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Abstract: Fruits are considered among the most nutrient-dense cash crops around the globe. Since
fruits come in different types, sizes, shapes, colors, and textures, the manual classification and
disease identification of a large quantity of fruit is time-consuming and sluggish, requiring massive
human intervention. We propose a multilevel fusion method for fruit disease identification and fruit
classification that includes intensive fruit image pre-processing, customized image kernels for feature
extraction with state-of-the-art (SOTA) deep methods, Gini-index-based controlled feature selection,
and a hybrid ensemble method for identification and classification. We noticed certain limitations in
the existing literature of adopting a single data source, in terms of limited data sizes, variability in
fruit types, variability in quality, and variability in disease type. Therefore, we extensively aggregated
and pre-processed multi-fruit data to simulate our proposed ensemble model on comprehensive
datasets to cover both fruit classification and disease identification aspects. The multi-fruit imagery
data contained regular and augmented images of fruits including apple, apricot, avocado, banana,
cherry, fig, grape, guava, kiwi, mango, orange, peach, pear, pineapple, and strawberry. Similarly,
we considered normal and augmented images of rotten fruits including beans (two categories),
strawberries (seven categories), and tomatoes (three categories). For consistency, we normalized
the images and designed an auto-labeling mechanism based on the existing image clusters to label
inconsistent data to appropriate classes. Finally, we verified the auto-labeled data with a complete
inspection to correctly assign it to the relevant classes. The proposed ensemble classifier outperforms
all other classification methods, achieving 100% and 99% accuracy for fruit classification and disease
identification. Further, we performed the analysis of variance (ANOVA) test to validate the statistical
significance of the classifiers’ outcomes at α = 0.05. We achieved F-values of 32.41 and 11.42 against
F-critical values of 2.62 and 2.86, resulting in p-values of 0.00 (<0.05) for fruit classification and
disease identification.

Keywords: precision agriculture; ensemble method; fruit classification; disease identification;
imagery data

1. Introduction

Food is one of the most fundamental requirements for human life and survival. Agri-
culture plays a vital role in fulfilling food requirements globally. The rate of growth in
agricultural production has declined recently, according to the Food and Agricultural
Organization (FAO) [1]. Global food security is seriously threatened by this trend and
other risks like climate change, population growth, rural-to-urban migration, and biofuel
demand [2]. As a result, to increase plant yield for food production, a higher yielding and
more sustainable environment is required [3,4].
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Given that there will hardly be an increase in the size of land available for agricultural
use in the future, the best way to deal with the problem of food insecurity is by increasing
the productivity of existing farmland. For this purpose, innovative methods to increase
agricultural yield will be continuously required. Furthermore, since 30% of the global
agricultural workforce is predicted to move to work in other sectors of the economy
between 2017 and 2030 [5], the adoption of agricultural technology becomes even more
critical. Therefore, technology has been adopted, modified, and optimized increasingly
over the past century to increase agricultural yields [6]. Precision Agriculture (PA) is
gaining popularity in this setting of sustainably increasing yields. PA is a broad term
that encompasses all approaches used to improve the accuracy and control of farming
management [7]. These techniques include GPS navigation of tractors, robotics, remote
sensing, data analytics, and unmanned aerial and terrestrial vehicles [8]. PA relies heavily
on early and precise plant disease detection.

Fruit production and cultivation comprise a sizeable portion of all agricultural activity
and are essential to the human diet. On the other hand, fruit diseases (e.g., gray mold,
apple scab, canker, black knot, brown rot) are among the key factors that can negatively
influence the quality of fruits and reduce their production. Such diseases essentially
affect the quality and quantity of fruits by interfering with several processes, such as
plant growth, the development of flowers and fruits, and absorbent capacity [9,10]. As
a result, early detection and precise classification of fruit diseases is an intriguing problem
related to increasing the potential economic value of fruits [11]. The manual inspection of
plants and fruits to detect any signs of disease involves various issues. Firstly, it demands
ongoing monitoring, disease identification expertise, and other related efforts and time [12].
Furthermore, this method might not detect all infections.

As far as automated techniques for the detection and classification of fruit diseases are
concerned, we can categorize them as laboratory methods (e.g., serological methods and
molecular techniques [13]) and image processing methods. As image processing methods
are inexpensive and non-destructive while yielding superior performance, they have been
widely used [14,15]. Fruit plants exhibit various symptoms from their early to late stages,
which are, in most cases, distinctly observable to the naked eye on infected fruits and
plants [16]. Thus, image processing algorithms can be created to diagnose these conditions
quickly, accurately, and affordably using typical digital photographs [17,18].

The use of image processing techniques and machine learning algorithms in disease
detection and recognition is a growing research field with great potential to address the
challenges involved in the early detection of diseases [13,18,19]. These methods have been
developed to achieve accuracies exceeding human-level perception.

As far as the workflow of disease identification and classification using image pro-
cessing is concerned, it comprises almost identical phases in all approaches. Specifically,
the captured image passes through four steps: image pre-processing, image segmentation,
feature extraction, and classification. To this end, early works employed classical image
processing procedures and ‘hand-crafted’ feature extraction from leaf and fruit images.
The extracted features were then used to train shallow classifier algorithms such as sup-
port vector machines, principal component analysis, maximum likelihood classification,
k-nearest neighbors, naïve Bayes, decision trees, random forest, and artificial neural net-
works (e.g., [20–23]). Another recent line of work has mainly focused on deep learning
architectures comprising convolutional neural networks to automate feature extraction and
image classification (e.g., [24–27]).

Despite the exciting results reported by the aforementioned methods, the reliance on
a single classifier is deemed to affect the performance of disease detection and classification.
In this way, the classification methods based on a single method underperform when
applied to large heaps of fruit because of the diversity in texture, shape, color, size, disease,
and maturity levels. Here, we propose a hybrid ensemble method for fruit disease iden-
tification and fruit classification that employs a multilevel fusion method, intensive fruit
image pre-processing, customized image kernels for feature extraction using state-of-the-art
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deep methods, and Gini-index-based controlled feature selection. The major contributions
of this study are as follows:

1. The hybrid ensemble classification method is inspired by multilevel fusion method-
ology that includes intensive fruit image pre-processing, adoption of customized
image kernels for feature extraction with state-of-the-art (SOTA) deep methods, and
Gini-index-based controlled feature selection.

2. Considering different use cases of convolutional neural networks (CNNs) simulated
on multiple imagery data, we evaluated the performance of Squeeze Net with de-
fined/customized image kernels.

3. Although the performance of state-of-the-art (SOTA) methods is architecture-dependent,
the performance of Squeeze Net was noted to be better with relatively faster training
time. It ultimately helped to improve classification accuracy by empowering the
weaker classifiers.

4. The ensemble model outperforms individual classifiers with the help of the best fea-
ture extractor, Squeeze Net, among other convolution networks, including Inception-
V3, VGG-16, VGG-19, and DeepLoc, simulated on larger sets of imagery data.

5. The proposed ensemble method lays the foundation for efficient solutions to simi-
lar problems on embedded devices by adopting Squeeze Net (in general) and Mo-
bileNetV2 (in particular) for remote imagery data.

The rest of the manuscript is organized as follows. A brief description and the limita-
tions of related work are presented in Section 2. Section 3 presents the proposed method
with a description of the essential components of the architecture. Section 4 discusses the
significant results, and Section 5 concludes the research work.

2. Related Work

There are two approaches for fruit disease classification. The first approach, applicable
at an early stage of plant and fruit development, attempts to identify diseases in plants and
leaves [24,28,29]. The second approach involves analyzing the skin and appearance of the
fruit for disease identification and classification. The scope of this study is limited to the
latter approach. In the following, we provide a brief overview of methods and techniques
proposed by researchers for disease identification and classification in several fruits, such
as citrus, apple, mango, papaya, and strawberry.

Citrus is one of the most popular fruit in the world. Citrus fruit may suffer from
various diseases, such as canker, greening, anthracnose, scab, black spot, and melanose.
Cubero et al. provide an excellent review of the application of machine learning techniques
for various issues related to citrus fruit, including disease detection [30]. Sharif et al. used
the support vector machine (SVM) algorithm to identify and classify these diseases in
citrus fruit [31]. The proposed method identifies the lesion spots on the fruit’s skin using
a segmentation method followed by the classification of diseases. The proposed method
is tested on three datasets and achieved 97%, 90.4%, and 89% accuracy for these datasets.
Abdulridha et al. used unmanned aerial vehicles to capture hyperspectral images of
a citrus orchard for real-time identification of the citrus canker disease [32]. The radial basis
function achieved a classification accuracy of 94%, 96%, and 100% for asymptomatic, early,
and late symptoms of citrus canker, respectively. The corresponding results for the k-nearest
neighbors method were 94%, 95%, and 96%. Rauf et al. prepared a dataset comprising
759 images of healthy and unhealthy citrus leaves and fruit to help other researchers
develop methods and techniques for citrus disease detection [33].

Apple is another fruit consumed throughout the world for the whole year. The most
common diseases in apple fruit include black rot canker, apple scab, powdery mildew, core
rot, white/brown/root rot, collar rot, and seedling blight [34]. Turkoglu et al. proposed
an ensemble classification method for apple disease detection [35]. The study applied deep
feature extraction on pre-trained models and used the SVM and long short-term memory
(LSTM)-based convolutional neural network for disease classification. The authors used
a real-time dataset comprising leaves and fruit images. The proposed method achieved
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96.4% accuracy with SVM and 99.2% using LSTM. Tian et al. proposed a deep learning
model for detecting anthracnose lesions in apple fruit [36]. The authors highlight the diffi-
culty in collecting sufficient data for fruit diseases and use Cycle-Consistent Adversarial
Network to augment the available data. The authors used the YOLO-V3 model for disease
identification. Fan et al. also used a deep learning model for segregating defective apples
from healthy fruit [37]. The study also employed conventional machine learning algo-
rithms, but reported better results using deep learning models. Al-Shawwa and Abu-Naser
developed a traditional expert system for detecting all apple fruit diseases mentioned
above [34]. A limitation of the study is that the detailed design is not discussed. Moreover,
the results are not reported in the study to compare with other solutions.

Strawberries provide great economic value to farmers. However, diseases and pests
pose a significant threat to the strawberry fruit. Dong et al. used a deep learning model
to identify nine diseases and pests in strawberry fruit, including root rot, slug, thrips,
powdery mildew, sunburn, botrytis cinerea, vegetable green insect, virus disease, and
aphid [38]. The authors used an enhanced AlexNet by transfer learning that reduced the
learning time for the proposed model. The classification accuracy was improved using the
inner product and vector max norm. Further details of the proposed model are provided
by [39]. Siedliska et al. propose using hyperspectral imaging to detect fungal infections
in strawberries [40]. The authors used visible, near-infrared, and shortwave-infrared
(VNIR/SWIR) spectroscopy to capture images of two groups of strawberries; a control
group without any treatment and a group inoculated with fungi. The study used four
classification methods: backpropagation neural network, random forest, naïve Bayes, and
support vector machine. The backpropagation neural network achieved the best results.

Habib et al. developed a near real-time computer vision model to detect and identify
five diseases in papaya fruit: brown spot, black spot, phytophthora blight, anthracnose,
and powdery mildew [41]. A user-captured image from the field is pre-processed by:
(a) resizing the image to a fixed size, (b) enhancing contrast through histogram equalization,
and (c) converting the image from color to L*a*b* color space. The k-means clustering
algorithm is used for image segmentation into healthy and unhealthy fruit regions. The
unhealthy regions are then subjected to a feature extraction phase comprising gray level
co-occurrence matrix and statistical features. Finally, a support vector machine classifier
is used to identify the disease. Andrushia and Patricia use ant colony optimization for
feature identification and support vector machine to identify anthracnose and stem end rot
diseases of the mango fruit [42].

Several review articles have also addressed the problem of automatic fruit disease
identification and classification. Naranjo-Torres et al. have reviewed the application of
the convolutional neural network in the problem domain [43]. Bhargava and Bansal have
addressed the fruit disease identification problem while reviewing fruit and vegetable
grading and quality inspection [15]. Wani et al. provide an excellent review of conventional
and deep learning techniques for plant and fruit disease detection [44].

3. Methodology

We propose a multilevel fusion methodology for fruit disease identification and fruit
classification that includes intensive fruit image pre-processing, customized image kernels
for feature extraction with state-of-the-art (SOTA) deep methods, Gini-index-based con-
trolled feature selection, and hybrid ensemble method for identification and classification.

Figure 1 presents the salient components of the proposed methodology in two seg-
ments. The first segment (represented with pink objects) shows a systemic flow of multi-
fruit classification. The multi-fruit imagery data contains regular and augmented images of
various fruits, including apple, apricot, avocado, banana, cherry, fig, grape, guava, kiwi,
mango, orange, peach, pear, pineapple, and strawberry. We identified images of fruits with
different shapes, sizes, quality, saturation, and labels that required intensive pre-processing
to normalize the fruit for an enhanced classification. In addition, we designed an auto-
labeling mechanism based on the existing image clusters to label inconsistent data to belong
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to appropriate classes. Lastly, we verified the auto-labeled data with a complete inspection
to correctly assign it to the relevant classes. Our proposed methodology can be generalized
to any larger set of diverse fruit types to meet the agricultural industry requirements for
bulk fruit classification.
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Figure 1. Block diagram of the proposed methodology.

The state-of-the-art (SOTA) convolutional neural networks generate enormous feature
sets of image data that are computationally expensive for conventional classification meth-
ods. We employed the custom image kernels to extract the relevant and most significant
features. Further, we pruned the extracted features using the Gini index, information gain,
and entropy of feature values. Eventually, the pruned features were used as inputs for the
ensemble classifier. We used decision trees, AdaBoost, support vector machine, random
forest, and gradient boosting methods. We employed individual classifiers on diverse
imagery data, although classification outcomes fluctuated. The classification accuracy of
an individual classifier on certain imagery data was very different on another data set
and vice versa. The variations in the outcomes of single classification methods require
devising a new ensemble classification method based on the majority voting policy of
several distinct classifiers.

The second segment (represented by green objects) depicts a systemic flow of multi-
fruit disease classification. The existing multi-fruit disease imagery data also contains
regular and augmented images of different fruits including beans (two categories), straw-
berries (seven categories), and tomatoes (three categories). Here we also noticed that fruit
disease data comes in different shapes, sizes, quality, saturation, and labels. Therefore, as
with the fruit imagery data, we performed intensive pre-processing to bring the disease
imagery data to a consistent format acceptable for an enhanced classification. In the second



Agriculture 2023, 13, 500 6 of 20

segment, we devised an auto-labeling method for correctly labeling unlabeled augmented
data (ensuring complete inspection of annotations). At this stage, we also encountered chal-
lenges of achieving stable and consistent classification outcomes from single classification
methods for various fruit diseases. Here, the proposed ensemble method equally bestowed
the significant classification outcomes, tested on various disease data. We illustrate the
process in the subsequent section.

Let us consider a set IINPUT = {I1, I2, I3, I4 . . . IK, ∀ K ∈N} of input fruit images. Let IOUT
= {O1, O2, O3, O4 . . . OM, ∀M ∈ N} be a scaled set of IINPUT images. Let IK, ∀ K ∈ N carry
a scale w × h, where w, h ∈ [N, N]. If W, H are new dimensions of IK, W × H is a new scale
of OM, ∀M ∈ N, mapped with OM (x, y) = OM (W, H) = IK (w/W, h/H), where x ∈ [0, N]
and y ∈ [0, N]. Further, we consider any fruit image I (a, b) ∈ IINPUT, 0 ≤ a, b ≤ N − 1 of
size N × N. Let I’ (a’, b’) ∈ IOUT, where 0 ≤ a’, b’ ≤M − 1 of size M ×M ∀M ∈ N. We
construct a mapping function F: IINPUT → IOUT defines a zoomed image Z (I’ (a’, b’)) = I
(ka, kb), where k ∈ N.

Now, we consider a fruit image J (p, q) ∈ IINPUT, 0 ≤ p, q ≤ N − 1 of size N × N. Let
J’ (p’, q’) ∈ IOUT, where 0 ≤ p’, q’ ≤ M − 1 of size M × M ∀ M ∈ N. Here, we consider
a new mapping function S: IINPUT → IOUT defines a sheared image Z in the x-direction by
J’ (p’, q’)) = J (p, kq), where k ∈ R. Similarly, we can also construct another mapping function
S’: IINPUT→ IOUT that defines a sheared image Z’ in the y-direction by J’ (p’, q’)) = J (kp, q),
where k ∈ R. Let us consider a fruit image F (r, s) ∈ IINPUT, 0 ≤ r, s ≤ N − 1 of size
N × N. Let F’ (r’, s’) ∈ IOUT, where 0 ≤ r’, s’ ≤M − 1 of size M ×M ∀M ∈ N. Now, we
construct a flip function T: IINPUT → IOUT that defines a flip image in the x-direction by
F’ (r’, s’)) = F (r, s-k), where k ∈ R. Further, let function T’: IINPUT → IOUT for a flipped
image in the y-direction by F’ (r’, s’) = F (r-k, s), where k ∈ R. Algorithms 1–4 describe the
pre-processing steps.

Algorithm 1: Preprocessing (Scaling) of Fruit Images

Inputs: IINPUT = {I1, I2, I3, I4 . . . IK,∀ K∈ N} of input fruit images.
Outputs: IOUT = {O1, O2, O3, O4 . . . OM,∀ M∈ N}

Start PROC_SCALE

Let w, h = IK ∈ IINPUT, K ≤ N, where w, h are width and height of current image
Let w’, h’ = 100, 100 ∀ IK ∈ IINPUT, K ≤ N, where w’ and h’ are new dimensions of image
Let s_x = w’/w, s_y = h’/h, where s_x and s_y are revised scales of image IK, K ≤ N

For A in range (h’):
For B in range (w’):

scaled_IK→populate(x, y), where populate is a procedure that scales IK, K ≤ N
save_IK→ OM,∀M∈ N, OM∈ IOUT

End For
End For

End PROC_SCALE

Algorithm 2: Preprocessing (Zooming) of Fruit Images

Inputs: IINPUT = {I1, I2, I3, I4 . . . IK,∀ K∈ N} of input fruit images.
Outputs: IOUT = {O1, O2, O3, O4 . . . OM,∀ M∈ N}

Start PROC_ZOOM

Let a, b = IK ∈ IINPUT, K ≤ N, where a, b are old dimensions of current image
Let a’, b’ = IM ∈ IOUT, M ≤ N, where a’ and b’ are new zoomed dimensions of image

ForX in range (a’):
ForY in range (b’):

Zoomed_IK→generate(a, b), where generate will map new dimensions to old dimensions ∀ IK, K ≤ N
save_IK→ OM,∀M∈ N, OM∈ IOUT
End For

End For
End PROC_ZOOM
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Algorithm 3: Preprocessing (Shearing) of Fruit Images

Inputs: IINPUT = {I1, I2, I3, I4 . . . IK,∀ K∈ N} of input fruit images.
Outputs: IOUT = {O1, O2, O3, O4 . . . OM,∀ M∈ N}

Start PROC_SHEAR

Let p, q = J (p, q) ∈ IINPUT, p, q ≤ N, where p, q are old coordinates of any image
Let p’, q’ = J’(p’, q’) ∈ IOUT, p’, q’ ≤ N, where p’ and q’ are new sheared dimensions

ForS in range (p’):
ForT in range (q’):

Define S: IINPUT→ IOUT for sheared image Z in x-direction by J’ (p’, q’)) = J (p, kq), where k∈ R
Define S’: IINPUT→ IOUT for sheared image Z’ in y-direction by J’ (p’, q’)) = J (kp, q), where k∈ R

Save Z, Z’→ OM,∀M∈ N, OM∈ IOUT
End For

End For
End PROC_SHEAR

Algorithm 4: Preprocessing (Flipping) of Fruit Images

Inputs: IINPUT = {I1, I2, I3, I4 . . . IK,∀ K∈ N} of input fruit images.
Outputs: IOUT = {O1, O2, O3, O4 . . . OM,∀ M∈ N}

Start PROC_FLIP

Let r, s = F (r, s) ∈ IINPUT, r, s ≤ N, where r, s are old coordinates of any image
Let r’, s’ = F’(r’, s’) ∈ IOUT, r’, s’ ≤ N, where r’ and s’ are new flipped dimensions

ForA in range (r’):
ForB in range (s’):

Define T: IINPUT→ IOUT for Flipped image F in x-direction by F’ (r’, s’)) = F (r, s-k), where k∈ R
Define T’: IINPUT→ IOUT for Flipped image F in y-direction by F’ (r’, s’)) = F (r-k, s), where k∈ R

Save F, F’→ OM,∀M∈ N, OM∈ IOUT
End For

End For
End PROC_FLIP

Let us now consider IOUT = {O1, O2, O3, O4 . . . OM, ∀M ∈ N} and I’OUT = {O1, O2, O3,
O4 . . . OM, ∀M ∈ N} as pre-processed images of normal and rotten fruit, respectively. We
extract feature vectors F, and F’ of said datasets, and analyze with classification methods
described in Algorithms 5 and 6 below.

Algorithm 5: Ensemble Classification of pre-processed Images

Start: PROC_Fruits-Classification
Inputs: Feature Vector F of IOUT = {O1, O2, O3, O4 . . . OM,∀ M∈ N} images of different fruits
Outputs: Classification Outcomes vector of different fruits C achieved for P instances

Let us consider a collection IOUT = {O1, O2, O3, O4 . . . OM,∀M∈ N} of processed images
Let us extract the features by applying image embedding to extract F = {F1, F2, F3, Fi} features of images∀ i ≤ N

Analyze Pi instances with features F using AdaBoost classifier where each Pi in P
Analyze Pi instances with features F using the Decision tree classifier, each Pi in P
Analyze Pi instances having features F using Support Vector Machine (SVM) classifier, each Pi in P
Analyze Pi instances having features F using Random Forest classifier, each Pi in P
Analyze Pi instances with features F using GradientBoost where each Pi in P
Analyze the individual performance of all classifiers on Pi attributes of P for i ≤ N
Output the classification as a result C (Y ≤ 5) of Y classifiers

End
End: PROC_Fruits-Classification
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Algorithm 6: Ensemble Fruit Disease Classification of pre-processed Images

Start: PROC_Fruits-Disease_Classification
Inputs: Feature Vector F’ of I’OUT = {O1, O2, O3, O4 . . . OM,∀ M∈ N} images of rotten fruits
Outputs: Classification Outcomes of fruit disease vector C’ achieved for P instances
Let us consider a collection I’OUT = {O1, O2, O3, O4 . . . OM,∀M∈ N} of processed fruit disease images

Let us extract the features by applying image embedding to extract F = {F’1, F’2, F’3, F’i} features of fruit diseases images∀ i ≤ N
Analyze Pi instances with features F’ using AdaBoost classifier where each Pi in P
Analyze Pi instances with features F using the Decision tree classifier, each Pi in P
Analyze Pi instances having features F using k-Nearest Neighbor (kNN) classifier, each Pi in P
Analyze Pi instances having features F using Random Forest classifier, each Pi in P
Analyze the individual performance of all classifiers on Pi attributes of P for i ≤ N
Output the classification as a result C’ (Y ≤ 4) of Y classifiers

End
End: PROC_Fruits-Disease_Classification

Further, we implemented the bagging strategy to seek a classification model with
the lowest variance compared to single classification methods. The proposed ensemble
model achieved the best approximation of bootstrap samples. Let us consider M bootstrap
samples of size L as described,{

S1
1, S1

2, S1
3, . . . . . . S1

L

}
,
{

S2
1, S2

2, S2
3, . . . . . . S2

L

}
,
{

S3
1, S3

2, S3
3, . . . . . . S3

L

}
, . . . . . . ,

{
SM

1 , SM
2 , SM

3 , . . . . . . SM
L

}
(*)

In the above expression given by (*), SM
L represents L-th training examples of M-th

bootstrap samples. Based on M samples, we can fit about M weak learners Learner1 (.),
Learner2 (.), Learner3 (.), . . . . . . . . . . , LearnerM(.) to seek lower variance by averaging
their outcomes. The ensemble model thus becomes:

SM(.) = argTmax [card(m|Learnerm(.) = T)] (1)

Using equation 1, we apply soft voting policy, aggregate, and average the probabilities
of models presented in Figure 1, and retain the class with the highest mean probability.
In addition, the chosen models for voting policy adopted parallelism and provided the
flexibility to include as many models as required.

4. Results and Discussion

In the following Section 4.1 we present the numerical results as the performance
analysis of different classification methods, while Section 4.2 further illustrates the findings.

4.1. Results

We reviewed several publicly available fruit imagery datasets based on the reported
literature on fruit classification and disease identification. We noticed certain limitations
in adopting a single data source regarding limited data sizes, variability in fruit types,
variability in quality, and variability in disease type. Eventually, we extensively aggregated
and pre-processed multi-fruit data to simulate our proposed ensemble model on compre-
hensive datasets to cover fruit classification and disease identification. The multi-fruit
imagery data contained regular and augmented images of fruit including apple, apricot,
avocado, banana, cherry, fig, grape, guava, kiwi, mango, orange, peach, pear, pineapple,
and strawberry. Similarly, the multi-fruit disease imagery data also contains regular and
augmented images of different fruits including beans (two categories), strawberries (seven
categories), and tomatoes (three categories). We also identified images of fruits with differ-
ent shapes, sizes, quality, saturation, and labels that required intensive pre-processing to
normalize the fruit for an enhanced classification. In addition, we designed an auto-labeling
mechanism based on existing image clusters to label inconsistent data to the appropriate
classes. Lastly, we verified the auto-labeled data with a complete inspection to assign the
relevant classes correctly.



Agriculture 2023, 13, 500 9 of 20

We employed the following evaluation measures to investigate the performance of the
classification methods:

True Positive (TP): The outcome of the model when the model correctly predicts the
positive class

False Positive (FP): The outcome of the model when the model incorrectly predicts
the positive class

True Negative (TN): The outcome of the model when the model correctly predicts the
negative class

False Negative (FN): The outcome of the model when the model incorrectly predicts
the positive class

(a) Accuracy: The proportion of true results to the total number of cases examined,

Classification Accuracy (CA) =
TP + TN

TP + FP + FN + TN
× 100% (2)

(b) Precision: The proportion of predicted positives to be truly positive,

Precision =
TP

TP + FP
× 100% (3)

(c) Recall: The proportion of actual positives correctly classified,

Recall =
TP

TP + FN
× 100% (4)

(d) AUC: How well the probabilities from the positive classes are separated from the
negative classes.

(e) F1-Score: The overall performance of the model is measured

F1− Score =
2TP

2TP + FP + FN
× 100% (5)

Figure 2 shows the performance of different fruit classification methods. The decision
tree classifiers performed the worst, with an average of 0.85 for recall, F1 score, and
classification accuracy. The SVM and random forest classifiers depict similar outcomes
on almost all evaluation metrics, with evaluation measures of 0.93 to 0.95. The proposed
ensemble classifier outperforms all other classification methods, achieving 100% for AUC,
CA, F1 score, precision, and recall.
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Table 1 presents the misclassification (partial confusion matrix) of different classifica-
tion methods (only cells colored red refer to misclassifications). The decision tree classifier
depicts a more significant misclassification for some fruits, i.e., fig, guava, kiwi, mango,
orange, and pear. Gradient boosting and random forest misclassified guava, mango, and
pear. The ensemble classification had no misclassification except for guava (5%) and
outperformed all single classification methods. Almost all classification methods carried
a more considerable misclassification for the guava fruit. Similarly, mango was also mis-
classified to some extent by decision trees, AdaBoost, SVM, gradient boost, and random
forest algorithms.

Table 1. Misclassification of classification methods.

Fruit
Model

Decision Tree AdaBoost SVM Random Forest Gradient Boosting Ensemble
Apple 100% 100% 100% 100% 100% 100%

Apricot 100% 20% 100% 100% 100% 100%
Avocado 100% 100% 100% 100% 100% 100%
Banana 100% 100% 100% 100% 100% 100%
Cherry 100% 100% 100% 100% 100% 100%

Fig 14% 17% 100% 100% 100% 100%
Grape 100% 100% 100% 100% 100% 100%
Guava 20% 50% 17% 13% 33% 5%
Kiwi 20% 25% 100% 100% 100% 100%

Mango 14% 17% 17% 13% 33% 100%
Orange 50% 100% 100% 100% 100% 100%
Peach 100% 100% 100% 100% 100% 100%
Pear 40% 17% 100% 13% 17% 100%

Pineapple 100% 100% 100% 100% 100% 100%
Strawberry 100% 100% 100% 100% 100% 100%

Figure 3 presents the ROC analysis of the classification methods. The AdaBoost and
decision tree classifier methods performed the worst. Gradient boosting and random forest
classification methods show similar true positive/false positive rates. In contrast, the
ensemble classification method stands out with a significant curve leaning towards the
upper left corner of the ROC graph.

Further, we calculated the performance metrics of different classification methods for
fruit disease identification. We recorded the following observations.

Figure 4 demonstrates the performance analysis of different classification methods for
fruit disease identification. Here, we can notice that the decision tree classifier underper-
formed with an average of 0.67 for recall, precision, F1 score, and CA, while it achieved
0.86 for the area under the curve. Random forest showed an intermediate performance
compared to other classification methods, with an average score of 0.78 for recall, precision,
F1, and CA, while it scored 0.96 for the AUC metric. Similarly, the kNN performed well
for all evaluation metrics. We can notice the outperformance of the ensemble classification
method that scored 0.99 for the AUC and 0.93 for other evaluation metrics.

Table 2 shows the misclassification of classification methods for fruit disease identifi-
cation (only cells colored red refer to misclassifications). We can see that the decision tree
classifier had a more significant misclassification of 51%, 26%, 9%, 3%, and 6%, for Beans-1,
Beans-2, Strawberry-1, Strawberry-2, and Strawberry-4, respectively. Similarly, AdaBoost
missed fruits Beans-1, Beans-2, and Strawberry-5 with a more significant 77%, 19%, and
82%, respectively. The kNN and random forest misclassified Beans-1 and Beans-2 by 82%
and 76%, respectively. The ensemble classifier stood out with misclassifications of 3% and
7% for Beans-1 and Beans-2, respectively. Almost all classification methods misclassified
Beans-1 and Beans-2 to varying extents.

Figure 5 shows the receiver operating characteristic (ROC) curve analysis of the
classification methods. The AdaBoost and Decision Tree classifiers performed the worst,
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and kNN and Random Forest classification methods show similar true positive/false
positive rates. In contrast, the ensemble classification method stands out with a significant
curve leaning towards the upper left corner of the ROC graph.
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Table 2. Misclassification of classification methods for fruit disease identification.

Fruit
Model

Decision Tree AdaBoost kNN Random Forest Ensemble
Beans-1 51% 77% 82% 76% 3%
Beans-2 26% 19% 11% 24% 7%

Strawberry-1 9% 4% 7% 100% 100%
Strawberry-2 3% 100% 100% 100% 100%
Strawberry-3 100% 100% 100% 100% 100%
Strawberry-4 6% 100% 30% 50% 100%
Strawberry-5 100% 82% 70% 100% 100%
Strawberry-6 100% 100% 100% 100% 100%
Strawberry-7 6% 12% 100% 60% 100%

Tomato-1 100% 100% 100% 100% 100%
Tomato-2 100% 100% 100% 100% 100%
Tomato-3 100% 100% 100% 100% 100%
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4.2. Discussion

To analyze the performance of our proposed ensemble classification method, we com-
piled a larger dataset of over 20,000 images. A careful review of the literature reported the
employment of various datasets. The reported datasets varied to a larger extent regarding
the size, shape, quality, and variety of fruits for classification and disease identification.

We segregated our datasets into four major segments. We applied bootstrapping on
each segment to identify an optimal method for feature extraction. The study considered
Inception V3, Squeeze Net, VGG-16, VGG-19, and DeepLoc as the best candidate networks
for feature extraction.

Table 3 highlights the comparative analysis of different feature extraction methods.
We employed the convolution layers of these models. Based on the images’ embedding, we
noticed the following cumulative statistics:
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Table 3. Comparative analysis of feature extraction methods.

Segment 1

Model AUC CA F1 Precision Recall

Inception V3 0.930 0.868 0.866 0.887 0.868

Squeeze Net 0.980 0.962 0.963 0.972 0.962

VGG-16 0.950 0.906 0.907 0.928 0.906

VGG-19 0.930 0.868 0.840 0.832 0.868

DeepLoc 0.971 0.943 0.945 0.960 0.943

Segment 2

Model AUC CA F1 Precision Recall

Inception V3 0.921 0.849 0.856 0.916 0.849

Squeeze Net 0.969 0.943 0.942 0.956 0.943

VGG-16 0.950 0.906 0.916 0.958 0.906

VGG-19 0.950 0.906 0.908 0.931 0.906

DeepLoc 0.938 0.868 0.869 0.900 0.868

Segment 3

Model AUC CA F1 Precision Recall

Inception V3 0.998 0.962 0.964 0.975 0.962

Squeeze Net 0.998 0.962 0.962 0.970 0.962

VGG-16 0.992 0.962 0.964 0.975 0.962

VGG-19 0.992 0.962 0.964 0.975 0.962

DeepLoc 0.989 0.962 0.964 0.975 0.962

Segment 4

Model AUC CA F1 Precision Recall

Inception V3 0.998 0.935 0.939 0.955 0.935

Squeeze Net 0.989 0.946 0.951 0.964 0.946

VGG-16 0.987 0.935 0.940 0.957 0.935

VGG-19 0.987 0.927 0.934 0.956 0.927

DeepLoc 0.984 0.904 0.908 0.927 0.904

Figure 6 describes the performance metrics of different feature extraction models. For
our particular domain of fruit classification and disease identification, we recorded that
Squeeze Net outperformed the other models with an extent of 0.99 for AUC, 0.95 for CA, F1
score, and recall. In addition, it showed a precision of 0.97 compared to the other models.

Figure 7 shows the selection of features based on information gain, gain ratio, and Gini
index. The principal components are represented with letters ′ ′PC′ ′, for instance ′ ′PC3′ ′

represents the third principal component. The Gini index is considered an excellent split
criterion for most machine learning algorithms. This is the reason that we restricted our
findings to the Gini index. In addition, the other measures, i.e., information gain and
gain ratio, depicted similar characteristics. We can see the features sorted in descending
order with respect to the Gini index referring to the most robust features (candidates) for
performance analysis of ensemble classification models and other classifiers.
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Furthermore, we validated the feature selection using central data tendency measures
as shown in Figure 8. Figure 8 is a high-resolution figure prepared at 600 pixels per inch. It
may be zoomed in to view the contents.
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Figure 8. Basic consideration of measures for feature selection.

Figure 8 presents an exponential number format which can be read as follows, the
subsequent signed number (either plus or minus) succeeding “e” is raised to the power
of 10, for instance number 8 × 10−3 will be read as 8 × 10−3. The central data tendency
measure gives the data distribution with respect to mean, mode, and median. It also
glimpses the data dispersion, minimum, maximum, and missing values (if any) in certain
features. We can validate the chosen strongest candidates concerning variance in the data
and their distance from the mean. This gives us a second opinion regarding the selection of
better candidate features.

In addition, we also measured the relevance of features with each other as follows:
Figure 9 shows the impact between features. For instance, we can identify different

fruit clusters among principal components (1) and (2). Apple and cherry fruits are well
segregated, while mango, peach, pear, and strawberry overlap at certain data points of
two features. This is another dimension that gives us the co-relevance among principal
components to understand the dispersion of data into clusters shared by two or more
principal components.

Figure 10 presents the classification accuracy and error of different classification
methods. It should be noted that hyphen sign with vertical/horizontal scale represent
minus sign, for instance -8 can be read as (−, 8) for clarity. The actual accuracy is represented
with a green bar and the residual error with red bars. We can notice that the ensemble
method has negligible (or no) errors in the correct classification of fruits. Further, the
random forest and SVM classifiers show a similar residual error of 0.45. The decision tree
classifier carries the highest residual error in the correct classification of fruits.

Figure 11 shows the classification accuracy and error of methods for fruit disease
identification. The decision tree classifier carries the most significant residual error, while
kNN and AdaBoost contain an error in an intermediate range of 0.10. The random forest
algorithm shows a 0.21 error. The ensemble classifier produced the slightest error in fruit
disease identification.
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Further, we performed the analysis of variance (ANOVA) test on our simulated results
(including both fruit classification and disease identification). ANOVA employs the F-test
to investigate the variability between group means within and between the groups. We
achieved the following outcomes:

In Table 4, chosen on a 95% confidence interval (α = 0.05), the F value is 32.41, which
is significantly larger than the F-critical value of 2.62, achieving a p-value of 0.00, which is
significantly smaller than 0.05.

Table 4. ANOVA: Statistical significance of outcomes of fruit classification methods (α = 0.05).

SUMMARY

Groups Count Sum Average Variance

Decision Tree 5 4.39 0.878 0.0013647
AdaBoost 5 4.41 0.883 0.0007402

SVM 5 4.83 0.966 3.28 × 10−5

Random Forest 5 4.81 0.963 0.0000222
Gradient Boosting 5 4.74 0.948 4.6 × 10−5

Ensemble 5 5 1 0

Source of Variation SS df MS F p-value F crit

Between Groups 0.05957 5 0.01191 32.4103 0.00000 2.620
Within Groups 0.00882 24 0.00036

Total 0.068401 29

Similarly, we performed the ANOVA test on the outcomes of SOTA methods used for
feature extraction.

In Table 5, chosen on a 95% confidence interval (α = 0.05), the F value is 11.42, which is
significantly larger than the F-critical value of 2.866, achieving a p-value of 0.00, significantly
smaller than 0.05.
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Table 5. ANOVA: Statistical significance of outcomes of disease identification methods (α = 0.05).

SUMMARY

Groups Count Sum Average Variance

Decision Tree 5 3.59 0.718 0.0058
AdaBoost 5 4.41 0.883 0.0013

kNN 5 4.52 0.904 0.0008
Random Forest 5 4.13 0.826 0.0053

Ensemble 5 4.63 0.926 0.0012

Source of Variation SS df MS F p-value F crit

Between Groups 0.138120 4 0.0345 11.424 0.000054 2.866
Within Groups 0.060448 20 0.0030

Total 0.19856 24

5. Conclusions

We proposed a hybrid ensemble classification method for fruit classification and dis-
ease identification, inspired by multilevel fusion methodology that includes intensive fruit
image pre-processing, adoption of customized image kernels for feature extraction with
state-of-the-art (SOTA) deep learning methods, and Gini-index-based controlled feature
selection. Realizing the limitations of publicly available fruit imagery datasets regarding
data sizes, variability in fruit types, quality, and diseases, we extensively aggregated and
pre-processed multi-fruit data to achieve augmented images of various fruits, including
apple, apricot, avocado, banana, cherry, fig, grape, guava, kiwi, mango, orange, peach, pear,
pineapple, beans (two categories), strawberries (seven categories), and tomatoes (three
categories). The ensemble classifier outperformed all classification methods, achieving
100% and 99% classification accuracies for fruit classification and disease identification. We
validated the statistical significance of the classifiers’ outcomes at α = 0.05 and achieved
F-values of 32. 41 and 11.42 against F-critical values of 2.62 and 2.86, resulting in p-values
of 0.00 (<0.05) for fruit classification and disease identification. As a future work direction,
we consider implementing the hybrid ensemble algorithm to embedded devices for remote
classification of image sensory data. Another limitation of the study regards multiple si-
multaneous diseases in a fruit. New data sets need to be developed to test the performance
of our approach for such instances.
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