Studies on the Physical Changes in Corn Seeds during Hybrid Drying (Convection and Microwave)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Description of the Hybrid Drying Equipment
2.3. Warm Air Convection System
2.4. Microwave Heating System
2.5. Operation of the Hybrid Dryer
2.6. Drying Procedure
2.7. Physical Properties
2.7.1. Determination of Seed Moisture
2.7.2. Shrinkage Ratio
2.7.3. Stiffness Measurement
2.7.4. Stress Crack Test
2.7.5. Color Measurement
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, D.; Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, J.R.; Sabillo´n, L.; Martinez, W.; Campabadal, C.; Hallen-Adams, H.E.; Bianchini, A. Traditional maize post-harvest management practices amongst smallholder farmers in Guatemala. J. Stored Prod. Res. 2017, 71, 14–21. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, H.; Mujumdar, A.S.; Tang, J.; Miao, S.; Wang, Y. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Crit. Rev. Food Sci. Nutr. 2017, 57, 1239–1255. [Google Scholar] [CrossRef]
- Priyadarshini, A.; Rajauria, G.; O’Donnell, C.P.; Tiwari, B.K. Emerging food processing technologies and factors impacting their industrial adoption. Crit. Rev. Food Sci. Nutr. 2019, 59, 3082–3101. [Google Scholar] [CrossRef] [PubMed]
- Arsenoaia, V.; Roșca, R.; Cârlescu, P.; Băetu, M.; Rațu, R.; Veleșcu, I.; Țenu, I. Drying process modeling and quality assessments regarding an innovative seed dryer. Agriculture 2023, 13, 328. [Google Scholar] [CrossRef]
- Nair, G.R.; Li, Z.; Gariepy, Y.; Raghavan, V. Microwave drying of corn (Zea mays L. ssp.) for the seed industry. Dry. Technol. 2011, 29, 1291–1296. [Google Scholar] [CrossRef]
- Ciurzy´nska, A.; Janowicz, M.; Karwacka, M.; Galus, S.; Kowalska, J.; Ga´nko, K. The effect of hybrid drying methods on the quality of dried carrot. Appl. Sci. 2022, 12, 10588. [Google Scholar] [CrossRef]
- Tang, J.; Feng, H.; Lau, M. Microwave heating in food processing. In Advances in Bioprocessing Engineering; Scientific Press: New York, NY, USA, 2002; pp. 1–43. [Google Scholar]
- Kumar, C.; Karim, M.A. Microwave-convective drying of food materials: A critical review. Crit. Rev. Food Sci. Nutr. 2017, 59, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Malafronte, L.; Lamberti, G.; Barba, A.A.; Raaholt, B.; Holtz, E.; Ahrné, L. Combined convective and microwave assisted drying: Experiments and modeling. J. Food Eng. 2012, 112, 304–312. [Google Scholar] [CrossRef]
- Blahovec, J.; Lahodová, M. Moisture induced changes of volume and density of some cereal seeds. Plant Soil Environ. 2015, 61, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Horabik, J. Charakterystyka wła´sciwo´sci fizycznych ro´slinnych materiałów sypkich istotnych procesach składowania. Acta Agrophys. 2001, 54, 5–121. [Google Scholar]
- Babić, L.; Radojčin, M.; Pavkov, I.; Turan, J.; Babić, M.; Zoranović, M. Physical properties and compression loading behaviour of corn (Zea mays L.) seed. J. Process. Energy Agric. 2011, 15, 118–126. [Google Scholar]
- Rusinek, R.; Horabik, J. Selected mechanical parameters of rapeseeds. Agric. Eng. 2006, 6, 213–221. [Google Scholar]
- Wei, S.; Wang, Z.; Weijun, X.; Wang, F.; Chen, P.; Yang, D. A heat and mass transfer model based on multi-component heterogeneity for corn kernel tempering drying: Development and application. Comput. Electron. Agric. 2020, 171, 105335. [Google Scholar] [CrossRef]
- Rathjen, J.R.; Strounina, E.V.; Mares, D.J. Water movement into dormant and non-dormant wheat (Triticum aestivum L.) grains. J. Exp. Bot. 2009, 60, 1619–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borkowska, B.; Banach, D. Assessment of selected physicochemical properties of wheat and rye from the northern and southern region of Poland. Rocz. Nauk. Stowarzyszenia Ekon. Rol. I Agrobiz 2018, 20, 18–21. [Google Scholar] [CrossRef]
- Wei, S.; Xiao, B.; Xie, W.; Wang, F.; Chen, P.; Yang, D. Stress simulation and cracking prediction of corn kernels during hot-air drying. Food Bioprod. Process. 2020, 121, 202–212. [Google Scholar] [CrossRef]
- Robert, C.; Noriega, A.; Tocino, A.; Cervantes, E. Morphological analysis of seed shape in Arabidopsis thaliana reveals altered polarity in mutants of the ethylene signaling pathway. J. Plant Physiol. 2008, 165, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Akowuah, J.O.; Maier, D.; Opit, G.; McNeill, S.; Amstrong, P.; Campabadal, C.; Ambrose, K.; Akrofi, G.O. Drying temperature effect on kernel damage and viability of maize dried in a solar biomass hybrid dryer. Open J. Appl. Sci. 2018, 8, 506–517. [Google Scholar] [CrossRef] [Green Version]
- Mondal, H.T.; Akhtaruzzaman, M.; Sarker, S.H. Modeling of dehydration and color degradation kinetics of maize grain for mixed flow dryer. J. Agric. Food Res. 2022, 9, 100359. [Google Scholar] [CrossRef]
- Işik, E.; Izli, N.; Akbudak, B. Microwave heat treatment of dent corn (Zea mays var. indentata sturt.): Drying kinetic and physical properties. Afr. J. Biotechnol. 2012, 11, 2740–2751. [Google Scholar]
- Askari, G.R.; Emam-Djomeh, Z.; Mousavi, S.M. Investigation of the effects of microwave treatment on the optical properties of apple slices during drying. Dry. Technol. 2008, 26, 1362–1368. [Google Scholar] [CrossRef]
- Krokida, M.K.; Maroulis, Z.B.; Saravacos, G.D. The effect of the method of drying on the color of dehydrated products. Int. J. Food Sci. Technol. 2001, 36, 53–59. [Google Scholar] [CrossRef]
- Boateng, I.D.; Soetanto, D.A.; Yang, X.M.; Zhou, C.; Saalia, F.K.; Li, F. Effect of pulsed-vacuum, hot-air, infrared, and freeze-drying on drying kinetics, energy efficiency, and physicochemical properties of Ginkgo biloba L. seed. J. Food Process. Eng. 2021, 44, e13655. [Google Scholar] [CrossRef]
- Peplinski, A.J.; Paulsen, M.R.; Anderson, R.A.; Kwolek, W.F. Physical, chemical, and dry-milling characteristics of corn hybrids of various genotypes. Cereal Chem. 1989, 66, 117. [Google Scholar]
- Cârlescu, P.; Țenu, I.; Băetu, M.; Arsenoaia, V.; Roșca, R. Coupled electromagnetic and heat transfer model for grain seeds drying in a hybrid dryer. In Proceedings of the 10th International Conference on ICT in Agriculture HAICTA 2022, Food & Environment, Athens, Greece, 22–25 September 2022; pp. 103–110. [Google Scholar]
- Kirleis, A.W.; Stroshine, R.L. Effects of hardness and drying air temperature on breakage susceptibility and dry-milling characteristics of yellow dent corn. Cereal Chem. 1990, 67, 523–528. [Google Scholar]
- Hazervazifeh, A.; Nikbakht, A.M.; Nazari, S. Industrial microwave dryer: An effective design to reduce non-uniform heating. Eng. Agric. Environ. Food 2021, 14, 110–121. [Google Scholar] [CrossRef]
- Wei, S.; Xie, W.; Zheng, Z.; Yang, D. Numerical and experimental studies on drying behavior of radio frequency assisted convective drying for thin-layer corn kernels. Comput. Electron. Agric. 2021, 191, 106520. [Google Scholar] [CrossRef]
- Montanuci, F.D.; Cavalcante, R.M.; Perussello, C.A.; Matos Jorge, L.M. Comparison of drying kinetics of maize in oven and in pilot silo dryer: Influence on moisture content and physical characteristics. Int. J. Food Eng. 2016. [Google Scholar] [CrossRef]
- Babić, L.; Radojèin, M.; Pavkov, I.; Babić, M.; Turan, J.; Zoranović, M.; Stanišić, S. Physical properties and compression loading behaviour of corn seed. Int. Agrophys. 2013, 27, 119–126. [Google Scholar] [CrossRef]
- Paulsen, M.R.; Hill, L.D. Corn quality factors affecting dry milling performance. J. Agric. Eng. Res. 1985, 31, 255. [Google Scholar] [CrossRef]
- Jackson, D.S.; Rooney, L.W.; Kunze, O.R.; Waniska, R.D. Alkaline processing properties of stress-cracked and broken corn (Zea mays L.). Cereal Chem. 1988, 65, 133. [Google Scholar]
- Bajus, P.; Mraz, M.; Rigo, I.; Findura, P.; Fürstenzeller, A.; Kielbasa, P.; Malaga-Tobola, U. The influence of drying temperature and moisture of corn seeds planted on their damage. Agric. Eng. 2019, 23, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, M.R.; Singh, M.; Singh, V. Measurement and Maintenance of Corn Quality. In Corn; AACC International Press: Washington, DC, USA, 2018; pp. 165–211. [Google Scholar]
- Chou, S.K.; Chua, K.J.; Mujumdar, A.S.; Hawlader, M.N.; Ho, J.A. On the intermittent drying of an agricultural product. Food Bioprod. Process. 2000, 78, 193–203. [Google Scholar] [CrossRef]
- Mabasso, G.A.; Siqueira, V.C.; Quequeto, W.D.; Schoeninger, V.; Simeone, M.L.F.; Froes, A.L. Proximal composition and colour of maize grains after intermittent and continuous drying. Int. J. Res. Agric. Sci. 2019, 6, 193–203. [Google Scholar]
No. Sample | Mci (w.b. %) | Mcf (w.b %) | Vi (mm3) | Vf (mm3) | Sr | Fi max (N) | Ff max (N) | ΔE |
---|---|---|---|---|---|---|---|---|
1 | 16.07 ± 0.48 | 13.69 ± 0.18 | 193.63 ± 29.23 | 175.27 ± 32.38 | 0.10 ± 0.010 | 314.73 ± 44.48 | 436.35 ± 21.12 | 0.57 |
2 | 16.18 ± 0.51 | 13.42 ± 0.23 | 199.00 ± 32.18 | 183.49 ± 22.26 | 0.08 ± 0.019 | 341,38 ± 22.62 | 456.81 ± 11.65 | 0.68 |
3 | 16.31 ± 0.33 | 13.78 ± 0.13 | 188.25 ± 42.28 | 168.47 ± 41.20 | 0.11 ± 0.008 | 309.16 ± 49.59 | 423.13 ± 28.29 | 0.43 |
4 | 16.56 ± 0.27 | 13.45 ± 0.24 | 190.94 ± 38.11 | 172.99 ± 28.31 | 0.10 ± 0.012 | 384.22 ± 11.52 | 461.01 ± 10.08 | 0.26 |
5 | 15.98 ± 0.45 | 13.81 ± 0.17 | 197.84 ± 33.21 | 184.24 ± 27.10 | 0.07 ± 0.018 | 352.29 ± 31.17 | 423.34 ± 32.11 | 0.32 |
6 | 16.28 ± 0.24 | 12.88 ± 0.14 | 194.58 ± 21.30 | 180.60 ± 19.42 | 0.08 ± 0.016 | 332.41 ± 26.11 | 429.96 ± 37.12 | 0.16 |
7 | 16.72 ± 0.42 | 13.01 ± 0.28 | 189.41 ± 36.21 | 174.14 ± 38.12 | 0.08 ± 0.012 | 343.31 ± 35.24 | 446.16 ± 16.82 | 0.44 |
8 | 16.42 ± 0.22 | 13.29 ± 0.11 | 191.45 ± 24.17 | 173.43 ± 41.17 | 0.10 ± 0.007 | 327.98 ± 36.15 | 439.12 ± 22.24 | 0.38 |
9 | 16.25 ± 0.19 | 13.47 ± 0.29 | 189.78 ± 34.27 | 171.87 ± 34.28 | 0.10 ± 0.015 | 312.12 ± 39.51 | 419.32 ± 26.34 | 0.29 |
10 | 16.48 ± 0.38 | 12.96 ± 0.32 | 194.91 ± 27.38 | 176.05 ± 29.39 | 0.10 ± 0.011 | 326.11 ± 28.58 | 444.02 ± 19.51 | 0.19 |
xmed | 16.32 | 13.37 | 192.97 | 176.05 | 0.09 | 334.37 | 437.92 | 0.37 |
s | 0.22 | 0.33 | 3.62 | 5.14 | 0.01 | 22.52 | 14.29 | 0.16 |
CV (%) | 1.38 | 2.52 | 1.88 | 2.92 | 14.31 | 6.73 | 3.26 | 44.09 |
R2 | 0.388 | 0.879 | - | 0.417 | - |
Status Seeds | Stress Crack Categories | SCI | |||
---|---|---|---|---|---|
Undamaged (%) | Single (%) | Double (%) | Multiple (%) | ||
wet seeds (16.18%) | 89 | 5 | 3 | 3 | 29 |
dry seeds (13.40%) | 67 | 16 | 11 | 6 | 79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cârlescu, P.M.; Băetu, M.-M.; Roșca, R.; Țenu, I. Studies on the Physical Changes in Corn Seeds during Hybrid Drying (Convection and Microwave). Agriculture 2023, 13, 519. https://doi.org/10.3390/agriculture13030519
Cârlescu PM, Băetu M-M, Roșca R, Țenu I. Studies on the Physical Changes in Corn Seeds during Hybrid Drying (Convection and Microwave). Agriculture. 2023; 13(3):519. https://doi.org/10.3390/agriculture13030519
Chicago/Turabian StyleCârlescu, Petru Marian, Mihai-Marius Băetu, Radu Roșca, and Ioan Țenu. 2023. "Studies on the Physical Changes in Corn Seeds during Hybrid Drying (Convection and Microwave)" Agriculture 13, no. 3: 519. https://doi.org/10.3390/agriculture13030519
APA StyleCârlescu, P. M., Băetu, M. -M., Roșca, R., & Țenu, I. (2023). Studies on the Physical Changes in Corn Seeds during Hybrid Drying (Convection and Microwave). Agriculture, 13(3), 519. https://doi.org/10.3390/agriculture13030519