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Abstract: The extraction and analysis of plant phenotypic characteristics are critical issues for many
precision agriculture applications. An improved YOLOv5 model was proposed in this study for
accurate node detection and internode length estimation of crops by using an end-to-end approach.
In this improved YOLOv5, a feature extraction module was added in front of each detection head,
and the bounding box loss function used in the original network of YOLOv5 was replaced by the
SIoU bounding box loss function. The results of the experiments on three different crops (chili,
eggplant, and tomato) showed that the improved YOLOv5 reached 90.5% AP (average precision)
and the average detection time was 0.019 s per image. The average error of the internode length
estimation was 41.3 pixels, and the relative error was 7.36%. Compared with the original YOLOv5,
the improved YOLOv5 had an average error reduction of 5.84 pixels and a relative error reduction
of 1.61%.

Keywords: plant phenotyping; node detection; internode length; YOLOv5

1. Introduction

Plant phenotypic characteristics refer to the measurable morphological parameters
and traits of plant structures. These phenotypic characteristics are the expression of the
genetic composition of the plant and the influence of the growth environment, which play
a critical role in the research process for agricultural crop cultivation. The growth status
can be observed and judged according to the phenotypic characteristics of crops during the
growth period. Whether the current phenotypic characteristics exhibited are indeed caused
by cultivation management can be determined, and different phenotypic characteristics will
indicate the final harvest status of the crops [1]. Currently, the phenotypic characteristics,
such as collection and analysis, still mainly depend on a manual process, which is time-
consuming, easily affected by human factors, and hard to monitor over the whole process
of crop growth. Over the past decade, developing automatic and accurate methods for
measuring crop phenotypic traits has become a hot topic in both agronomy and computer
sciences. Most studies have been conducted with the goal of using computer vision to
collect accurate and diverse phenotypic data of crops and to ensure that the accuracy and
processing speed can reach, or even exceed, the labor-intensive manual collections [2].

Up to now, many methods for automatic measurement of various phenotypic charac-
teristics of fruits and vegetable crops have been studied. These characteristics include fruit
size, leaf size, stem length, trunk diameter, position, etc. Computer vision-based techniques
for automatically measuring the phenotypic characteristics of plants have been developed.
For instance, An et al. [3] proposed a method to measure the leaf length of a rosette by
detecting the leaf center and tips in a segmented leaf binary image. For estimating apple
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size in an orchard environment, Gongal et al. [4] used a TOF (time-of-flight) 3D camera.
Two processes were used to measure the apple size in their method. In the first process, the
maximal Euclidean distance between any two individual pixels in the region of apple fruit
was measured as the length. The second process estimated the pixel size in the real world
from the checkerboard RGBD images, and then, inferred the apple size from the pixel size
by using the number of pixels.

The recent success of deep neural networks represented by the convolutional neural
network (CNN) opens new directions for object detection and further morphological
measurement from images [5]. Marset et al. [6] proposed a method for grapevine bud
organ segmentation based on the fully convolutional neural network. Yu et al. [7] used the
residual network as the backbone network and combined the feature pyramid network
with the two-stage object detection algorithm Mask R-CNN for the feature extraction
of strawberries. Wang et al. [8] proposed a real-time field detection model with good
detection speed and detection accuracy that can be applied to the screening of invasive
weed seedlings. Lottes et al. [9] proposed a crop weed classification system deployed by
field robots using fully convolutional networks to segment crop seedlings and weeds in a
pastoral environment to achieve automatic and precise spraying of pesticides. Measuring
the morphological characteristics of plants using a LiDAR camera has also been a hot
topic in recent years [10,11]. However, the cost and ease of use of LiDAR devices are not
comparable to RGB cameras.

There are also specific studies on the automatic acquisition of crop node characteristics.
Researchers have pointed out that the length between nodes can reflect the vigor of crop
seedlings and can be used for crop seedling cultivation research. For instance, Sibomana
et al. [12] found that the internode length can be used as an indicator of stress factors, such as
drought and salinity. For an internode automatic measurement study, Yamamoto et al. [13]
used machine learning, for the first time, for node detection in tomato seedlings and
estimation of the internode length. They used SVM to classify the RGB images of tomato
seedlings according to the leaves and stems, then, detected the nodes, and calculated
the internode length, although the algorithm expressed low robustness and was time-
consuming. Lati and Filin [14] extracted growth parameters, such as plant height, and the
internode distance by using a 3D reconstruction algorithm to detect initial parasitism in
potted plants. They highlighted that plant height and the first internode length could be
significant early morphological indicators of an infection. However, they only tested their
method in indoor conditions. Boogaard et al. [15] used the deep learning method to obtain
the internode length information of cucumber plants in a greenhouse environment. They
used the YOLOv1 model to detect the nodes of cucumber plants from three views in RGB
images to obtain the coordinates of the nodes; then, combined those node coordinates of
multiple angles to obtain the final coordinates of the nodes, finally calculating the internode
length in pixels, before converting them to metric coordinates. The detection effect of their
method was far superior to previously mentioned machine learning methods and was
greatly improved in robustness. However, this method needs multi-view crop images.
It would be impractical for crops in natural dense planting scenes, where it is difficult
to capture multi-view images of a crop, and cluttered environments may cause the node
detection to fail.
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This study focuses on the internode length of crops, which is the distance between
two consecutive nodes along the same direction on the trunk. Internode length would be
significant in farming management. For example, when the internode length is found to be
abnormal, farmers can make corresponding judgments and take corresponding measures
to provide accurate decision-making. Our specific research objectives of this study were to:

• Develop a faster and more accurate deep neural network to detect plant nodes under
natural scenarios and estimate the internode length by improving the YOLOv5 detec-
tion model with a feature extraction module and SIoU bounding box loss function.

• Compare the performance of the proposed YOLOv5 with other widely used object
detectors, including the original YOLOv5, YOLOv7, and YOLOv7-tiny, and investigate
the performance under different scenarios and different crop varieties.

2. Materials and Methods
2.1. Data Acquisition and Annotation

The datasets used in this study included chilies, tomatoes, and eggplants. The chilies
and tomatoes were grown in a natural environment, the eggplants were cultivated in a
greenhouse environment, and all plants were in a growing state. The equipment we used
to capture images was the EOS R6 Mark II camera with a resolution of 3984 × 2654, the
Samsung A60 phone with a resolution of 3024 × 4032, and a Redmi K20 phone with a
resolution of 2976 × 3968. Images of chilies and tomatoes were captured in May 2022,
at an agricultural plantation located at Yanshan town, Guilin City, Guangxi Province.
Images of eggplants were captured from 15 October to 14 November 2021 at Guilin City,
Guangxi Province.

The final collected images of the chili, eggplant, and tomato plants comprised 50, 180,
and 350 images, respectively. Figure 1 shows some examples. The total number of pictures
of the three types of crops was 580, including 4455 nodes, with an average of 6 nodes per
picture. The information for the original dataset is shown in Table 1.
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Figure 1. Some examples of datasets. (a) Chili; (b) tomato; (c) eggplant.

Table 1. Original dataset information for each crop.

Title 1 Number of Images Total Number of Nodes Total Number of Nodes

Chili 50 304 6
Tomato 350 2403 7

Eggplant 180 1748 10
All 580 4455 6

All: three categories of crops.
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The LabelImg tool was used for labeling. In order to enhance the robustness and the
average accuracy of the algorithm model, random brightness changes, random erase, and
added Gaussian noise were used to augment the data. The number of images increased
from 580 to 1500, while the training set and the verification set were divided according to a
ratio of 8:2. Figure 2 shows some examples of different data augmentation methods.
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Figure 2. Some examples of different data augmentation methods. (a) Original; (b) random brightness
changes; (c) random erase; (d) Gaussian noise.

2.2. The Overall Pipeline of the Proposed Method

Our method was inspired by the study from Boogaard [15], and we optimized their
method. Figure 3 shows the complete pipeline for our approach, which mainly includes
the following three steps:

1. The object detection algorithm (improved YOLOv5) is trained for node detection.
2. The trunk node extraction and node order are determined.
3. The internode length is estimated.
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2.3. Node Detection Based on Deep Learning

The purpose of the object detection algorithm is to determine the location and category
information of the object of interest in an image. The current object detection algorithm
is mainly divided into two-stage detection and single-stage detection algorithms [16].
The two-stage detection algorithm first generates candidate regions, and then performs
classifications and regressions on the generated candidate regions to obtain the location
and category information of the object, such as the R-CNN series [17–20]. The single-stage
detection algorithm directly performs regressions to obtain the detection object, such as the
YOLO series [21–25]; SSD [26]; RetinaNet [27]; etc. Compared with the two-stage detector,
the detection speed of the single-stage detector is greatly improved, while also ensuring
better detection accuracy.

2.3.1. YOLOv5 Object Detection Network

The YOLOv5 detector used in this study is a relatively new version of the YOLO
series algorithms, which include the early versions: YOLOv1 [21], YOLOv2 [22], and
YOLOv3 [23]. YOLOv3 uses Darknet53 to extract features and has a structure similar to
the feature pyramid network (FPN) [28], used for multi-scale feature fusions and multi-
scale predictions. Compared with YOLOv3, the YOLOv5 algorithm mainly uses CSP
Darknet53 [29] as the backbone network for feature extraction and Path Aggregation
Network (PANet) [30] as the neck structure; the detection head is used by the convolutional
layers for classification and bounding box regression. Figure 4 shows the architecture of
YOLOv5.
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As Figure 4 shows, the YOLOv5 architecture consists of three parts: the backbone
network, a neck, and a detection head. Initially, the backbone performs the CBL layer twice,
then, stacks the CBL layer and C3 module continuously, before finally passing through an
SPPF module. The backbone performs feature extraction on the input image and finally
generates three feature maps. The input image is resized to 640 × 640, and the final output
sizes are 80 × 80, 40 × 40, and 20 × 20. The neck chooses the PANet structure, and PANet
adds bottom-up feature extraction on the basis of the FPN and finally merges so that the
multi-scale features can be better fused. The function of the neck network is to fuse the
feature maps of the three different scales generated from the backbone network, to reduce
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the information loss during the feature extraction process, add more context information,
and output new feature maps of the three scales to obtain a better detection capability. The
detection head consists of three convolutional layers that output the corresponding vectors
of the feature maps of the three scales, and each vector represents the bounding box and
category information of the target in the input image.

The CBL module consists of convolution, batch normalization, and a SiLU activation
function, see Figure 5a. The C3 module is the key component of the network. The input of
the C3 module is divided into two branches, both of which perform convolution operations,
allowing the CBL module to halve the number of channels of the feature map. Then, the
output feature maps of the second branch pass through the bottleneck module and the
CBL layer and are residually connected by the Concat operation. Finally, through the CBL
layer again, the output feature map of the module is generated, as shown in Figure 5b,c.
The C3 module has a residual structure similar to ResNet [31], which is mainly used to
go deeper into the network while reducing over-fitting and enhancing the function of
feature extraction. SPPF is located at the last layer of the backbone, as shown in Figure 5d.
SPPF uses the CBL layer to change the feature dimension, then, passes through three max-
pooling layers, connects the output feature maps of the three max-pooling layers through
the Concat operation, and finally obtains the output feature map through a CBL layer.
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2.3.2. Improvements to the YOLOv5

This study proposes to improve the YOLOv5. A feature map extraction module is
used before the detection head to enhance the feature extraction learning capabilities of the
network and improve the detection accuracy of the original network. The SIoU loss [32]
is used to replace the loss function of the original network to better represent the object
bounding box loss, improve the detection accuracy, and increase the convergence speed of
the network. The improved YOLOv5 model architecture is shown in Figure 6.
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Figure 6. The architecture of the improved YOLOv5.

Figure 7 shows the feature extraction module with a residual structure consisting of
1 × 1 convolution, 3 × 3 convolution, and an SE (squeeze-and-excitation) [33] attention
mechanism. The 1 × 1 convolution reduces the feature map dimension, reducing the
parameters and calculation of the overall module; then, a 3 × 3 convolution is used for
feature extraction. The residual connection is used to fuse the input features with the
features after the convolution operation, guaranteeing the reuse of feature information. It
finally connects to a SE attention mechanism, and the core of the SE attention mechanism is
a squeeze module and an excitation module, which are used to collect global information,
capture channel relationships, and improve representation capabilities.
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The SE attention mechanism consists of two parts: The squeeze module and the
excitation module, as shown in Figure 8. The extrusion module collects the global spatial
information of the feature through the global average pooling operation; the excitation
module is used to capture the channel relationship and output the feature vector by using
the fully connected layer, and the ReLU and sigmoid activation functions. Then, each
channel of the input feature is scaled by multiplying the feature vector with the input
feature. The SE attention plays the role of emphasizing important information channels
while suppressing noise, and it requires low computing resources. It can be directly
added behind any module without producing a large burden of computing resources on
the network.
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The original YOLOv5 uses the CIOU loss [29] as the bounding box loss function, which
considers the distance between the ground truth box and the predicted box, the shape, and
the loss of IoU. However, this bounding box loss function does not consider the direction
loss between the ground truth box and the predicted box. This study used the original
bounding box loss function replaced by the SIoU loss. Compared with the CIOU loss, the
direction loss is introduced, which represents the loss between the ground truth box and
the predicted box more reasonably.

SioU loss consists of four costs: angle, distance, shape, and IoU. The angle cosy
represents the angle difference between the ground truth box and the predicted box as a
variable. Its definition is shown in Equation (2).

x =
max

(
bgt

cy , bcy

)
−min

(
bgt

cy , bcy

)
√(

bgt
cx − bcx

)2
+
(

bgt
cy − bcy

)2
(1)

Λ = 1− 2× sin2
(

arcsin(x)− π

4

)
(2)

In Equation (2),
(

bgt
cx , bgt

cy

)
and

(
bcx , bcy

)
represent the coordinates of the center point

of the ground truth box and the predicted box. Taking the angle loss as a variable of the
distance loss better calculates the loss caused by the angle. The definition of distance cost is
shown in Equation (3).

∆ = ∑
t=x,y

(
1− e−γρt

)
(3)

Both ρx and ρy measure the distance between the ground truth box and the predicted
box and their definitions are shown in Equations (4) and (5). Further, Λ represents the angle
cost, which integrates the angle cost into the distance loss as a variable and can express the
loss more accurately.

ρx =

(
bgt

cx − bcx

cw

)2

(4)

ρy =

(
bgt

cy − bcy

ch

)2

(5)

γ = 2−Λ (6)

The definition of the SIoU loss is shown in Equation (7).

Lbox = 1− IoU +
∆ + Ω

2
(7)

For Equation (7), ∆ represents the modified distance cost, while Ω and IoU represent
shape cost and distance cost.
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2.4. Trunk Node Extraction and Determining the Node Order

This study calculated the length between the continuous nodes on the trunk. For the
chili, tomato, and eggplant plants in a growth state, most of the detected nodes are nodes
on the trunk. However, some nodes of other branches were detected by the current model.
We proposed a method to filter these nodes and extract the trunk nodes. The specific steps
are shown in Algorithm 1.

Algorithm 1. Trunk node extraction

Input: List of bounding boxes coordinates,

Output: List of trunk node bounding boxes coordinates
Initialize trunks = []
Initialize top_point = buttom_point = (0, 0)
Get top_box, buttom_box, max_length from boxes
if top_box(x2) >= buttom_box(x2):

top_point = top_box(x2, y2)
buttom_point = buttom_box(x2, y2)

else:
top_point = top_box(x1, y2)
buttom_point = buttom_box(x1, y2)

end if
Calculate the equation of a line by top_point and buttom_point
Calculate translation line by line and max_length
Construct trunk area between two lines
for each box ∈ boxes do

if box intersect with area:
add box to trunks

end if
end for
return trunks

The results in Figure 9 show that Algorithm 1 can filter out the false detection node
information that is not related to the trunk node.
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To calculate the internode length, we needed to determine the order of the nodes to
find the adjacent nodes. We directly sorted the trunk nodes according to their vertical
coordinates from the top to the bottom in the final order. We treated the adjacent numbers
as adjacent nodes, and the distance between the adjacent nodes was calculated.
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2.5. Internode Length Estimation

After determining the order of the nodes, the distance between the distance nodes
in the image was determined. The nodes were labeled in the determined order, the
bounding box coordinates of two adjacent nodes were selected to calculate the center
point coordinates, and then the pixel distance between the two nodes was calculated based
on the two center point coordinates. The estimated internode length Ŝij was calculated
with i and node j. The Euclidean distance between the center coordinates of node i and
node j on the image was calculated. Ŝij is shown in Equation (8).

Ŝij =
√(

xi − xj
)2 −

(
yi − yj

)2 (8)

2.6. Evaluation Metrics

In this experiment, average precision (AP) and F1 score were used as indicators to
evaluate the performance of the object detection algorithms. The average precision (AP)
is an important indicator to measure the accuracy of the network. When the intersection
over union (IoU) of the predicted frame and the real marked frame is greater than the set
threshold, the predicted frame is marked as a positive sample; otherwise, it is marked
as a negative sample. True positive (TP) represents the number of positive samples that
are correctly classified, and false positive (FP) represents the number of positive samples
that are incorrectly classified. True negative (TN) is the number of negative samples that
are correctly classified, and false negative (FN) is the number of negative samples that
are incorrectly classified. The calculations of precision (P) and recall (R) are shown in
Equations (9) and (10).

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

The F1 score is another measure of precision (P) and recall (R), as shown in Equation (11).

F1 =
2× P× R

P + R
(11)

The average precision (AP) is calculated by using Equation (12).

AP =
∫ 1

0
P(R)dR (12)

The node order accuracy is calculated with Equation (13), it is the result of dividing
the number of correctly numbered node predictions NPc and NP. NP is the total trunk
node of the prediction nodes.

A =
NPc

NP
× 100% (13)

The performance of the complete pipeline was evaluated by the error (Eij) between the
estimated internode length (Ŝij) and the ground truth internode length (Sij), as in Equation (14).

Eij = Ŝij − Sij (14)

We also calculated the relative error, as shown in Equation (15).

R =
N

∑
n=1

Ŝij − Sij

Sij
× 100% (15)

In Equation (14), Ŝij and Sij represent the estimated length and the real length between
each adjacent node, and N represents the number of images.
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2.7. Training the Node Detection Model

Thus, the above improved YOLOv5 was implemented and trained using the images
mentioned in Section 2.1. The computer configurations used for training were as follows:
the Intel Xeon Gold 6230 CPU, NVIDIA Tesla V100 GPU, and the Ubuntu 18.04 operating
system. The YOLOv5 model was implemented by using the PyTorch framework with
Python as the programing language. Some required libraries including CUDA, cuDNN,
and OpenCV were also used.

In this study, the YOLOv5 was trained in an end-to-end manner using stochastic
gradient descent (SGD). The resolution of the input image was resized to 640 × 640, the
batch size was set to 32, and the training epoch was set to 100. Table 2 shows the specific
settings of the network training hyperparameters. The weight file of the trained detection
model was used to evaluate the performance of the model by using the verification set.

Table 2. The hyperparameter settings for the network training.

Hyperparameter Value

Optimization SGD
Initial learn rate 0.01

Momentum 0.937
Weight decay 5× 10−4

Mini-batch size 32
Number of epochs 100

3. Results

Several experiments were conducted and tested to evaluate the performance and avail-
ability of our proposed method for crop node detection and internode length estimation
based on the improved YOLOv5, using the evaluation metrics described in Section 2.6.

3.1. Node Detection

Table 3 provides details of the experimental results. The accuracy, recall, F1 score,
and average precision on the validation set after training were 93.1%, 85.1%, 88.9%, and
90.5%, respectively. Compared with the original YOLOv5s, the F1 score increased by 1.6%,
and the average precision increased by 1.4%, indicating that the detection ability of our
proposed YOLOv5 model has been improved with an increase in parameters only by
2.4 M. After improvement, the detection time was 2.96 ms per image, thereby achieving
higher performance with less computational overhead. We compared it with YOLOv7 and
YOLOv7-tiny, and our improved YOLOv5 models achieved the best detection performance.

Table 3. Comparison of the results among several object detection networks.

Methods Parameters GFLOPs Average Time (ms) Precision (%) Recall (%) F1 Score (%) AP (%)

YOLOv7 37.2M 103.2 7.68 92.1 85.2 88.5 90.4
YOLOv7-tiny 6.0M 13.0 3.3 87.7 72.1 79.1 81.8

YOLOv5s 7.0M 15.8 2.6 92 83 87.3 89.1
Ours 9.4M 23.1 2.96 93.1 85.1 88.9 90.5

GFLOPS: Giga floating-point operations per second.
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In order to observe the detection performance of the algorithm more deeply, some
typical examples are shown in Figures 10 and 11. Figure 10 shows our detection method
results in three types of crops: chili, tomato, and eggplant. Figure 11 shows examples
of the detected nodes. The first row of the image shows three correctly identified nodes.
Although the appearance of the three nodes changed greatly, the network could still detect
them. The second row shows some examples of false positives. Figure 11d shows that
the intersection of the two branches was detected as a node. This was due to the visual
difference, and this part produced image features that were similar to the node. In Figure 11
e and f, intersections were detected as nodes due to their partial occlusion by the leaves,
flowers, and branches. Figure 11g–i shows three false negative examples, where these
nodes were ground truth labeled data, yet were not detected by the algorithm. Thus,
demonstrating that it is still difficult for node detection algorithms to detect nodes in
complex backgrounds.
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3.2. Determining the Node Order

We selected 10 images from each crop in the validation set, and a total of 30 images
were used to determine the node order. The node order is based on the comparison between
the detected trunk nodes and the ground truth trunk nodes, while the same number of
nodes indicates that the node order is correct. Table 4 shows the results of the detected
node order. Most of our methods determined the correct node order, and the accuracy rate
of the node order reached 95.2%. Compared with the original YOLOv5s model, this result
proved that our improved algorithm had a better detection performance.

Table 4. Determination of the accuracy of the node order.

Crops Methods
Ground Truth Detect Accuracy

Number
Rate (%)

All Node Trunk Node All Node Trunk Node

Chili
YOLOv5s 62 32 62 32 32 100

Ours 62 32 62 32 32 100

Eggplant YOLOv5s 91 68 90 67 58 86.6
Ours 91 68 90 69 64 92.8

Tomato
YOLOv5s 57 43 59 44 32 72.7

Ours 57 43 61 44 42 95.5

All
YOLOv5s 210 143 211 143 122 85.3

Ours 210 143 213 145 138 95.2

3.3. Internode Length Estimation

The estimation of the internode length was also conducted from the above 30 images.
The internode length calculated from the distance between adjacent nodes, with the label
node bounding box, was used as the ground truth value. The estimated internode length
calculated from the detected nodes was then compared to its ground truth. Table 5 shows
that YOLOv7 achieved the best estimation accuracy, while our improved YOLOv5 achieved
an estimation accuracy similar to YOLOv7, however, it was faster and consumed fewer
computing resources. Table 6 shows the results of the method in different crops. The
estimated internode length calculated by using our improved YOLOv5 achieved better
performances in chili and eggplant.

Table 5. The Compared results on internode length estimation.

Methods Average Error (Pixels) Relative Error (%)

YOLOv7 33.95 7.27
YOLOv7-tiny 143.20 21.9

YOLOv5s 47.14 8.97%
Ours 41.30 7.36%

Table 6. Comparison of the results in the three categories of crops.

Crops Methods Average Error (Pixels) Relative Error (%)

Chili
YOLOv5s 12.374 2.64%

Ours 10.59 1.58%

Eggplant YOLOv5s 89.16 17.86%
Ours 66.26 13.16%

Tomato
YOLOv5s 37.43 5.40%

Ours 50.44 7.96%

All
YOLOv5s 47.14 8.97%

Ours 41.30 7.36%

4. Discussions

This study proposed a method to calculate the internode lengths. The method included
a node detection algorithm, a combined trunk node extraction algorithm, and an internode
length estimation.

Our improved YOLOv5 adds a feature extraction module and replaces the loss func-
tion, we have designed an ablation experiment at the node detection step and a complete
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pipeline. The performance of our improvement is verified by ablation experiments, and the
results of the ablation experiments are shown in Tables 7 and 8. In the node detection step,
with the feature extraction module, the recall rate increased by 2%, although the accuracy
decreased by 0.4%, whereas the F1 score and average precision increased by 0.9% and 1.3%,
respectively. After replacing the SIoU loss, the accuracy increased by 1.1%, the recall rate
increased by 2.1%, while the F1 score and the average precision increased by 1.6% and 1.4%,
respectively. In the complete pipeline, when we added the feature extraction module, the
average error, and relative error increased by 12.59 pixels and 2.03%, respectively, although
with the SIoU loss, the average error and the relative error decreased by 5.84 pixels and
1.61%, respectively. These results indicate that our improved network can improve the
performance of the network.

Table 7. Result of ablation experiments in the node detection step.

Precision (%) Recall (%) F1 Score (%) AP (%)

Baseline 0.92 0.83 0.87303 0.891
+Extraction

block 0.916 0.85 0.8822 0.904

+SIoU loss 0.931 0.851 0.88905 0.905

Table 8. Result of ablation experiments in the complete pipeline.

Average Error (Pixels) Relative Error (%)

Baseline 47.14 8.97%
+Extraction block 59.73 11.0%

+SIoU loss 41.30 7.36%

However, we discovered some false positive results. We assumed that the overlap
of the crop organs in the natural background from a single perspective was serious. The
overlapping of different branches, leaves, flowers, and branches all resulted in quite similar
node characteristics, which caused the network to detect these features as nodes, leading to
false positives. The current method is suitable for crop plants that grow vertically in the
growth stage because the plants in this period grow upwards with fewer branches, and the
leaves are not too lush, thus, the occlusion is not serious, and the nodes can generally be
detected successfully.

The internode length of the trunk node is the expected calculation goal. However, the
node order is hard to decide because the nodes on subbranches would also be detected
Previously, Yamamoto et al. [13] estimated the internode length of tomato seedlings, and
Boogaard et al. [15] measured the internode length of cucumber plants in the growth state.
These plants have no branches other than the trunk. Crops such as chili and eggplant have
many branches, so we designed steps to extract the trunk nodes. Yamamoto et al. [13]
and Boogaard et al. [15] clustered the node coordinates using affinity propagation for
determining the node order. They first obtained node clusters in different orders according
to the clustering and then sorted the node according to the vertical coordinates. We used
affinity propagation to obtain node clusters, although this did not obtain good results, and
instead increased the complexity of the algorithm. We assumed they used the same batch
of crop images taken at different time periods for detection, and the positions and numbers
of nodes were not much different. The positions of the crop nodes on the images in our
experiment were quite different, and the number of nodes was inconsistent, indicating that
clustering using node coordinates does not achieve good results. Directly determining the
node order according to the node vertical coordinates can obtain better results. Our method
decides the adjacent nodes according to the vertical coordinates of a node. Assuming that
the trunk is horizontal or rotated, our method is not applicable. Presently, our method
is limited to vertically growing plants and growing agricultural crops because the crop
branches are obvious and vertical.
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Our complete pipeline had an average error of 41.3 pixels and a relative error of 7.36%.
In Figure 12, we compare the estimated internode length with the ground truth internode
length; the red line is the ground truth length, and the blue scatter point is our estimated
length, and we also calculated the root mean square error (RMSE) of the model as 2.16 and
the R-squared error as 0.997.
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5. Conclusions

In this study, we proposed an improved YOLOv5-based node detection and internode
length estimation method. The results indicate that the network showed improvements
in node detection performance. Generally speaking, plants have many branches, and the
nodes of different branches will also be detected, yet adjacent nodes cannot be determined.
We extracted the trunk nodes to estimate the internode length. Our method is suitable for
plants that grow vertically, most of which have not yet grown many branches. In the future,
we will realize the conversion of the estimated pixel distance between nodes into the actual
length and deploy it on the embedded platform, to record the length data of plants between
nodes at regular intervals.

Author Contributions: S.L. and T.Q. designed the experiments, provided funding, and revised the
manuscript; J.H. wrote the manuscript; J.H. and G.L. developed the algorithm, trained the models,
and performed the analysis; H.M. and Y.L. helped to perform the experiments and to label data, and
provided constructive discussions; M.C. revised this manuscript with constructive discussions. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the National Natural Science Foundation of China (No. 61662006),
the Agricultural Science and Technology Project of Guangxi province (No. Z201915), and the Guilin
Scientific Research and Technology Development Program (No. 20210223-4).

Data Availability Statement: The data used in this study can be found at https://github.com/hu-
luoye/Crop-node-dataset.

Acknowledgments: We would like to thank the support from the Guangxi Collaborative Innovation
Center of Multi-source Information Integration and Intelligent Processing.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/hu-luoye/Crop-node-dataset
https://github.com/hu-luoye/Crop-node-dataset


Agriculture 2023, 13, 473 16 of 17

References
1. Pound, M.P.; Atkinson, J.A.; Wells, D.M.; Pridmore, T.P.; French, A.P. Deep learning for multi-task plant phenotyping.

In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017;
pp. 2055–2063.

2. Jiang, Y.; Li, C. Convolutional neural networks for image-based high-throughput plant phenotyping: A review. Plant Phenomics 2020.
[CrossRef]

3. Nan, A.; Christine, M.P.; Robert, L.B.; Cody, M.R.J.; James, T.; Michael, F.C.; Julin, N.M.; Stephen, M.W.; Cynthia, W. Plant
high-throughput phenotyping using photogrammetry and imaging techniques to measure leaf length and rosette area. Comput.
Electron. Agric. 2016, 127, 376–394.

4. Gongal, A.; Karkee, M.; Amatya, S. Apple fruit size estimation using a 3d machine vision system Inform. Process. Agricul. 2018,
5, 498–503.

5. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

6. Marset, W.V.; Pérez, D.S.; Díaz, C.A.; Bromberg, F. Towards practical 2D grapevine bud detection with fully convolutional
networks. Comput. Electron. Agric. 2021, 182, 105947. [CrossRef]

7. Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit detection for strawberry harvesting robot in non-structural environment based on
Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [CrossRef]

8. Wang, Q.; Cheng, M.; Huang, S.; Cai, Z.; Zhang, J.; Yuan, H. A deep learning approach incorporating YOLO v5 and attention
mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings. Comput. Electron. Agric. 2022,
199, 107194. [CrossRef]

9. Lottes, P.; Behley, J.; Milioto, A.; Stachniss, C. Fully convolutional networks with sequential information for robust crop and weed
detection in precision farming. IEEE Robot. Autom. Lett. 2018, 3, 2870–2877. [CrossRef]

10. Tsoulias, N.; Paraforos, D.S.; Xanthopoulos, G.; Zude-Sasse, M. Apple shape detection based on geometric and radiometric
features using a LiDAR laser scanner. Remote Sens. 2020, 12, 2481. [CrossRef]

11. Kang, H.; Wang, X.; Chen, C. Accurate fruit localisation using high resolution LiDAR-camera fusion and instance segmentation.
Comput. Electron. Agric. 2022, 203, 107450. [CrossRef]

12. Sibomana, I.; Aguyoh, J.; Opiyo, A. Water stress affects growth and yield of container grown tomato (Lycopersicon esculentum Mill)
plants. Gjbb 2013, 2, 461–466.

13. Yamamoto, K.; Guo, W.; Ninomiya, S. Node detection and internode length estimation of tomato seedlings based on image
analysis and machine learning. Sensors 2016, 16, 1044. [CrossRef] [PubMed]

14. Ran, N.L.; Sagi, F.; Bashar, E.; Hanan, E. 3-D image-driven morphological crop analysis: A novel method for detection of sunflower
broomrape initial subsoil parasitism. Sensors 2019, 19, 1569.

15. Boogaard, F.P.; Rongen, K.S.; Kootstra, G.W. Robust node detection and tracking in fruit-vegetable crops using deep learning and
multi-view imaging. Biosyst. Eng. 2020, 192, 117–132. [CrossRef]

16. Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.N.; Lee, B. A Survey of Modern Deep Learning based Object
Detection Models. arXiv 2021, arXiv:2104.11892. [CrossRef]

17. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

18. Girshick, R.B. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago,
Chile, 7–13 December 2015; pp. 1440–1448.

19. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [CrossRef]

20. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

21. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 779–788.

22. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

23. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
24. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
25. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv:2207.02696.
26. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings

of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
27. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference On Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

http://doi.org/10.34133/2020/4152816
http://doi.org/10.1016/j.compag.2020.105947
http://doi.org/10.1016/j.compag.2019.06.001
http://doi.org/10.1016/j.compag.2022.107194
http://doi.org/10.1109/LRA.2018.2846289
http://doi.org/10.3390/rs12152481
http://doi.org/10.1016/j.compag.2022.107450
http://doi.org/10.3390/s16071044
http://www.ncbi.nlm.nih.gov/pubmed/27399708
http://doi.org/10.1016/j.biosystemseng.2020.01.023
http://doi.org/10.1016/j.dsp.2022.103514
http://doi.org/10.1109/TPAMI.2016.2577031


Agriculture 2023, 13, 473 17 of 17

28. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

29. Wang, C.-Y.; Liao, H.-Y.M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A new backbone that can enhance learning
capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

30. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

32. Gevorgyan, Z. SIoU Loss: More Powerful Learning for Bounding Box Regression. arXiv 2022, arXiv:2205.12740.
33. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Materials and Methods 
	Data Acquisition and Annotation 
	The Overall Pipeline of the Proposed Method 
	Node Detection Based on Deep Learning 
	YOLOv5 Object Detection Network 
	Improvements to the YOLOv5 

	Trunk Node Extraction and Determining the Node Order 
	Internode Length Estimation 
	Evaluation Metrics 
	Training the Node Detection Model 

	Results 
	Node Detection 
	Determining the Node Order 
	Internode Length Estimation 

	Discussions 
	Conclusions 
	References

