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Abstract: In the twenty-first century, machine learning is a significant part of daily life for everyone.
Today, it is adopted in many different applications, such as object recognition, object classification,
and medical purposes. This research aimed to use deep convolutional neural networks for the
real-time detection of diseases in plant leaves. Typically, farmers are unaware of diseases on plant
leaves and adopt manual disease detection methods. Their production often decreases as the virus
spreads. However, due to a lack of essential infrastructure, quick identification needs to be improved
in many regions of the world. It is now feasible to diagnose diseases using mobile devices as a result
of the increase in mobile phone usage globally and recent advancements in computer vision due to
deep learning. To conduct this research, firstly, a dataset was created that contained images of money
plant leaves that had been split into two primary categories, specifically (i) healthy and (ii) unhealthy.
This research collected thousands of images in a controlled environment and used a public dataset
with exact dimensions. The next step was to train a deep model to identify healthy and unhealthy
leaves. Our trained YOLOv5 model was applied to determine the spots on the exclusive and public
datasets. This research quickly and accurately identified even a small patch of disease with the help
of YOLOv5. It captured the entire image in one shot and forecasted adjacent boxes and class certainty.
A random dataset image served as the model’s input via a cell phone. This research is beneficial for
farmers since it allows them to recognize diseased leaves as soon as they noted and take the necessary
precautions to halt the disease’s spread. This research aimed to provide the best hyper-parameters for
classifying and detecting the healthy and unhealthy parts of leaves in exclusive and public datasets.
Our trained YOLOv5 model achieves 93 % accuracy on a test set.

Keywords: plant health detection; precision agriculture; deep learning; object detection; YOLOv5

1. Introduction

It is challenging to recognize plant diseases by optically analyzing their signs on plant
leaves. Skilled agronomists and plant pathologists frequently require help to accurately di-
agnose certain diseases due to the diverse array of cultivated plants and phyto-pathological
issues, resulting in incorrect diagnoses and treatments. Entomologists who are requested to
make these diagnoses by visual examination of diseased plant leaves would greatly benefit
from the development of an ASO (automated systems operation) to identify and diagnose
plant diseases [1]. Humans eat food that comes from plants. Furthermore, because plants
create oxygen, they aid in maintaining the oxygen in the air.

Without agriculture, the life we live would not be possible. All the goods we use daily,
such as oil, firewood, fiber, pesticides, medicine, and rubber, are extracted from plants.
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Plants, crops (fruits, vegetables, etc.), and the natural world are significant to humans.
Engaging with nature is crucial for improving an individual’s quality of life and delivering
various measurable advantages to human beings, including psychological/cognitive ad-
vantages [2]. A plant comprises several parts, such as leaves, flowers, stems, and roots. A
farmer may cultivate many plants, but diseases can impede their growth. Disease attack is
one of the primary reasons that lead to plant loss. Each year 10–16% of plant production
is reduced due to disease [3]. In past decades, the health consequences of exposure to
nature have been described in detail. However, the role of plants, such as money plants,
has received enormously little interest, as compared to the range of crop studies. Urban
people spend 80–90% of their lives in houses, offices, schools, etc. Good environments are
very important for their health. Indoor plants play an essential role in a good and healthy
environment, but their impact on the surroundings and human beings has not yet been
quantified [2]. Plants are crucial for removing harmful emissions from the atmosphere and
enhancing the ecosystem as well as providing a positive psychological effect, increased
health, and a comfortable indoor environment. The above studies have shown that plants
benefit humans, so caring for plants is also essential. However, there needs to be more
research conducted regarding the money plant.

Currently, several strategies for minimizing plant disease include the removal of
damaged plant leaves, mechanical cultivation, and the use of various pesticides. Using the
services of an agricultural professional is a simple way to detect plant disease. However,
manual disease detection takes a long time and is arduous work. The typical strategy is
to use pesticides [4,5]; however, excessive pesticide use may enhance plant growth while
harming plant quality. However, spraying more pesticides on plants before even assessing
the amount of pesticide required for a specific crop could negatively affect the environment
and human health [6].

However, plant disease recognition is more accessible through machine learning. The
use of this technique has been identified as a vital advancement and management success
for plant disease. The agriculture sector’s productivity has grown as a result as well.
Additionally, image processing methods have been added to this technology, which has
advanced during the last three years to its present state [7,8]. The nation’s problems, such
as lurgies affecting plants and humans, could be mitigated. Once the unhealthy plants were
recognized, they covered a large region.

Machine learning (ML) has been widely employed in the world today. AI, known as
ML, enables machines to interact with people and understand their needs. Additionally, it
enables machines to perform actions usually performed by people. Several issues impact
the reliability and performance of this technology, making it challenging for ML methods
to identify specific disorders. Figure 1 shows the traditional method of image processing.

Figure 1. Traditional image pre-processing techniques: The basic method of identifying plant diseases
using conventional image recognition processing technologies.

The first problem was the computational time involved with machine learning and
deep learning because some methods used to diagnose such diseases must be updated as
they rely on obsolete information. Another problem has been segmentation reactivity [9],
which refers to the high sensitivity and precision in the relevant field that is required (ROI).
A significant amount of resources are required to create and implement the bulk of machine
learning and deep learning tasks. Organizations that use this technology for people and
plants are frequently supported by non-government organizations, which may affect the
development and use of this technology.
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To identify diseased leaves, image recognition may be performed. According to
background research, by scanning images of infected and healthy leaves, experts in this
field have been able to compare them accordingly [10]. Several traditional image processing
techniques were used. The image processing had the following steps, e.g., the images were
segmented first, then the plant disease features were retrieved, and finally, the disease
was categorized. This research developed an attribute image-based method for classifying
wheat plant diseases and used an SVM to diagnose the condition [11] successfully. The
capability for generalizing new datasets has to be enhanced since attribute information can
only be learned superficially. Deep-learning methods, however, are being used in farming
research more often, as they can rapidly retrieve deep feature data and are quicker and
more accurate than the standard machine learning (ML) algorithms [12,13]. Researchers
have created a rider neural network based on the sine-cosine algorithm and discovered
that the classifier’s identification performance increased significantly [14]. As has been
demonstrated, deep-learning models have proliferated over the last decade. Experts have
been assisted by the numerous methods used in machine learning (ML) and deep learning
(DL) to quickly identify the causes of plant diseases and evaluate their symptoms. In
summary, deep learning has shown successful outcomes in the identification of plant
diseases. Our research was conducted on categories of plants because both plants and
crops have the same importance for the environment and humans. For the sake of world
health and well-being, it is essential to identify plant diseases accurately.

Figure 2 below depicts three of the most prevalent diseases that affect plants. Each
has distinctive signs and side effects on the leaf; these can be used to differentiate and
label the infections visually by the human eye and automatically by algorithms. In today’s
ever-changing environment, early detection of disease and early prevention is critical to
avoid issues that could otherwise arise. Figure 2 shows two types of data depicting the
classes in the dataset: the first depicts an unhealthy sample while the second shows healthy
sample.Therefore, the main goal was to achieve accurate detection between diseased and
healthy, and a deep-learning network-based YOLOv5 model was used in this study. The
described model has been useful in plant and crop plantations and agricultural production,
according to experiments conducted on images with complicated backdrops. Hence, deep
learning (DL) is the most accurate and precise way to identify diseases in plants with the
best results. The following is a summary of this work’s significant contributions:

• A dataset with several scenarios and sizes was created. There were a variety of
sophisticated backdrops, with varying lighting and perspectives, that featured images
of damaged leaves. This offered the optimal information to make plant disease
research easier.

• This study provided thorough, detailed literature on the methods currently used
in plant disease identification. It also reviewed the literature on the datasets used
in the research and provided a comparative analysis that identified various studies’
advantages and disadvantages.

• This study used different-deep-learning algorithms for the classification of plant anomalies.
• This study established the hyper-parameters for the applied deep algorithm for com-

parison with state-of-the-art plant disease classification algorithms (standard machine
learning (ML) approaches)

• This study evaluated the applied deep-learning algorithm with standard efficien-
cy parameters.

• This research evaluated 4 different target detection techniques, and the results of
the trials demonstrated that the suggested approach achieved an mAP of 93.1% on
both exclusive and public datasets at 120 frames per second (FPS). Precision planting,
visual management, and intelligent decision-making were all features of the YOLOv5
algorithm for economic productivity.

The following represents the paper’s essential topics. Before presenting the study
objectives, the relevant material and related work are introduced. Next, the model concept
and improvement, model training and testing, research object (dataset), and operation
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procedure are introduced. Then, the findings are examined to demonstrate the viability
and progress of the model used in this study. Finally, the overall research is reviewed, and
suggestions for further research are offered.

Figure 2. Data set visual representation.

2. Related Work

This research reviewed the detection of healthy and unhealthy leaves in plants; the dif-
ferent databases used to collect datasets, feature extraction, and feature selection techniques;
and the machine-learning and deep-learning models reported in the literature.Furthermore,
this research included an overall pipeline strategy employed in previous studies. Some re-
searchers worked on different stress responses in plants using deep-learning models. Plants
must handle stress due to various types of environmental factors, such as water stress, dust,
and diseases caused by bacteria that affect their health. In the past few years, machine-
learning techniques have been used for solving such issues, but deep learning, CNN, and
other algorithms have also been used for detection, evaluation, and comparison [15].

Meanwhile, other research has examined water stress in plants using deep-learning
techniques. Plant growth is controlled directly by plant water stress and only indirectly by
soil water stress, and this has resulted in losses of up to 90% due to water stress and heat
stress. Image processing is a directed way to measure the water stress in plants beyond the
limitations of traditional image processing. This researcher used deep-learning techniques
(Alex Net, Google Net, and Inception V3) on maize (Zea mays), okra (Abelmoschus esculentus),
and soybean (Glycine max) crops to identify water stress based on a 1200 images dataset [16].

Maize is the most cultivated crop in the world [17]. Its stable production has a
significant influence on food security. In addition, maize is sensitive to drought stress.
Many studies have shown that water stress during the agronomy and tasselling stages
reduced plant yield and caused a 29–32% final dry. Drought has become a vital factor that
lemmatizes maize yield. This research mainly focused on maize drought detection. Many
previous studies have explained the traditional detection methods based on power, low-
cost, and manual experiments.In recent years, image processing techniques and computer
vision technology have become widely used. Image processing is low cost, low power, and
convenient for real-time analysis techniques. According to the research, the water supply
in the two weeks before and after the pollination period determines the final yield. In this
study, they used different directions and wavelengths of Gabor filters. The results of the
experiments were 98.84% [18].

Avocado is a tropical fruit with a significant economic value in Florida [19]. The
research presented and evaluated an automated detection technique for avocado trees.
Remote sensing techniques have been used for detection and evaluation in order to compare
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healthy and unhealthy trees. In this study, laurel wilt (LW) disease was the focus, and they
differentiated sick and healthy trees (H). The detection of LW during its early stages is
challenging because it shows symptoms similar to other stress factors: nutrient deficiency
and salt damage. The accuracy of the experiment was 99%. Therefore, low-cost remote
techniques can be utilized to differentiate healthy and unhealthy plants.

However, this study focused mainly on plant disease automation in farming. It is
a major concern in many countries, as food consumption is growing at a rapid rate due
to population growth. Furthermore, modern technologies have improved the efficiency
and accuracy of disease detection in plants and animals. The detection procedure is the
first step in a workflow designed to combat diseases and limit their spread. The research
focused mainly on details about diseases and the implementation of artificial intelligence
to detect them quickly. Moreover, machine learning and deep-learning models are used
for the automatic detection of plant disease. Various datasets have also been examined for
achieving better outcomes for the research community [20].

Furthermore, in other research [21], PlantDoc showed a crop production loss of 35%
as a result of plant disease. The early diagnosis of plant infection is still challenging due
to a need for more tools and knowledge. This research examined the possibility of using
computer vision technologies for low-cost early diagnosis of plant diseases. The main
contribution of this research was the PlantDoc dataset that was mentioned in this research.

Previous research [22] has shown the importance of AI in different fields, such as
in medical communication, object recognition and detection, etc. This research was only
focused on bell pepper.Usually, bell pepper farmers are unaware if their plants are affected
by bacterial spot disease. The solution is early detection of infectious spot disease in bell
pepper plants. Bacterial spot disease in a bell pepper was detected using YOLOv5-based
symptoms on the leaves. They could detect even a small patch of disease faster and more
precisely using YOLOv5, and it enabled them to detect diseases during the early stages of
development and take appropriate steps to avoid disease spread.This research developed a
technique for identifying bacterial spots in bell pepper plants using farm images.

YOLO single-stage real-time object detection has demonstrated the importance of
the YOLO principle of object detection [23]. A single-stage network that forecasts the
class probability for multiple boxes is known as YOLO. The YOLO network captures the
whole image during training. In the aforementioned paper, they discussed the benefits and
difficulties of the YOLO algorithm. They contrasted the usual deep-learning methods with
YOLO. They noted that YOLO was efficient because it approached object identification as
a straightforward regression issue during comparisons. A simple network was optional.
They highlighted the core network’s 45 FPS (frames per second) speed. More rapid models
have been capable of exceeding 150 frames per second. The mean average accuracy was
twice as high as other widely used identification techniques. Background inconsistencies
were significantly lower, as compared to other deep conventional algorithms, such as faster
R-CNN (regions with CNN). There were some drawbacks, as well. Although their method
recognized images rapidly, it lacked sufficient accuracy.

In the article YOLOv2: Lighter, quicker, stronger [24], Joseph Redmon proposed a new
model that could fix the flaws in the previous version. YOLOv2 aided in resolving the
previous version’s drawbacks, with its relatively low recall and error analysis in localization.
This improved YOLOv2. In YOLOv2, Darknet-19 was implemented. Joint classification
and identification, together with hierarchical classification, improved YOLOv2.

A novel YOLO model (YOLOv3) was proposed that advanced the success of YOLOv2 [25].
YOLOv3 had three times the accuracy of conventional approaches, as compared to tra-
ditional networks. YOLOv3 yielded good results, as compared to YOLOv2; however,
YOLOv3 had limitations, and the component did not operate as intended for linear x y
prediction, IOU threshold, and ground-truth assignment. The authors of [26] presented
an implementation of the latest iteration, YOLOv4, in YOLOv4: Maximum speed and
efficiency of object detection. YOLOv4 increased the accuracy of object recognition. In ad-
dition, it raised the FPS and YOLOv3 mean average accuracy by 10% and 12%, respectively.
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In another study of deep models that was specifically focused on crops and also relevant to
agriculture, the researchers collected data exclusively before deploying several deep and
machine learning models to achieve state-of-the-art results [27,28].

3. Comparative Analysis of Selected Study

This study included a comprehensive literature review of previous object detection
experiments, as shown in Table 1. The main challenge was to observe all existing models
and then compare them with our YOLOv5 model results. After reviewing the existing
studies shown in Table 1, we filtered the studies based on our objectives and performed
a comparative analysis. A comparative analysis of these studies is shown in Table 2. The
different columns show the reference number of the study, the problem under consideration,
and the model(s) used to resolve the problem or proposed as a solution. Table 2 shows the
analysis and comparisons of the existing problems and the models proposed as solutions.

Table 1. Summary of related work on the identification of plant diseases.

References Year Methodology Dataset Size Accuracy

[1] 2018 Deep learning 87,848 images 99.53%

[29] 2021 CNN 20,636 98.029%

[30] 2018 Google net Reset 54,306 99.35%

[31] 2018 ANN Kaggle dataset 80%

[32] 2007 IOT Custom data Good Acc.

[33] 2018 3D leaf tracking 12 plants comparison

[34] 2019 HSI 6 plants comparison

[35] 2019 Remote sensing Sentinel-2 Fast, accurate

[36] 2019 Satellite images Landsat 8 Fast, accurate

[37] 2016 Machine learning CR262, MTU comparison

[38] 2019 Alex net Apples, cherry Layers convolution

[39] 2018 Alex Net Tomato leaves —

[40] 2019 SSD Banana RNN Improve

Table 2. Comparative Analysis of Selected Studies.

Ref Model Problem Dataset

[15] CNN Plants emotions detection Kaggle dataset

[16]
Google Net
Alex Net
Inception V3

Disease detection using deep learning Custom dataset

[19] Image processing Disease Detection in Avocado Custom dataset

[21]
Mobile Net
Faster RCNN Early plant disease detection Custom dataset

[22] YOLOv5 Bell-pepper disease detection Bell-pepper custom dataset

[25] YOLOv3 Object detection in images Kaggle dataset

[25] YOLOv4 Object detection in images Kaggle dataset

4. Materials and Methods

The methodology explains and discusses the proposed solution, data collection, pre-
processing, model choice, training, and evaluation. The proposed work was based on
deep-learning approaches and discussed this approach in detail. A comparative analysis
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compared the proposed approach and traditional deep-learning methods. In the section
on pre-processing, novel techniques were used for better results. Furthermore, because
CNN has been the most frequently used model in image classification, it also assisted in
producing accurate results. The proposed models were evaluated by applying techniques
and comparing the results. Figure 3 shows a step-by-step procedure that was used in the
plant disease detection and classification process. Furthermore, after gathering the data,
they were split into two parts, 80/20 training and testing, respectively. Deep-learning
(DL) models were then trained, either from scratch or using a learning strategy, and their
training plots were obtained to assess the model’s relevance. The next phase involved
classifying the images using performance matrices, and the last step involved localizing
the images using visualization techniques. Several phases were involved in identifying
unhealthy plant leaf regions, which are shown in Figure 3.

Figure 3. Plant disease identification step-by-step process.

4.1. Experimental Material

The images of the money plant leaves were collected from the University of Agricul-
ture in Faisalabad City, Pakistan, and also from FAST National University of Computer and
Emerging Sciences, Faisalabad Chiniot campus, Pakistan. The University of Agriculture
is at 31.4300 N, 73.0859 S, and the Fast Chiniot campus is at 31.6076 N, 73.0751 S, with
an annual temperature of 15/27 °C. Money plant diseases are typically caused by high
humidity and warm temperatures. The dataset was collected in a controlled environ-
ment. A HUAWEI/DUAL Lens was used for photography, with an image resolution of
1080 × 2340 pixels and a 19.5:9 aspect ratio. The acquisition of the dataset was one of the
key challenges we experienced while working on this research. Using a mobile camera
(HUAWEI/DUAL Lens) consumed a great deal of time while capturing images for our
exclusive dataset. All the above work was a difficult task for us. Therefore, this research
also used the additional dataset offered on the Kaggle website. This research used a public
dataset that was collected by Kaggle. The next step was to label the data after obtaining
the dataset.
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4.2. Preprocessing on Exclusive Data Set

In this research step, the labelIMG tool, as shown in Figure 4, labeled the images. For
tool installation, we used Python’s pip install labelIMG instruction to install labelIMG.
After the installation of labelIMG, the process began with labeling the images. We made
bounding boxes around regions of interest (ROI) in the labeling process.

Figure 4. Image selection for labeling.

Briefly, bounding boxes are placed around the unhealthy parts, as shown in Figure 5.
We then received a text file as an output after correctly labeling images. Table 3 represents
the classes used in our research.

Figure 5. Selected image with unhealthy tag.

Table 3. Dataset Classes.

Class No Class Class No Class

0 Un-Healthy 1 Healthy

One image had multiple bounding boxes depending on the leaves’ health condition.
The text file had two classes, healthy and unhealthy, with 0 and 1 decimal values. The
bounding box class was represented by the first decimal value followed by the centers of
the x and y axes, and then the dimensions. The X and Y axes cross at the center point for
bounding boxes.These values have been standardized between 0 and 1. We divided the
values by the width and height of the image to achieve this. This was conducted rather than
using a random integer since it was simpler to estimate values for the network between 0
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and 1. The number of bounding boxes drawn determined the number of lines there were in
the text file. The dataset was divided into training, testing, and validation. Table 4 shows
the total number of training, testing, and validation images.

Table 4. Total Dataset.

Training Sample Testing Sample Validation Sample Total Sample

2000 206 105 2311

After labeling the dataset as healthy or unhealthy, all the above work was conducted
with the help of an anaconda prompt. All the above tasks performed in labeling were
conducted with labelIMG.

4.3. Preprocessing on Public Data Set

This research work also used a public dataset from the Kaggle site, as shown in
Figure 6. The plant village dataset had 28 different classes of plants with 54,309 different
images. This research was focused on bell pepper and potato leaves. A total of 1000 images
were collected. The images were preprocessed to normalize their dimensions, reduce
noise, remove backgrounds, and minimize unwanted distortions. Each dataset image was
annotated with the labelIMG tool, and many annotation tools were used, such as coco
json, TensorFlow object detector, scale, label box, etc. Therefore, labelIMG tool assisted
in making bounding boxes around the leaves in all images. In real life, the images could
include many leaves or a mix of infected and healthy leaves. All of the leaves in the images
were explicitly labeled with their relevant healthy or unhealthy classes. The complete leave
was present in the box while labeling the boxes, and the bounding box area was at least
1/8 (roughly) of the image size. After labeling, all the coordinates of boxes in an image
and their related class labels were saved individually in a YOLO file for each image. The
resulting pictures were utilized in the next phase as input.

Figure 6. Plant village dataset with bounding boxes.

4.4. Plant Disease Detection and Classification Model Implementations
4.4.1. EfficentDet

Google researchers recently unveiled Efficient Net, which is a convolutional network.
The three sections are part of the object detector group known as EfficentDET. Efficient
NET serves as the foundation of Google’s information collection process. However, it
also recycles the milestones from ImageNet’s pre-trained network because it employs the
same spacing scaling parameters as EfficientNet-B0 through B6. The bi-directional feature
network serves as the feature chain for EfficentDET, as shown in Figure 7. BIFPN (bi-
directional feature pyramid network) is used for quick and simple 2D feature engineering.
The bi-directional feature pyramid uses scales ranging from levels 3 to 7, and the merging
process is performed several times. The magnitude levels identify objects in the image that
are of various sizes and densities. Image quality and size are directly related to the scaling
factor. Consequently, p3 > p4 > p5 > p6 > p7 and p3 > p4 > p5 > p6 > p7 are used to indicate
the resolution and quality of objects that were discovered. The bi-directional feature
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network is shown in Figure 7. The data flow direction of this method was bi-directional, as
shown by the top-down and bottom-up approaches.

Figure 7. EfficentDet model architecture.

4.4.2. FasterRCNN

Faster R-CNN, the most popular modern variant of the R-CNN series, was released
for the first time in 2015. The object proposal method was the only independent network
component in the fast regional convolutional network. Faster regional-based CNN and
simple RCNN both employ object detection algorithms that are dependent on the hardware
capacity. The CPU-based selective search technique, which processes one picture in approx-
imately two seconds, is shown in Figure 8. Moreover, it employs a region proposal network
(RPN) to provide object detection recommendations. This improves feature representation
overall by reducing the object proposal time per picture from 2 s to 10 milliseconds and
enabling the object detection step to share layers with the succeeding detection stages.

Figure 8. The architecture of Faster R-CNN.
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4.4.3. The Principal of YOLOv5 Model

The two-stage object detection methodology led the market before YOLO [25]. It
located regions using region of interest-based classifiers and passed those areas on to a
stronger classifier. This approach used a lot of resources and necessitates several runs, yet it
produced reliable results with high mAP values. The picture is first separated into columns,
each of which has an identical SxS-sized dimensional area.

S × S (1)

The next step is for each cell to identify and pinpoint the items it contains using the
bounding box dimensions, the object name, and the likelihood that the object is present
in the columns. Each column “works by itself”, processing the grid concurrently while
using fewer computer resources as well as training and inference time. In addition, YOLO
outperforms other real-time object identification algorithms and produces state-of-the-art
results. Furthermore, the output dimensions are

S × S(B × 5 + C) (2)

YOLO Versions

There are six different models introduced to date in the YOLO series (e.g., YOLOv1,
YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6). Our research focused on the YOLOv5
and below series and had better results than the traditional machine-learning model.

YOLOv5 Module

Glenn Jocher presented the one-stage target identification method known as YOLOv5 [31]
in 2020. Four network model variations of the YOLOv5 model were distinguished based on
differences in network depth and height: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
The YOLOv5s network had the highest computational speed but the lowest average process-
ing, whereas the YOLOv5x network exhibited the opposite traits. The YOLOv5 network’s
model size was around one-tenth that of the YOLOv4 network. Its detection and localiza-
tion abilities were faster, and its precision was on par with YOLOv4.

4.4.4. YOLOv5 Architecture

The YOLOv5 model in Figure 9 included three crucial components, similar to other
single-stage object detectors.

1. Backbone
2. Neck
3. Head

The essential purpose of the model backbone is to extract significant characteristics from
an input image. The CSP network was deployed as the backbone to extract important
attributes from an input image in YOLOv5. CSPNet demonstrated a considerable reduction
in processing time. The primary purpose of the model neck is to produce feature pyramids.
Feature pyramids assist the model in making suitable object scaling generalizations. It
facilitates recognition of the same item at various sizes and scales. Models perform effec-
tively on unobserved data due to the usage of feature pyramids. Other models such as
FPN, BIFPN, and PANet use other feature pyramid methodologies. PANet was utilized in
YOLOv5 as a neck to obtain feature pyramids. The last step was the final detection step,
which was carried out using the model head. The final output vectors were generated with
class probabilities, object scores, and bounding boxes after anchor boxes were applied to
the feature.
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Figure 9. Overview of YOLOv5.

4.4.5. Activation Function

In every deep neural network, the selection of the activation function is of great
concern. Many activation functions, such as Leaky ReLU, Mish, and Swish, have recently
been developed.

4.4.6. Optimization Function

Optimization was conducted with the assistance of SGD and ADAM.

4.4.7. Cost Function or Loss Function

A compound loss was produced for the YOLO algorithms based on the object score,
class probability score, and bounding box regression score. For the loss computation of
class probability and object score, ultralytics adopted the binary cross entropy with the
logit function from PyTorch. As compared to earlier versions of the YOLO series, version
5 provided superior detection accuracy, a lightweight design, and a quick detection time.
Accuracy and effectiveness were important for identifying plant diseases. Therefore, the
YOLOv5 model improved disease detection in the money, potato, and bell pepper plants.
The model architecture is shown in Figure 9.

4.5. Training Exclusive and Public Datasets on YOLOv5

The following stages were involved in training a custom YOLOv5 model:

1. First step was the environment configuration for YOLO.
2. Obtaining the YOLOv5 repository and installing plugins were the initial steps. As a

result, the programming framework was prepared for the execution of instructions
for object identification training and inference.

3. We trained a model on the free training environment provided by Google Collab.
4. Google Collab was likely operating on a Tesla P100 GPU.
5. Next, we downloaded the custom data from Roboflow in a YOLOv5 format.
6. After labeling the data, it was then exported to Roboflow. After uploading data

into Roboflow, it was converted into one of these formats (VOC XML, coco json,
TensorFlow object detection, etc.).

7. After uploading the data, we selected the preprocessing steps and augmentation.
8. Roboflow automatically divided the data into training, testing, and validation sets.
9. After annotating the images, we chose the YOLOv5 pyTorch format.
10. After the format steps, Roboflow provided a key or PIP package, as shown in Figure 10.
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Figure 10. Roboflow keys.

The above YOLOv5.YAML file name data.yaml file contained information about the
exclusive dataset, as well as the location of the YOLOv5 images. With the data.yaml file,
the training process could start immediately:
Img: Image size as the input image
Batch size: determine the length of the batch for training
Epochs: define the training steps
Cfg: model configuration

During training, mAP @ 0.5 minimum average precision was the major concern to
determine the detector’s performance.

YOLOv5 Evaluation and Validation Metrics

Figure 11 shows verification metrics to determine the training process performance.
Once the training process was completed, validation accuracy was performed, as shown in
Figure 11.

Figure 11. YOLOv5 training and validation graphs.

4.6. YOLOv6

With each iteration, the You Only Look Once model’s goal was consistent: to rapidly
learn how to predict bounding boxes for specific objects while preserving accuracy. The
better a model is, the less hardware that is required to generate and operate it. YOLO
models use an image as input and transmit it through a number of fully linked layers
in the backbone. You only look at one model after the model uses the neck to represent
these backbone elements. After receiving the neck features, the three heads of the YOLO
models anticipate objectivity, class, and box reversion. In order to develop an efficient
representation and representation-path integral-based convolutional (PAN) neck, YOLOv5
reconstructed the YOLO backbone and neck while accounting for the hardware. It had
already been established that YOLOx and YOLOv6 had detachable heads, which implied
the network had an additional layer separating these attributes from the ultimate head.
Along with structural changes, the YOLOv5 repository also included several enhancements
for the training procedure. These enhancements consisted of SIoU box regression loss,
SimOTA tag assignment, and anchor-free (not NMS-free) training [33].

5. Results and Analysis

This part of the research discusses the results and observations described in the
previous part of the research.
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5.1. Dataset Validation Results

After collecting the exclusive dataset, the main task was to perform validation on the
dataset and compare it with the public dataset. Here, the validation test was conducted on
the exclusive dataset, as shown in Table 5, and then compared with the public datasets, as
shown in Table 6.

Table 5. YOLOv5 on exclusive dataset.

Model Name Accuracy No. of
Images Precision Recall Dataset

YOLOv5 0.61 1k 0.60 0.62 Exclusive
Dataset

Table 6. YOLOv5 on public dataset.

Model Name Accuracy No. of
Images Precision Recall Dataset

YOLOv5 0.60 1k 0.61 0.63 Public Dataset

The comparison chart between the private and public datasets is shown in Figure 12.
Additionally, mAP (mean average precision) has established a benchmark for precision and
recall in proprietary datasets, requiring the use of 2000 samples as training data.

Figure 12. Dataset Validation Comparison Graph.

5.2. FasterRCNN

FasterRCNN has a considerable architecture. FasterRCNN is a fusion of Fast RCNN
and region proposal, which makes algorithms very fast and accurate with low computa-
tional cost on hardware, such as CPU and GPU. We deployed the exclusive and public
datasets on FasterRCNN architecture and achieved results, as shown in Table 7, which
could be better than other existing studies.

Table 7. FasterRCNN results.

Model Name Accuracy No. of
Images Precision Recall Dataset

FasterRCNN 0.45 2k 0.49 0.47 Custom,
public dataset

Figure 13 shows the visual results of the model, and Figure 14 shows the precision-
recall and mAP, which was 35%. This ratio was not optimal for object detection models.
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Figure 13. FasterRCNN visual representation.

Figure 14. FasterRCNN comparison graph.

5.3. EfficentDET

As discussed above, EfficentDET architecture in implementations presents the visual
representations of the results obtained from the EfficentDet code. We added the exclusive
and public datasets on EfficentDet architecture with the same hyper-parameters, as shown
in Figure 15. This was also not optimal, as compared to other existing studies. Figure 16
shows the visual results of EfficentDET.

Figure 15. EfficentDET parameters.

Figure 16. EfficentDET visual results.

Table 8 displays the EfficentDET findings and final results, which showed 35% accuracy
with around 39% precision and 49% recall value.
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Table 8. EfficentDET results.

Model Name Accuracy No. of Images Precision Recall Dataset

EfficentDET 0.35 2k 0.39 0.49 Custom,
public dataset

Figure 17 depicts the average accuracy, which was about 60% on average. Though
inferior to FasterRCNN, this was sufficient for an object detection model. Farming requires
accurate detection while detecting objects. Many additional strategies were conducted,
such as color correction and increasing epochs, but the accuracy required improvement.
Hence, we switched to the best object detection model, YOLOv5.

Figure 17. EfficentDET comparison graph.

5.4. YOLOv5 Experiments on Exclusive and Public Datasets

YOLOv5 is a state-of-the-art object recognition model that provides excellent mAP at
low-resource demand. Firstly, YOLOv5 was applied to an exclusive dataset, but due to
the few available datasets, we had to merge the exclusive dataset with the public to obtain
minimum average precision. Figure 18 depicts the model summary, layers epochs, image
size, etc.

Figure 18. YOLOv5 hyperparameters.

In the second experiment, we examined the validation loss, mAP, precision, and recall.
Figure 19’s graphs show the minimum average precision (mAP) at 0.5 and the minimum
average precision in the range of 0.5 to 0.95. The criteria for accuracy, recall, and intersection
over union (IoU) was used to plot the graphs.

Precision(P) =
TP

TP + FP
(3)

Recall(R) =
TP

TP + FN
(4)

• TP (True Positive) = How many instances were accurately detected



Agriculture 2023, 13, 510 17 of 26

• FP (False Positive) = Number of incorrectly identified cases between healthy and
unhealthy leaves

• FN (False Negative) = Number of unidentified cases between healthy and unhealthy leave
• IOU = Intersection over union
• K = threshold

Figure 19. Validation loss representing a fluctuation in results due to insufficient datasets.

Graphs of mAP (mean average precision), precision, and recall for training data
of 1000 samples are displayed in Figures 20 and 21. Graphs are an excellent tool for
exploratory data analysis, as they provide an overview of the relationships throughout the
whole dataset.

Figure 20. YOLOv5: mAP precision, and recall for training data of 1000 samples.
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Figure 21. mAP Graphs mAP, precision, recall, is increasing or decreasing with changes in hyperpa-
rameters.

5.5. YOLOv5 Results

YOLO environment configuration with complete and public datasets is described
below. To begin training, YOLOv5 YAML required two files. The first YAML defined the
locations of the test and training data as well as the number of classes of objects being
detected and the names of the items that belong to each class. The tuning parameters for
training and testing are shown in Figure 22. The overall findings of our model are shown in
Table 9, which were 93%, with a precision of 75% and a recall of 95%. The major advantage
of YOLOv5 was that, as compared to FasterRcnn, YOLOv5 operates 2.5 times faster and
managed better performance and detection of even small objects.

Table 9. YOLOv5 testing results.

Model Name Accuracy No. of Images Precision Recall Dataset

YOLOv5 0.93 2k 0.75 0.95 Custom,
public dataset

Figure 22. YOLOv5 experiment 2.

Figure 23’s graphs show the mAP at 0.5 and the mAP in the range of 0.5 to 0.95. The
mAP graph was increasing incrementally with increasing epochs. The criteria for accuracy,
recall, and intersection over union (IoU) were used to plot the graphs. Figure 23 depicts a
precision graph that increases up to 25 epochs before fluctuating.
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Figure 23. YOLOv5 training and validation graphs.

Figure 24 depicts the final recall metric, which was increasing with each epoch.

Figure 24. Recall graph YOLOv5: The recall is gradually increasing with the increment of epochs.

Figure 25 shows that the validation loss of YOLOv5 decreased significantly until epoch
20. After that, the validation loss declined and stopped at 0.06 and 0.05, at epoch 30.

Figure 25. Validation loss graph YOLOv5: Validation loss was decreasing gradually, indicating the
model prediction was significant.

Figure 26 shows the curve that indicated the confidence via F1 score.In the insight
figure, the orange line shows the healthy part of detection, and the green color shows the
unhealthy part of detection. The F1 curve indicated the PPV (precision) and TPR (recall)
collectively as one visualization for every threshold.
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Figure 26. F1 confidence curve: Comparison of progression of mean F1 score across all experiments,
grouped by training mechanism.

Figures 27 and 28 depict the confidence via recall and precision curves, respectively,
using the R curve.

Figure 27. Confidence according to R Graph: Across all experiments, recall growth was compared
and classified by training technique. It provided a substitute for the precision–recall curve.
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Figure 28. Confidence according to P curve graph: Comparison of the progression of precision across
all experiments, grouped by training mechanism.

Figure 29 shows the compromise between recall and precision at different thresholds.

Figure 29. Precision according to recall graph:The precision via recall graph represents both high
recall and high precision.

Confusion Matrix

A confusion matrix shows the variations between real and expected values, as shown
in Figure 30. It assessed the effectiveness of our machine learning classification model
using a table-like structure.
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Figure 30. Confusion matrix for YOLOv5: healthy images (190) identified, 513 images were unhealthy
and correctly identified.

A total of 190 images were true positives in this detection. Eight images in this
selection were false positives, and 28 were false negatives. Furthermore, the last 513 images
identified as unhealthy were correctly identified.

5.6. Experiments on YOLOv6

YOLOv6 was introduced recently with multiple changes. The same database was
applied on YOLOv6, and results were obtained. As shown in Table 10, we deployed both
datasets (exclusive and public datasets) on YOLOv6 and achieved 32% accuracy.

Table 10. YOLOv6 results.

Model Name Accuracy No. of
Images Precision Recall Dataset

YOLOv6 0.32 2k 0.35 0.58 Exclusive,
Public dataset

Figure 31 shows a comparison graph that depicts precision 30%, recall, and mAP of
the YOLOv6 model.
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Figure 31. Comparison chart: Comparison between precision, recall, and mAP.

5.7. Comparative Analysis

Figure 32 shows a comparative analysis between different deep-learning algorithms
(EfficentDet, FasterRCNN, YOLOv5, and YOLOv6). The graph displays the mAp score that
was produced by FasterRCNN, YOLOv5 (our method), EfficentDet, and YOLOv6.

Figure 32. Comparison Chart: Comparative analysis between EfficentDET, FasterRCNN, YOLOv5,
and YOLOv6.

6. Conclusions

This study used deep-learning techniques to classify healthy and unhealthy leaves.
The identification and recognition of plant diseases in the ecological world are crucial for
controlling plant diseases. In this research, a step-by-step procedure was performed. The
first step of this research was gathering data; two types of datasets were included. These
were the exclusive and public datasets, and then we performed the preprocessing steps on
the datasets. Labeling was the most important step in preprocessing because this research
had to follow a format acceptable to the selective neural network used for object detection
and localization on a region of interest. Therefore, this research provided an acceptable
format. Following preprocessing, this research employed augmentation techniques to
increase the quantity and quality of the datasets. This research empirically compared four
deep neural models to determine the best hyper-parameters and exclusive data validation.
Based on FasterRCNN, the model had 0.49 precision with 0.47 recall, and the accuracy was
0.35, which was very low, as compared to the state-of-the-art models. Then, the dataset was
deployed on the EfficentDET neural network, and the results were improved, as compared
to FasterRCNN but not as good as state-of-the-art models. In this research, validation of the
public dataset with the comparison of the exclusive dataset was also performed extensively.
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Furthermore, after performing the validation test, the YOLOv5 model was trained on the
public and exclusive datasets. Initially, the YOLOv5 model was trained on the pre-trained
hyper-parameters, after which we adjusted the hyper-parameters, as shown in the results
section, so the the mAP (0.5) was significant, and the final result was 93%. The approach
presented in this research outperformed earlier iterations of YOLO in speed and accuracy.
It may increase crop productivity by detecting and classifying plant disease.

7. Limitations

Our research had some limitations. There were still instances of missing or incorrect
detection. In order to increase the model’s detection precision, the model’s mechanism
needs to be further refined. Furthermore, using a high-resolution lenses for image capture
could improve accuracy further.

Future Work

After completing the work described above (e.g., dataset collection, preprocessing,
data annotation, data validation, and empirical investigation), we showed that fast detection
is possible, but it still requires specific hardware designs. Certain gaps need to be filled
by future research. The accuracy, execution time, and minimum average precision of the
models should be higher if the dataset is gathered using high-quality lenses (ultra-wide
angle) and a large team (7–8 members). YOLOv5 architecture will be improved in the future
and deployed as an android application, so it can be used for real-time object recognition
with the assistance of YOLOv5’s improved architecture.
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