98.7%.
- For each input dataset of the ground-measured spectral data, the OA of the RF model and SVM model is low, and the recognition result of the CNN model is generally worse than that of the BP neural network model, but its recognition accuracy for AL is higher, while the BP neural network model is better for the recognition of CL. The OA and AA of the improved CNN model are the highest, and the recognition accuracy is the best overall.
- Neural networks have an important position in the field of spectral analysis due to their powerful self-learning, self-organizing and self-adaptive capabilities and massive parallel processing abilities, and they are important classification methods for typical grassland plant species recognition based on ground truth spectral data. The improved CNN model in this study showed more significant grass species recognition performance and has certain recognition advantages.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manlike, A.; Sawut, R.; Zheng, F.; Li, X.; Abudukelimu, R. Monitoring and Analysing Grassland Ecosystem Service Values in Response to Grassland Area Changes—An Example from Northwest China. Rangel. J. 2020, 42, 179. [Google Scholar]
- Kandwal, R.; Jeganathan, C.; Tolpekin, V.; Kushwaha, S.P.S. Discriminating the Invasive Species, ‘Lantana’ Using Vegetation Indices. J. Indian Soc. Remote Sens. 2009, 37, 275–290. [Google Scholar] [CrossRef]
- Carlier, L.; Rotar, I.; Vlahova, M.; Vidican, R. Importance and Functions of Grasslands. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 25–30. [Google Scholar]
- Thornton, P.K.; Gerber, P.J. Climate Change and the Growth of the Livestock Sector in Developing Countries. Mitig. Adapt. Strat. Glob. Change 2010, 15, 169–184. [Google Scholar]
- Zhang, R.; Liang, T.; Guo, J.; Xie, H.; Feng, Q.; Aimaiti, Y. Grassland Dynamics in Response to Climate Change and Human Activities in Xinjiang from 2000 to 2014. Sci. Rep. 2018, 8, 2888. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.; Pei, J.; Cheng, H.; Zhang, X.; Huang, F.; Li, F.; Ye, J. Impacts of Climate Change and Human Activities on Grassland Vegetation Variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; He, C.; Tan, X.; Han, Z. Soil Water Content and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral Ecotone in Northwest China. Sustainability 2019, 11, 4188. [Google Scholar]
- Mansour, K.; Mutanga, O.; Adam, E.; Abdel-Rahman, E.M. Multispectral Remote Sensing for Mapping Grassland Degradation Using the Key Indicators of Grass Species and Edaphic Factors. Geocarto Int. 2016, 31, 477–491. [Google Scholar] [CrossRef]
- Marcinkowska-Ochtyra, A.; Jarocińska, A.; Bzdęga, K.; Tokarska-Guzik, B. Classification of Expansive Grassland Species in Different Growth Stages Based on Hyperspectral and LiDAR Data. Remote Sens. 2018, 10, 2019. [Google Scholar]
- Kutser, T.; Jupp, D.L.B. On the Possibility of Mapping Living Corals to the Species Level Based on Their Optical Signatures. Estuar. Coastal Shelf Sci. 2006, 69, 607–614. [Google Scholar] [CrossRef]
- Zeng, S.; Kuang, R.; Xiao, Y.; Zhao, Z. Measured Hyperspectral Data Classification of Poyang Lake Wetland Vegetation. Remote Sens. Inf. 2017, 32, 75–81. [Google Scholar]
- Senay, G.B.; Elliott, R.L. Capability of AVHRR Data in Discriminating Rangeland Cover Mixtures. Int. J. Remote Sens. 2002, 23, 299–312. [Google Scholar]
- Rajapakse, S.S.; Khanna, S.; Andrew, M.E.; Ustin, S.L.; Lay, M. Identifying and Classifying Water Hyacinth (Eichhornia Crassipes) Using the Hymap Sensor. In Proceedings of the Remote Sensing and Modeling of Ecosystems for Sustainability III, San Diego, CA, USA, 31 August 2006. [Google Scholar]
- Elhadi, M.I.A.; Mutanga, O.; Rugege, D.; Ismail, R. Field Spectrometry of Papyrus Vegetation (Cyperus papyrus L.) in Swamp Wetlands of St Lucia, South Africa. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12 July 2009. [Google Scholar]
- Haq, M.A. CNN Based Automated Weed Detection System Using UAV Imagery. Comput. Syst. Sci. Eng. 2022, 42, 837–849. [Google Scholar]
- Wang, L.; Sousa, W.P. Distinguishing Mangrove Species with Laboratory Measurements of Hyperspectral Leaf Reflectance. Int. J. Remote Sens. 2009, 30, 1267–1281. [Google Scholar]
- Apan, A.; Phinn, S.; Maraseni, T. Discrimination of Remnant Tree Species and Regeneration Stages in Queensland, Australia Using Hyperspectral Imagery. In Proceedings of the 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, France, 26 August 2009. [Google Scholar]
- Li, X.; Wang, H.; Li, X.; Tang, Z.; Liu, H. Identifying Degraded Grass Species in Inner Mongolia Based on Measured Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 12, 5061–5075. [Google Scholar]
- Zomer, R.J.; Trabucco, A.; Ustin, S.L. Building Spectral Libraries for Wetlands Land Cover Classification and Hyperspectral Remote Sensing. J. Environ. Manag. 2009, 90, 2170–2177. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Mu, S.; Yang, Q.; Hu, X.; Jin, G.; Zhao, W. Analysis of Hyperspectral Reflectance Characteristics of Three Main Grassland Types in Xinjiang. Acta. Pratacult. Sin. 2012, 21, 258–266. [Google Scholar]
- Yamano, H.; Chen, J.; Tamura, M. Hyperspectral Identification of Grassland Vegetation in Xilinhot, Inner Mongolia, China. Int. J. Remote Sens. 2003, 24, 3171–3178. [Google Scholar]
- An, R.; Jiang, D.; Li, X.; Quaye-Ballard, J.A. Using Hyperspectral Data to Determine Spectral Characteristics of Grassland Vegetation in Central and Eastern Parts of Three-River Source. Remote Sens. Technol. Appl. 2014, 29, 202–211. [Google Scholar]
- He, L.; An, S.; Jin, G.; Fan, Y.; Zhang, T. Analysis on High Spectral Characteristics of Degraded Seriphidium Transiliense Desert Grassland. Acta. Agrestia Sin. 2014, 22, 271–276. [Google Scholar]
- Zhang, F.; Huang, M.; Zhang, J.; Bao, G.; Bao, Y. Identification of Grass Species Based on Hyperspectrum-a Case Study of Xilin Gol Grassland. Bull. Surv. Map. 2014, 7, 66–69. [Google Scholar]
- Li, Y.; Wang, J.; Gu, B.; Meng, G. Artificial Neural Network and Its Application to Analytical Chemistry. Spectrosc. Spectr. Anal. 1999, 19, 844–849. [Google Scholar]
- Zhang, F.; Yin, Q.; Kuang, D.; Li, F.; Zhou, B. Optimal Temporal Selection for Grassland Spectrum Classification. J. Remote Sens. 2006, 10, 482–488. [Google Scholar]
- Zhang, X.S. Vegetation Map of The People’s Republic of China (1:1 000 000 000); Geology Press: Beijing, China, 2007. [Google Scholar]
- Rock, B.N.; Williams, D.L.; Moss, D.M.; Lauten, G.N.; Kim, M. High-Spectral Resolution Field and Laboratory Optical Reflectance Measurements of Red Spruce and Eastern Hemlock Needles and Branches. Remote Sens. Environ. 1994, 47, 176–189. [Google Scholar] [CrossRef]
- Shafri, H.Z.M.; Anuar, M.I.; Seman, I.A.; Noor, N.M. Spectral Discrimination of Healthy and Ganoderma-Infected Oil Palms from Hyperspectral Data. Int. J. Remote Sens. 2011, 32, 7111–7129. [Google Scholar]
- Zhang, C.; Cai, H.J.; Li, Z.J. Estimation of Fraction of Absorbed Photosynthetically Active Radiation for Winter Wheat Based on Hyperspectral Characteristic Parameters. Spectrosc. Spect. Anal. 2015, 35, 2644–2649. [Google Scholar]
- Zheng, J.J.; Li, F.; Du, X. Using Red Edge Position Shift to Monitor Grassland Grazing Intensity in Inner Mongolia. J. Indian Soc. Remote 2017, 46, 81–88. [Google Scholar]
- Blackburn, G.A. Hyperspectral Remote Sensing of Plant Pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Barber, J.; Darch, J.P.; Ferns, D.C.; Barringer, A.R. Approaches to Detection of Geochemical Stress in Vegetation. Adv. Space Res. 1983, 3, 175–179. [Google Scholar]
- Rouse, J.W.J.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1, Greenbelt, MD, USA, 10–14 December 1973. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar]
- Richardson, A.J.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Qi, A.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar]
- Roujean, J.L.; Breon, F.M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar]
- Singh, L.; Mutanga, O.; Mafongoya, P.; Peerbhay, K. Remote Sensing of Key Grassland Nutrients Using Hyperspectral Techniques in Kwazulu-Natal, South Africa. J. Appl. Remote Sens. 2017, 11, 036005. [Google Scholar] [CrossRef]
- Mack, B.; Waske, B. In-Depth Comparisons of Maxent, Biased SVM and One-Class SVM for One-Class Classification of Remote Sensing Data. Remote Sens. Lett. 2017, 8, 290–299. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Long, H.; Qiao, Y.; Li, Y. Development and Application of a Simulation Model for Changes in Land-Use Patterns under Drought Scenarios. Comput. Geosci. 2011, 37, 831–843. [Google Scholar]
- Jia, K.; Li, Q.; Tian, Y.; Wu, B. A Review of Classification Methods of Remote Sensing Imagery. Spectrosc. Spectral Anal. 2011, 31, 2618–2623. [Google Scholar]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar]
- Yu, D.; Wang, H.; Chen, P.; Wei, Z. Mixed Pooling for Convolutional Neural Networks. In International Conference on Rough Sets and Knowledge Technology; Springer: Cham, Swizterland, 2014; Volume 8818, pp. 364–375. [Google Scholar]
Parameter Type | Specific Parameters | References |
---|---|---|
Three-edge | Blue edge amplitude (Ebm) | [30] |
Yellow edge amplitude (Eym) | [30] | |
Red edge amplitude (Erm) | [31] | |
Blue edge position (Eb) | [30] | |
Yellow edge position (Ey) | [30] | |
Red edge position (Er) | [31] | |
Peak-valley | Green peak amplitude (Pgm) | [32] |
Red valley amplitude (Vrm) | [32] | |
Green peak position (Pg) | [30] | |
Red valley position (Vr) | [30] | |
Three-edge area | Blue edge area (Eba) | [30] |
Yellow edge area (Eya) | [30] | |
Red edge area (Era) | [31] | |
Spectral characteristic index | [33] | |
[33] | ||
[33] | ||
[33] | ||
[33] | ||
[33] | ||
[33] |
Type | Parameters | SG | LC | AF | AL | CL | AT | CS |
---|---|---|---|---|---|---|---|---|
Three-edge | Ebm | 0.001284 | 0.001131 | 0.001473 | 0.001167 | 0.00146 | 0.001981 | 0.001805 |
Eym | 0.000079 | 0.000010 | 0.000018 | 0.000101 | 0.000038 | 0.000022 | 0.000006 | |
Erm | 0.005056 | 0.005919 | 0.006718 | 0.004361 | 0.008139 | 0.008492 | 0.007807 | |
Eb | 522 | 522 | 522 | 518 | 522 | 525 | 522 | |
Ey | 599 | 599 | 630 | 565 | 630 | 628 | 598 | |
Er | 719 | 719 | 718 | 717 | 719 | 719 | 716 | |
Peak-valley | Pgm | 0.065778 | 0.067993 | 0.087709 | 0.095160 | 0.073829 | 0.082552 | 0.078074 |
Vrm | 0.050950 | 0.049186 | 0.061151 | 0.084551 | 0.048475 | 0.048982 | 0.040826 | |
Pg | 556 | 555 | 554 | 554 | 554 | 554 | 555 | |
Vr | 670 | 672 | 672 | 670 | 672 | 672 | 676 | |
Three-edge Area | Eba | 0.023379 | 0.019810 | 0.025351 | 0.020357 | 0.025803 | 0.033659 | 0.031166 |
Eya | 0.011409 | 0.013992 | 0.019013 | 0.008573 | 0.017555 | 0.024316 | 0.025796 | |
Era | 0.180616 | 0.208623 | 0.213602 | 0.145875 | 0.258844 | 0.268309 | 0.258625 | |
Spectral characteristic index | (Er − Eb)/(Er + Eb) | 0.770788 | 0.826557 | 0.787816 | 0.755077 | 0.818702 | 0.777069 | 0.784907 |
(Er − Ey)/(Er + Ey) | 0.881172 | 0.874294 | 0.836528 | 0.888985 | 0.872973 | 0.833808 | 0.818607 | |
Pgm/Vrm | 1.291031 | 1.382380 | 1.434315 | 1.125472 | 1.523025 | 1.685335 | 1.912374 | |
Pgm − Vrm | 0.014828 | 0.018808 | 0.026559 | 0.010609 | 0.025354 | 0.033569 | 0.037248 | |
(Pgm − Vrm)/ (Pgm + Vrm) | 0.127031 | 0.160503 | 0.178414 | 0.059033 | 0.207301 | 0.255214 | 0.313275 | |
Era/Eba | 7.725566 | 10.531196 | 8.425782 | 7.165840 | 10.031547 | 7.971390 | 8.298306 | |
Era/Eya | 15.831011 | 14.910163 | 11.234524 | 17.015630 | 14.744745 | 11.034257 | 10.025779 |
Grass Species | NDVI | RVI | DVI | MSAVI | TVI | RDVI |
---|---|---|---|---|---|---|
SG | 0.654061 | 4.781366 | 0.203528 | 0.349276 | 1.074272 | 1.768419 |
LC | 0.688205 | 5.414475 | 0.231870 | 0.395119 | 1.090048 | 1.930355 |
AF | 0.636240 | 4.498125 | 0.231679 | 0.381616 | 1.065945 | 1.691711 |
AL | 0.482362 | 2.863703 | 0.161967 | 0.262173 | 0.991142 | 1.175305 |
CL | 0.723546 | 6.234470 | 0.281325 | 0.468066 | 1.106140 | 2.123894 |
AT | 0.722116 | 6.197236 | 0.286469 | 0.473712 | 1.105493 | 2.115448 |
CS | 0.738018 | 6.634123 | 0.275216 | 0.465386 | 1.112663 | 2.212714 |
Grass Species Spectra (GSS) | ||||||||
Data Type | PC1 | PC2 | ||||||
Cumulative Percentage/% | 64.68 | 90.82 | ||||||
Features Value | 334.37 | 135.18 | ||||||
First-Derivative (FD) | ||||||||
Data Type | PC1 | PC2 | PC3 | PC4 | PC5 | |||
Cumulative Percentage/% | 35.37 | 55.91 | 74.56 | 84.54 | 93.99 | |||
Features Value | 186.73 | 108.45 | 98.50 | 52.70 | 49.89 | |||
Continuum Removal (CR) | ||||||||
Data Type | PC1 | PC2 | PC3 | |||||
Cumulative Percentage/% | 60.21 | 82.43 | 91.63 | |||||
Features Value | 312.56 | 112.36 | 58.08 |
Type | RF | SVM | BP | CNN | Improved CNN |
---|---|---|---|---|---|
SG | 66.67% | 66.67% | 98.70% | 83.33% | 91.67% |
LC | 59.34% | 57.04% | 59.34% | 57.15% | 82.71% |
AF | 91.67% | 90.91% | 98.70% | 81.82% | 98.70% |
AL | 77.78% | 98.70% | 66.67% | 98.70% | 88.89% |
CL | 66.67% | 66.67% | 98.70% | 77.78% | 98.70% |
AT | 70.00% | 60.00% | 60.00% | 80.00% | 90.00% |
CS | 57.04% | 50.00% | 98.70% | 66.67% | 85.33% |
OA | 69.28% | 68.83% | 83.12% | 76.62% | 90.91% |
AA | 69.88% | 70.20% | 83.72% | 78.11% | 91.23% |
Type | RF | SVM | BP | CNN | Improved CNN |
---|---|---|---|---|---|
SG | 66.67% | 50.00% | 75.00% | 66.67% | 98.70% |
LC | 75.00% | 85.71% | 91.67% | 71.43% | 92.86% |
AF | 81.82% | 98.70% | 81.82% | 98.70% | 98.70% |
AL | 88.89% | 88.89% | 98.70% | 98.70% | 98.70% |
CL | 66.67% | 66.67% | 98.70% | 98.70% | 98.70% |
AT | 70.00% | 70.00% | 98.70% | 98.70% | 98.70% |
CS | 57.15% | 75.00% | 66.67% | 58.33% | 90.91% |
OA | 70.42% | 76.62% | 86.67% | 83.12% | 97.37% |
AA | 72.31% | 76.61% | 87.88% | 85.20% | 97.68% |
Type | RF | SVM | BP | CNN | Improved CNN |
---|---|---|---|---|---|
SG | 66.67% | 66.67% | 83.33% | 91.67% | 98.70% |
LC | 81.82% | 85.71% | 92.86% | 98.70% | 98.70% |
AF | 92.86% | 98.70% | 98.70% | 98.70% | 98.70% |
AL | 88.89% | 88.89% | 98.70% | 98.70% | 98.70% |
CL | 80.00% | 77.78% | 98.70% | 80.00% | 98.70% |
AT | 80.00% | 80.00% | 98.70% | 98.70% | 98.70% |
CS | 66.67% | 58.33% | 98.70% | 66.67% | 91.67% |
OA | 79.12% | 79.22% | 96.10% | 91.78% | 98.70% |
AA | 79.56% | 79.63% | 96.60% | 91.19% | 98.81% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, H.; Li, X.; Qu, T.; Zhang, Y.; Lu, Y.; Yang, Y.; Liu, J.; Zhao, X.; Su, J.; et al. Identification of Constructive Species and Degraded Plant Species in the Temperate Typical Grassland of Inner Mongolia Based on Hyperspectral Data. Agriculture 2023, 13, 399. https://doi.org/10.3390/agriculture13020399
Liu H, Wang H, Li X, Qu T, Zhang Y, Lu Y, Yang Y, Liu J, Zhao X, Su J, et al. Identification of Constructive Species and Degraded Plant Species in the Temperate Typical Grassland of Inner Mongolia Based on Hyperspectral Data. Agriculture. 2023; 13(2):399. https://doi.org/10.3390/agriculture13020399
Chicago/Turabian StyleLiu, Haining, Hong Wang, Xiaobing Li, Tengfei Qu, Yao Zhang, Yuting Lu, Yalei Yang, Jiahao Liu, Xili Zhao, Jingru Su, and et al. 2023. "Identification of Constructive Species and Degraded Plant Species in the Temperate Typical Grassland of Inner Mongolia Based on Hyperspectral Data" Agriculture 13, no. 2: 399. https://doi.org/10.3390/agriculture13020399
APA StyleLiu, H., Wang, H., Li, X., Qu, T., Zhang, Y., Lu, Y., Yang, Y., Liu, J., Zhao, X., Su, J., & Luo, D. (2023). Identification of Constructive Species and Degraded Plant Species in the Temperate Typical Grassland of Inner Mongolia Based on Hyperspectral Data. Agriculture, 13(2), 399. https://doi.org/10.3390/agriculture13020399