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Abstract: Few mechanisms turn field-specific ecological data into management recommendations for
crop production with appropriate uncertainty. Precision agriculture is mainly deployed for machine
efficiencies and soil-based zonal management, and the traditional paradigm of small plot research
fails to unite agronomic research and effective management under farmers’ unique field constraints.
This work assesses the use of on-farm experiments applied with precision agriculture technologies
and open-source data to gain local knowledge of the spatiotemporal variability in agroeconomic
performance on the subfield scale to accelerate learning and overcome the bias inherent in traditional
research approaches. The on-farm precision experimentation methodology is an approach to improve
farmers’ abilities to make site-specific agronomic input decisions by simulating a distribution of

heck f economic outcomes for the producer using field-specific crop response models that account for
check for

updates spatiotemporal uncertainty in crop responses. The methodology is the basis of a decision support
Citation: Hegedus, PB.; Maxwell, B.; system that includes a six-step cyclical process that engages precision agriculture technology to
Sheppard, J.; Loewen, S.; Duff, H.; apply experiments, gather field-specific data, incorporate modern data management and analytical
Morales-Luna, G.; Peerlinck, A. approaches, and generate management recommendations as probabilities of outcomes. The quantifi-

Towards a Low-Cost Comprehensive  cation of variability in crop response to inputs and drawing on historic knowledge about the field

Process for On-Farm Precision and economic constraints up to the time a decision is required allows for probabilistic inference
Experimentation and Analysis.
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that a future management scenario will outcompete another in terms of production, economics,
and sustainability. The proposed methodology represents advancement over other approaches by
comparing management strategies and providing the probability that each will increase producer

profits over their previous input management on the field scale.
Academic Editors:

Emanuele Radicett], Keywords: agroecology; crop modeling; crop production; decision support system; ecological
Roberto Mancinelli and management; on-farm experimentation; optimization
Ghulam Haider

Received: 2 December 2022

Revised: 12 February 2023

Accepted: 21 February 2023 1. Introduction

Published: 22 February 2023 The challenge of moving toward more sustainable agriculture includes the identifi-
cation of practices that will simultaneously increase farm profits, promote environmental

stewardship, enhance the quality of life of farmers and rural communities, and increase

= agricultural production [1-3]. To achieve sustainability, agricultural practices must recog-

nize the tradeoffs between production, profitability, and environmental impact, regarding

agronomic inputs, that are required to increase production while maintaining the resource

base on which agriculture relies [4,5]. The tools and technology of precision agriculture

(PA) hold great potential for sustainable management through the quantification of the

tradeoffs of agronomic inputs on the field scale where input management decisions are

made [6,7].
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Developed nations have been the primary adopter of precision agriculture tools
and technology due to the economy of scale in industrial farm operations, but industrial
agriculture in these nations also contributes the most to global agricultural inefficiency
and pollution [8,9]. PA is generally regarded as a management approach based on a
collection of tools that use spatial information to inform agricultural production practices
that could be applied on a subfield scale [10]. These tools include GPS guidance technology,
crop yield maps, and decision support tools that draw on the spatial information. PA is
often perceived as a replacement of local stakeholder knowledge, giving rise to farmers’
fears of the use of the technology for farmer replacement and the potential of “ecological
dystopias” [11,12]. On-farm experimentation (OFE) is an objective mechanism to reduce
inaccuracies stemming from small plot research when extrapolated across many miles and
to improve upon local trial-and-error-based knowledge by using locally parameterized
agroecological models that include local spatial and temporal variation and incorporate
and augment the farmers’ knowledge necessary for locally relevant decision making, rather
than replacing traditional knowledge [6,13,14]. OFE brings farmer research to the fields
on which decisions about agronomic inputs are made and approaches the complexities of
agronomic management on a field-specific basis [15].

Crop responses vary over time due to factors such as weather [16], and the response of
crops to varying agronomic input rates also varies, indicating the potential for site-specific
agronomic management to increase profitability and sustainability [16,17]. OFE shifts the
paradigm of agronomic research to “operational research” by using observations from farms
rather than from the closest geographic research station to objectively inform management
decisions [18,19]. The benefits of OFE have been studied and include increased productivity
and profits, and it has shown results in the adoption of sustainable practices simply by
increasing the local knowledge of system performance [20,21].

Yet, there is a significant research gap on how OFE and PA can be combined in a way
for farmers to apply the knowledge gained from each set of tools and methods into an
actionable management strategy that promotes crop production and sustainability. The
literature calls for holistic, flexible, and dynamic decision support systems that include on-
going assessments and the strategic monitoring of agroecological monitoring [22]. Decision
support systems provide the basis for creating management recommendations; however,
the development and adoption of decision aids in agronomic management have been
severely lacking in development [23,24]. In this paper, we address the gap in the literature
on the development of decision support systems rooted in adaptive management by pro-
viding the conceptual underpinnings for a decision support tool that combines PA with
OFE. We have developed a framework for generating management recommendations for
farmers that focuses on the maximization of crop production and sustainability, called
the on-field precision experimentation (OFPE) agricultural management methodology.
This flexible methodology specifically quantifies the uncertainty in management outcomes
based on local spatial and temporal variability and presents the uncertainty as probabilities
of improving upon farmers’ traditional approaches.

The objectives of the OFPE methodology were to (1) use precision agriculture tech-
nology to implement on-farm experimentation for the collection of data required to model
crop responses to spatially varying agronomic inputs, (2) apply open-source data and
data collected from farmers’ operations to develop field-specific crop response models
to spatially varying agronomic inputs, (3) create a model-based approach for providing
farmers with recommendations for the management of agronomic inputs that quantify
spatial and temporal variability, (4) provide farmers with probabilistic outcomes of various
management strategies that allow farmers to make data-driven decisions about their field
management, and (5) frame the steps of the methodology as a theoretical decision support
system that can be repeatedly applied to fields over time. In the sections below, we first
begin by outlining the six-step methodology before describing each step in detail. This
includes reviewing some basic aspects of PA approaches that are important underpinnings
to the novel aspects of the methodology that follow. Then, we describe case studies of
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research conducted and reported on by the authors of this paper which highlight results
from the application of the OFPE methodology. The methodology has been developed
and applied over the past 6 years in 30 conventional and organic dryland wheat fields in
the Northern Great Plains (NGP) of the United States; however, it has the potential to be
adapted and used in any agronomic system.

2. Materials and Methods
2.1. Overview

The goal of the OFPE methodology was to provide crop managers with an approach
for generating management recommendations that can aid in decision making to increase
production, profit, and sustainability. Management recommendations for farmers using the
OFPE methodology were derived and evaluated through a six-step process. The steps are
outlined below and are delved into in more detail in the sections below. Currently, all steps
of the OFPE methodology are automated and available as an open-source R package called
OFPE via GitHub (https://github.com/paulhegedus/OFPE (accessed on 1 January 2020)).

e  Step 1A: first, a database management system was required to facilitate the storage
and organization of ecological field-specific data.

e  Step 1B: the development of on-farm experiments was implemented to assess the
ecological relationship between the crop, the environment, and the agronomic input
of interest.

e  Step 2: PA equipment and technology were used for the application of experiments
and the collection of field-specific data [6,16]. Additionally, data from open-source
data repositories were gathered.

e  Step 3: on-farm data and data from open-source data repositories were aggregated to-
gether on a grid across each field to create analysis-ready datasets for
ecological modeling.

e  Step 4: statistical and machine learning models that characterize the ecological inter-
actions among crop responses, the environment (topographic, weather, and edaphic
features), and experimentally varied agronomic inputs were trained with data aggre-
gated from on-farm and internet-available open sources, such as remote sensing data
from satellites.

e  Step 5A: Simulations were uniquely used to predict the probability of outcomes under
spatial and temporal variable conditions to generate agronomic input recommen-
dations while considering uncertainty in future weather and economic conditions.
Historic weather data were sampled to emulate potentially anomalous futures given
that weather conditions were used as independent variables in the crop response
functions [25].

e  Step 5B: based on predetermined goals and modeled crop responses across simulations,
optimized input rates were identified on a site-specific basis.

e  Step 5C: management outcomes, ranging from farmers’ traditionally selected rates to
site-specific optimized rates, were evaluated and presented to farmers and crop man-
agers as a probabilistic output, crucially leaving decisions about future management
in the hands of the farmers themselves.

e  Step 6: Part of the field was then prescribed the newly selected optimization strategy,
and part was left in experimental blocks for continued understanding of the temporal
variation seen across years. Over time, areas reserved for experimental blocks were
reduced to increase field optimization and farmer profit.

While we recognize that Steps 1-3 are elementary and common steps in many PA
approaches, we have described them in this paper because, although not novel themselves,
when combined with the other steps they make up the novel OFPE methodology.

The OFPE methodology was developed on dryland winter wheat systems in Montana,
USA, with the objective of optimizing top-dress nitrogen fertilizer rates based on maxi-
mizing farmer profits and minimizing nitrogen fertilizer use. The method has since been
tested in other places, in other rotation systems, and with other inputs such as certified
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organic fields to identify optimized cash crop and cover crop seeding rates based on max-
imizing profit from wheat grain yields. The adoption of the OFPE methodology by the
Data-Intensive Farm Management (DIFM) project trials in eight states and multiple coun-
tries [26] demonstrates the flexibility and adaptability of the approach, as the field-specific
nature of the methodology relies only on data from a specific field and performs model
selection to identify the form that best characterizes crop responses in a specific field [27].

Five principles distinguish the OFPE methodology from other agronomic decision-
making approaches. First, experiments are intended to inform management on the field
where OFPE was conducted under the assumption that field history can have a significant
impact on response to inputs [16]. Second, all variables used to predict crop responses
are from open-source or farmer-owned data that are available up to the time of an input
application decision [25]. Third, predictive ecological models built specifically for each field
evolve as new data are collected in subsequent years capturing temporal dynamics due
to weather and economic variability [27]. Fourth, the manager can simulate management
outcomes given different previous weather (precipitation and temperature), price, and cost
conditions associated with the previous 20 years, so all economic variables associated with
a farm are linked with weather variables from each year. Thus, a crop manager can simulate
the conditions most closely matching the current conditions, or they may explore a possible
range of outcomes under different assumed conditions (e.g., projected climate change).
Finally, the manager can use the simulations to compare different management application
approaches (site-specific variable rate application, model-selected uniform rate application,
a farmer-selected uniform rate, or application of the minimum rate possible) and determine
the probability (based on uncertainty of outcomes) that site-specific management will
produce a higher return on investment compared to other approaches.

2.2. Step 1A—Database Management Preparation

The deployment and development of the OFPE methodology centers around a data
management system that stores and facilitates the organization of the spatiotemporal data
collected by PA equipment and satellites. Prior to the implementation of the OFPE method-
ology, a database was created to contain farm and field information, such as boundaries,
grain yield, grain protein, agronomic input, and remotely sensed data. The development of
the OFPE methodology in this work used a secure PostgreSQL spatial database housed
on a cloud-based virtual machine to store farm and field information from farmer collabo-
rators. A key component of the OFPE methodology was gathering open-source data that
was expected to have an ecological relationship with crop yield or quality. In our case,
vegetation index data, weather variables, and soil characteristics were gathered from freely
available repositories and used as predictors in crop response functions and for simulating
outcomes in different years. This database also contained all of the open-source, on-farm,
and as-applied data gathered from experimental fields. The data management system
serves as the keystone of the “ecosystem” needed for digitally informed agriculture [26].

2.3. Step 1B—Experimentation

The first step in the OFPE methodology was the generation of field-specific exper-
iments. Experiments can be generated in any design selected by the user in the OFPE
methodology, to be flexible to context-specific research objectives, and to comply with
restrictions due to farm equipment. To identify the optimal input rates, experiments should
attempt to apply each experimental rate representatively across the entire field and in
some cases across previous crop responses as blocks of rates to capture potential subfield
variation in crop responses. Experimentally varying agronomic inputs, such as nitrogen
fertilizer or crop seeding rate, underpin the OFPE methodology by generating the datasets
required for modeling field-specific crop responses [26]. OFE using PA technology can
take many forms, ranging from the random assignment of agronomic input rates stratified
on previous data, such as yield, to more structured experimental designs [28]. The best
practices of OFPE include trial plots that exceed 120 m to allow equipment to change
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rates between plots and widths equivalent to at least two equipment passes to generate
statistically qualified designs [29,30]. Farmers and crop managers can design experiments
using the OFPE methodology online via an open-source web application created by the
authors (http:/ /trialdesign.difm-cig.org, accessed on 1 January 2021)).

Prior research has indicated that repeated PA-based experimentation in dryland Mon-
tana systems for 6-8 years was necessary to fully parameterize (capture temporal variability)
Bayesian empirical models of grain yield and grain protein concentration responses to
experimentally varied nitrogen fertilizer rates [31]. However, the number of years that
experimentation is required for may vary by field, depending on the uncertainty intro-
duced by climate change and shifting temporal trends in precipitation and temperature [32].
A backlog of experimental data from years with a diverse range of weather conditions
increases the likelihood that a given model can accurately simulate the uncertainty in crop
responses in unknown conditions of future years [27].

Initial experiments in a field with the OFPE methodology require experiments that
cover an adequate range of agronomic input rates from which a relationship between
crop responses and the input can be identified. Beyond the representation of rates, initial
experiments should also spatially represent the entire field (Figure 1).

Figure 1. Conceptual diagram of an example experimental layout in the OFPE methodology. Different
colors represent different rates of the agronomic input.

We hypothesize that as experimentation is repeated on a given field, the range of
rates represented each year, as well as the amount of the field covered in experimental
rates, can be minimized to diminish the influence of experimentation on management
while retaining statistical relevance. Yet, the minimization of the experimental area while
retaining statistical efficacy of the experiments continues to be an open research question.
After experiments were designed for a given field, they were reviewed by the farmer to
incorporate any agronomic adjustments they may have wished to make.

2.4. Step 2—Data Collection

The second step in the OFPE process involved data collection from farms and open
internet sources. The field experimental design map was given to a farmer for application,
typically using variable rate application (VRA) technology, was read by their input machine
(e.g., seeder, sprayer, etc.), and the rates were applied accordingly. The application data
were downloaded from the equipment and imported into the data management system to
account for differences between the prescription and actual application due to practical
limits on machinery. After harvest, crop response data were gathered from monitors
mounted on combines. Crop response data included yield monitor data but can also
include other crop response metrics, such as crop quality and grain protein concentration.
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With the aim of supporting a low-cost decision support system, the OFPE methodology
only utilized data collected from normal farm operations and data available from open
sources. This means that the OFPE process did not require data that came at an additional
cost in terms of time or money. Thus, in addition to data collected on farms, data from open-
source data repositories were utilized to provide field-specific information not gathered
from farmers’ equipment. These data included information about the crop or environment
which were useful prior to input application as they provided current field conditions
such as water availability, crop condition, and weed presence. Multiple open-source data
repositories provide easily accessible environmental data, such as Google Earth Engine [33].
Examples of supplementary data collected from Google Earth Engine include vegetation
index, water index, and topographic, weather, and soil characteristic data (Table 1).

Table 1. Table of covariate data types gathered from Google Earth Engine to create predictive models
for crop yield and protein datasets gathered from farms.

Data Type

Data Sources Resolution Years Collected Description

Normalized Difference

Vegetation Index
(NDVI)

Landsat is an ongoing
USGS and NASA
collaboration.
Bands (NIR, red)
L5/L7: B4 (NIR) and B3
(red)

L8: B5 (NIR)
and B4 (red)

L5: 1999-2011
L7: 2012-2013
L8: 2014—present

Landsat5/7/8 30 m

Normalized Difference

Water Index (NDWT)

Landsat is an ongoing
USGS and NASA
collaboration.
Bands (NIR, MIR)
L5/L7: B2 (MIR) and
B4 (NIR)

L8: B2 (MIR)
and B5 (NIR)

L5: 1999-2011
L7: 2012-2013
L8: 2014—present

Landsat5/7/8 30m

Elevation

USGS National
Elevation Dataset.
Measured in meters.

~10 m (1/3 arc second),

USGS NED ~23 m (3/4 arc second)

1999—present

Aspect

Direction the surface
faces, function of
neighboring elevations,
in radians, and also
calculated for each
E/W and N/S direction
as cosine and sine.

~10 m (1/3 arc second),

USGS NED 30m

1999—present

Slope

Rate of change in
height from
neighboring cells.
Measured in degrees.

~10 m (1/3 arc second),

USGS NED 30m

1999-present

Topographic Position
Index (TPI)

Measure of divots and
low spots as a function
of neighboring
elevation.

~10 m (1/3 arc second),

USGS NED 30m

1999—present

Precipitation

Estimates from the
NASA Oak Ridge
National Laboratory
(ORNL).
Measured in mm.

DaymetV3 1 km 1999—present
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Table 1. Cont.

Data Type

Data Sources Resolution Years Collected Description

Growing Degree Days
(GDDs)

Estimates from the
NASA Oak Ridge
National
Laboratory (ORNL).

DaymetV3 1 km 1999—present

Bulk Density

Soil bulk density (fine
earth) 10 x kg/mj3
averaged over 6
standard depths (0, 0.1,
0.3,0.6,1, and 2 m).

OpenLandMap 250 m 1999—present

Clay Content

Clay content in %
(kg/kg) averaged over
6 standard depths (0,
0.1,0.3,0.6,1, and 2 m).

OpenLandMap 250 m 1999—present

Sand Content

Sand content in %
(kg/kg) averaged over
6 standard depths (0,
0.1,0.3,0.6, 1, and 2 m).

OpenLandMap 250 m 1999—present

pH (phw)

Soil pH in H,O
averaged over 6
standard depths (0, 0.1,
0.3,0.6,1, and 2 m).

OpenLandMap 250 m 1999—present

Water Content

Soil water content
(volumetric %) for 33
kPa and 1500 kPa
suctions predicted and
averaged over 6
standard depths (0, 0.1,
0.3,0.6,1, and 2 m).

OpenLandMap 250 m 1999—present

Carbon Content

Soil organic carbon
content in x 5 g/kg
averaged over 6
standard depths (0, 0.1,
0.3,0.6,1, and 2 m).

OpenLandMap 250 m 1999—present

An important aspect of the OFPE methodology was the temporal constraint placed on
covariate data. All farmers face a point in time at which decisions about inputs must be
made. With modern satellite data collected at a weekly or daily resolution, farmers now
have access to current data up to the time of an application decision without additional
cost. Thus, temporal data used in crop response models of the OFPE methodology were
collected up to the decision point (e.g., mid-crop growth period before top-dress nitrogen
fertilizer application) to maximize the amount of information available at the time of
decision making [25].

2.5. Step 3—Data Aggregation

The on-farm and remotely sensed data had to be combined into georeferenced datasets
before analysis (Figure 2). During this aggregation process, the data required rectifying
variation in the resolution of data from disparate sources because differences in resolutions
between data can introduce uncertainty [34,35]. The resolution of covariate data collected
from satellite sensors ranged from 10 m for some vegetation index data to 1 km for weather
data such as precipitation and growing degree days. On the other hand, the temporal
resolution of grain yield and protein measurements was 3 and 10 s, respectively, with
spatial resolution across fields thus depending on the velocity and cutter bar width of
the harvester. The OFPE methodology was developed using a scale of 10 m for data
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aggregation, though users of the methodology would have the power to decide on the scale
appropriate for their system based on their machinery size. The 10 m scale was the smallest
resolution at which open-source data in the development process were gathered, meaning
that no upscaling of open-source data was required. Variability is lost when smoothing
over space; thus, the 10 m scale was selected to minimize the loss of information when
taking the median of multiple observations in one grid cell. A caveat is that many of the
open-source datasets used were collected or calculated at resolutions greater than 10 m. We
recognize that uncertainty was introduced when using coarse resolution data at the 10 m
scale because information about fine scale variation in those data was missing. No attempts
at downscaling were made as downscaling is beyond the scope of this paper, though this
topic represents an area in which future research could benefit the OFPE project.

pH

NDVI

Precipitation i

Bulk Density

Yield

Figure 2. Conceptual diagram of the aggregation process. Grids with a 10 m resolution were
overlayed on each field, and all data collected on farms and from remotely sensed information were
aggregated to the centroid of each 10 m grid cell. As-applied or as-planted data were also aggregated
to the centroid of grid cells via a spatial intersection of the grid points and the experimental data.
The aggregation process resulted in datasets on a 10 m scale for each field, and contained the crop
responses, experimental rates, and all remotely sensed covariates. In this example, measurement
values for a sample set of cells of remotely sensed raster data (pH, NDVI, precipitation, and soil
bulk density) were georeferenced to grain yield points via spatial intersection (represented by the
vertical lines).

2.6. Step 4—Data Analysis

Crucial to the OFPE methodology was the development of ecological models that were
used to characterize the relationships between the observed crop responses, experimentally
varied agronomic inputs, and the remotely sensed environmental variables. Though
it has long been studied, no consensus approach has been developed that adequately
captures spatial and temporal variability when modeling crop responses to agronomic
inputs [36,37]. The minimization of uncertainty related to the characterization of crop
responses to agronomic inputs requires model selection performed on a trial-by-trial
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basis, as the form of a model appropriate for one field is not always consistent with
neighboring fields, or even the same field in different years [38]. Additionally, when
modeling crop responses, the bias—variance tradeoff must be considered. Crop responses to
varying agronomic input can have a high degree of heteroskedasticity and assumptions of
a specific functional form or shape increase uncertainty and lead to models with reduced
prediction accuracy compared to models that do not assume a specific shape for the
data [27]. Increased predictive power translates into greater confidence in probabilities of
management outcomes and the suggestion of optimized input rates [25,27].

The OFPE project has considered multiple crop response model types for experimental
nitrogen fertilizer among other inputs. These have included non-linear models assuming a
logistic form, non-linear models assuming a beta function [39], generalized additive models,
random forest regression, Bayesian multiple linear regression models, and Bayesian non-
linear models [31]. These sets of models were used in a selection process to determine
the model type that best predicted crop responses in each field. The models listed are not
exhaustive but are meant to represent a spectrum of approaches with different underlying
assumptions about the approach. Different models may be incorporated into the OFPE
methodology and current research includes the exploration of other machine learning
approaches such as AdaBoost, stacked autoencoders, and convolutional networks [40-42].

2.7. Step 5SA—Optimization

Crop response models were necessary to find optimum agronomic input rates because
the optima could not be found directly via experimentation. At any given point in a field,
only one experimental rate can be applied, meaning that the true “optimum” was not
observable [43]. The optima thus must be identified via models in which crop responses
are predicted under a range of experimental rates. The definition of an optimum rate,
and whether single or multi-objective optimization was required, varied based on the
judgement of the user of the OFPE methodology and the agronomic system.

One example of a single-objective optimization includes a scenario where a barley
farmer using nitrogen fertilizer and selling to a brewer requires low protein content to
minimize the haziness of the beer. In this case, the optimum fertilizer rate for a given
location in a field is the rate that minimizes grain protein concentration. Another example
of single-objective optimization is a farmer growing wheat for an export market that
requires high protein content. The optimum fertilizer rate for a given location in the field is
identified in this case as the rate that maximizes grain protein concentration. Optimization
goals can also vary in the metric of interest. In most systems, the motivation for farmers
is not quality (e.g., protein content), but maximization of grain weight relative to costs,
which leads to profit. Corn or soybean systems require identifying optimum input rates
that simply maximize net return, or the price received for their yield minus expenses. In
the dryland winter wheat systems of Montana, farmers receive a premium or dockage
based on grain protein that is added or subtracted from the base price received for wheat,
making profit maximization more complex, while remaining a single-objective optimization
problem [44]. When farmer profits are the primary goal, an optimum nitrogen fertilizer
rate is the rate at which farmer net return is maximized and the cost of higher fertilizer
rates is not compensated by an increase in revenue.

While individual farmers typically pursue net profit as their broad objective, the
future of agriculture requires an emphasis on sustainability which is often translated as the
minimization of inputs that can pollute (e.g., nitrogen fertilizer). The OFPE methodology
creates the infrastructure for farmers to move beyond the considerations of profits and
consider sustainable environmental stewardship as well with multi-objective optimization.
While nitrogen is a major macronutrient for crops, contributing to yield and protein,
NGP soils are subject to soil acidification and nitrate loss in the forms of leaching and
denitrification due to excess nitrogen fertilizer use [45,46]. Thus, sustainable agriculture
requires defining an optimum nitrogen fertilizer rate based on the tradeoff between profit
and environmental quality. One approach for assessing the environmental impacts of
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nitrogen fertilizer requires models that estimate nitrogen use efficiency on a subfield scale
to inform crop managers on the potential of nitrogen loss and its cost [47]. In this case,
an optimum could be considered as the nitrogen fertilizer rate at which net return is
maximized and the value of nitrogen lost from a system (contributing to acidification or
leaching) is minimized.

To gain insight into how minimizing nitrogen application influences farming prof-
itability, a multi-objective approach was implemented, taking both net return maximization
and nitrogen application minimization into account. The nitrogen minimization objective
was a naive approach only aiming to reduce the pounds of fertilizer per acre applied to
farmers’ fields, assuming total nitrogen applied is positively related to pollution poten-
tial. The implemented algorithm found a set of solutions balancing the two objectives,
which allowed us to analyze the change in the net return of solutions focusing on reduced
fertilizer [48].

2.8. Step 5B—Simulation

Unpredictable weather and economic conditions induce uncertainty to any manage-
ment recommendation, since the optimal agronomic input rate at a given point in a field
may change depending on any variation in weather condition [25]. The optimum rec-
ommendation under one weather condition may not be appropriate for another, and a
field manager can only take a best guess at what the weather will be like in a future year.
Further uncertainty is introduced when considering the unpredictability of future economic
conditions. Optimum inputs at one price point will not match another. Simulation is an
important aspect of decision support systems because it allows users of the OFPE method-
ology to assess how potential management strategies perform under an array of possible
future conditions (Figure 3).

N (kg ha") = 180

1. Select weather
: ( condition ‘ N(kgha')=
l . 2. Simulate
4. Generate crop s
. . l Probabilistic responses |

Outputs

. ‘ 3. Economic J
Monte Carlo

Simulation

$

Figure 3. Overview of the OFPE methodology simulation and optimization process. Simulations

use the historic local performance of fields to assess the potential for variation in the efficacy of
management strategies using a probabilistic format. Simulations begin with the selection of possible
weather conditions, typically as a selection from a past weather year (1). Then, the data from that year
are used to predict crop responses at every location in the field for a range of agronomic input rates,
for example nitrogen fertilizer (2). The OFPE methodology used a bootstrap Monte Carlo simulation
approach to propagate uncertainty in weather and economic conditions by repeatedly sampling
the different economic scenarios tied to the weather year(s) selected (3). The repeated sampling
allowed for the identification of optimum input rates based on economic uncertainty and created a
distribution of predicted net returns for the selected years under the varying economic conditions (4).
This error propagation provided management outcomes that allowed a probabilistic perspective on
the risks in decision making, meaning users of the OFPE methodology received the probability that
one management approach provided higher profit or lower environmental damage compared to
another management approach.
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The OFPE methodology can be adapted to assess a range of different management
strategies to compare against site-specific management, such as applying a uniform rate se-
lected by the farmer, a full-field uniform optimized rate, or even zero rates of the agronomic
input (in the case of fertilizer or herbicide, for example). This provides users flexibility in
how to manage their land and data-driven insight into how management options compare.
Again, due to the flexibility in the OFPE methodology, the user can select any management
option they desire.

To generate a management recommendation for an upcoming year given the uncer-
tainty due to weather and linked economic variables, the OFPE methodology requires users
to select a year from the past that they expect would be representative of the upcoming year.
This produces a management recommendation that represents the user’s best guess at how
weather will behave in the year their management is applied. However, a user is not limited
to selecting a year from the past that they expect to coincide with weather in the upcoming
year. Instead, years from the past can also be selected randomly or non-sequentially to
emulate a future anomalous year. After selecting a year to simulate, the remotely sensed
data from that year were used to predict crop responses under the simulated conditions
using the selected field-specific model. Forecasted crop responses in the new conditions
were then made at every location in the field for a range of experimental rates.

Economic uncertainty was addressed in the second layer of the simulation. In this
layer, economic conditions from the years selected were iteratively sampled and used to
calculate net return. At each iteration of the simulation, optimized rates based on net return
at each location in the field were identified, as well as the net return from the other strategies.
Random sampling of the different years was repeated for a given number of iterations,
typically >1000, and the optimum management outcomes were tracked and evaluated after
the simulation of different management scenarios was completed. The iterations provided
a distribution of economic outcomes based on the economic conditions of the past that were
tied to the weather years selected in the first step of the simulation. These distributions
were what were used for a probabilistic comparison of management outcomes.

The flexibility in the OFPE methodology allowed users to define the degree to which
uncertainty was incorporated in the simulation. For instance, a user could tweak the OFPE
methodology’s simulation settings depending on their certainty about future weather
conditions. A user could run the simulation using the same conditions as the prior year,
or if a user was less certain about future weather conditions, they could use simulations
to compare management outcomes from years with varying weather conditions. This
ability will be ever more important as farmers continue to grapple with increasing weather
variability caused by climate change. In terms of economic uncertainty, if a farmer knows
the cost of their input and price received for the crop prior to applying management, they
could run the simulation with a fixed economic scenario rather than generating proba-
bilistic outcomes from the Monte Carlo simulation. Empowering farmers and users of the
OFPE methodology to apply simulation modeling when making data-driven management
decisions is a novel concept that PA and simple OFE have not addressed and therefore
represents an advance in the concept of locally gained knowledge.

2.9. Step 5C—Evaluation

As optimum agronomic inputs cannot be empirically evaluated, because only one
input rate can be applied at any given point in the field at any given time, the crop response
models’ fit in the fourth step of the OFPE methodology was crucial for evaluating the prof-
itability and sustainability of optimum rates and rates of different management strategies.
Site-specific optimum rates were found by using crop response models to make site-specific
predictions under varying agronomic input rates, but the model was also required to
predict the site-specific crop responses under a farmer’s traditionally selected uniform rate,
and any other selected management strategy. The OFPE methodology evaluated different
strategies in probabilistic terms, where at each iteration of the simulation, the mean net
returns of each strategy were compared. Given a strategy of interest, such as a site-specific
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approach, the number of times that the strategy yielded a higher net return, or other metric
of interest, compared to the other strategies, was recorded and divided by the total number
of iterations simulated. In this way, farmers were provided with the probability that a
given management strategy outcompeted another management strategy. The farmer then
had the choice of selecting from any of the management strategies, leaving the ultimate
decision about management up to them. While presented with a site-specific and full-field
optimized strategy, the farmer could elect to continue with their status quo if they liked the
odds of that strategy outperforming the optimized approaches.

2.10. Step 6—Decision Making

The final steps of the OFPE methodology occurred after the farmer was confronted
with probabilistic outcomes from the simulations. After the farmer selected their strategy,
they chose the extent to which experimentation and optimization rates were distributed
across their field. These were represented as three possible routes: full deployment of their
selected strategy (optimized or not), full experimentation, or a mix of both. In option one,
a farmer could adopt and apply their selected management strategy. In option two, the
farmer could begin the OFPE process again with another full field experiment. In option
three, a farmer could elect to adopt and apply the selected strategy in combination with
further experimentation. In the third case, experimental rates were distributed spatially
across the field at a lower density than full experimentation. Note that determining the
density and location of experimental plots represents a further optimization problem
and is currently being studied. While the first option is available to farmers, continued
experimentation through the second or third approach is highly recommended for two
reasons. First, experimentation is crucial for increasing the statistical power of the field-
specific crop response models, and second, as more data are gathered, models can be
refined for updating management recommendations.

3. Results

The OFPE methodology was applied in various systems (organic and conventional)
for managing inputs in rain-fed agroecosystems of the NGP as a proof of concept. In total,
30 fields across the United States and Canada were managed using OFPE principles. Each
step of the process was completed across multiple years in geographically distributed fields.
To display the flexibility and applicability of the OFPE methodology, four use-cases are
briefly highlighted below. We would like to emphasize that all references and results in
the sections below are from the authors of this manuscript and are included to highlight
evidence of the OFPE methodology in practice and in theory.

3.1. Application of On-Farm Precision Experimentation in Conventional Wheat Systems

In conventional systems, the OFPE methodology was applied to winter wheat fields
where the management directive was to optimize nitrogen fertilizer rates based on the
maximization of profit and minimization of the risk of nitrogen pollution. The results
from this research indicated that in 100% of the fields across three simulated weather
conditions, the OFPE management strategy produced site-specific optimized rates that
improved net returns compared to the application of a farmer-selected uniform fertilizer
rate [45,49]. In 50% of fields, the site-specific fertilizer rates from OFPE optimization
reduced the total amount of nitrogen fertilizer applied to fields compared to a strategy
applying a farmer-selected uniform nitrogen fertilizer rate [49]. These results suggested
that while site-specific management had a high probability of generating increased profits
for farmers, the probability that site-specific management reduced nitrogen fertilizer use
was equivalent to a flip of a coin. However, one could also argue that by site-specifically
applying the nitrogen to maximize net return and nitrogen use efficiency, more of the total
nitrogen was taken up by the crop and thus less was available as a pollutant compared
to a uniform application of the same total amount across the field. This indicated that
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site-specific fertilizer approaches that directly account for sustainability-focused objectives
in the decision process not only improve net return but also reduce environmental impacts.

3.2. Application of On-Farm Precision Experimentation in Organic Systems

All steps of the OFPE methodology were conducted on five organic farms across
Montana, as well as one farm in Manitoba, Canada. The OFPE methodology was applied,
where the management directive was to optimize the seeding rates of both nitrogen fixing
green manure cover crops and subsequent wheat cash crops for maximized net returns.
Variable-rate site-specific management from the OFPE optimization typically outcompeted
other management strategies, though in several instances a single uniformly applied
optimum rate was found to be as likely to produce the greatest net return as optimized
variable rates across the field [50]. Optimum seeding rates were found to be considerably
lower than the chosen farmer rates. Further research in this area will be to develop the
OFPE methodology in organic systems as a multiple objective optimization situation to
maximize annual net returns while simultaneously minimizing current and future weed
pressures. A series of different cover and cash crops including barley, wheat, oats, hemp,
and peas were tested, highlighting the versatility of the OFPE method in creating optimums
for any farm input.

3.3. Application of On-Farm Precision Experimentation for Improving Agronomic Modeling

The iterative process of the OFPE methodology becomes a monitoring mechanism
resulting in improved agroecological models because the methodology creates a data envi-
ronment for the application of modern analytical methods. For example, initial modeling
efforts demonstrated the potential of machine learning approaches for spatially explicit
modeling of the functional relationship between nitrogen fertilizer and crop yield [16].
Building on these initial approaches, we presented a novel convolutional neural network
(CNN) architecture called Hyper3DNetReg [42].

The Hyper3DNetReg architecture was tested using data collected from the OFPE
methodology’s application in Montana to tackle the yield prediction problem as a two-
dimensional regression task. This approach took a two-dimensional multi-channel input
raster and, unlike previous approaches, outputted a two-dimensional raster where each
output pixel represented the predicted yield value of the corresponding input pixel. Ex-
perimental results showed that the Hyper3DNetReg models improved predictions over
other traditional and more recent machine learning methods such as 3-D CNNs, random
forest, AdaBoost, and multiple linear regression [42]. This implied that the Hyper3DNetReg
network modeled the mapping from the feature space to the yield value space better than
other approaches did.

Furthermore, by using the Hyper3DNetReg model considering all admissible nitrogen
fertilizer rates, we could automatically generate non-parametric N-response curves that
were specific to each location of the field. Ultimately, this increased the predictive capacity
of the models given the spatial and temporal variability encountered [42]. The initial
results using two different winter wheat fields showed that different regions of the field
had different responses to the N fertilizer (Appendix A) and allowed for the further
refinement of approaches to identify site-specific input management. This research would
not have been possible without the data infrastructure created by the OFPE methodology,
demonstrating that the methodology proposed in this paper not only benefits practical
management for farmers but also increases the research and development of PA as a science.

3.4. Application of On-Farm Precision Experimentation for Conservation

The OFPE methodology has also been applied to enhance environmental quality and
conserve on-farm biodiversity. Two farms in Montana that practiced OFPE management
principles were used to assess plant and insect diversity as a proof of concept that small
uncropped areas can increase on-farm biodiversity [51]. Site-specific data collected from
the OFPE cycle were used to identify consistently low-yielding areas within a field that,



Agriculture 2023, 13, 524

14 of 20

when taken out of production, served as ecological refugia. Crop response models from the
OFPE methodology were integrated with ecological data on plant, insect, and landscape
diversity to assess the potential tradeoffs of removing land from production and conserving
it as habitats [6]. We hypothesized that beneficial ecosystem services such as pollination or
pest predation would be increased adjacent to areas with higher plant and insect diversity
(i.e., ecological refugia). A linear regression of diversity as a function of distance from un-
cropped areas demonstrated that plant diversity declined significantly with distance from
uncropped areas and into the crop field on both farms (p-value 0.13 and p-value = 0.011).
In addition, insect diversity declined significantly with distance from uncropped areas and
into the crop field (p-value < 0.0005). Biodiversity data were integrated with data collected
using the OFPE methodology in a random forest model [51]. The model indicated that dis-
tance from the uncropped area was the most important explanatory variable for yield and
that yield decreased significantly with distance from the uncropped area (p-value < 0.0001).
Managing for on-farm biodiversity may generate a suite of beneficial ecosystem services
such as enhanced pest suppression, weed seed predation, and crop pollination, though
accompanying negative impacts may include increased pest habitat, weed pressure, and
yield reduction [52-55]. The tradeoff analysis weighed the potential costs of lower yields
and exacerbated pest issues against the potential benefits of saved input costs and en-
hanced ecosystem services. The application of the OFPE methodology to on-farm precision
conservation enabled stakeholders to quantify the environmental benefits and agronomic
impacts of patch habitat within production fields. Without the field-specific knowledge
gained from managing the fields using the OFPE methodology, farmers would not be
able to identify, or easily assess, areas to create ecological refugia that benefit crop pro-
duction. The OFPE methodology’s application in conservation was key to clarifying the
relationship between on-farm biodiversity and yield, and to inform agronomic decisions
that affect environmental quality and net return and aid in environmental quality and
farm sustainability.

4. Discussion

Applications of the OFPE methodology indicated significant increases in local knowl-
edge that could be included in field-specific management. Site-specific management
recommendations created from the OFPE methodology were always more profitable than
farmers’ status quo management and showed potential for reducing agronomic pollution.
The OFPE methodology goes beyond practical management for farmers by providing
the data infrastructure needed for crucial advances in crop modeling, which will further
improve management recommendations. Additionally, the flexibility in the utilization of
the OFPE methodology has been shown to benefit conservation practices in fields that
promote agroecological management to advance sustainability goals. The case studies and
results found by the authors of this paper have demonstrated the efficacy of the OFPE
methodology as a decision support system in real farmers’ fields.

Only around 10% of farmers with PA technology use variable rate applications and
the lack of decision support tools is one of the main barriers to adoption [23,24]. PA
decision support has mostly focused on producing maps of crop yield or, on the other
end of the spectrum, mechanistic models that require extensive parameterization not
available to farmers [56,57]. Decision support systems are central to making management
recommendations for agronomic inputs by facilitating the collection and analysis of crop
response and remote sensing information from farms and open-source datasets. A farmer
with PA technology benefits from decision support systems that facilitate the organization,
storage, and translation of data to management recommendations [1,23,58]. The OFPE
methodology facilitates all of the processes via the six steps of the methodology and
provides a novel solution to the research gap surrounding the development of decision
support aids in the literature. We have presented a methodology that connects the research
from experimental design and deployment to data analysis, simulation, and the assessment
of results that directly supports producer decision making in a field.
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An important example of how decision support systems are impacted by using the
OFPE methodology is by automatically generating N-response curves. The shape of N-
response curves is traditionally used to estimate the economic optimum nitrogen rate
(EONR), which is defined as the nitrogen rate beyond which there is no actual profit for the
farmers [59]. In Figure A1, we depicted how we generated N-response curves with different
shapes for different regions of the field. This is significant and novel in the sense that N-
response curves are traditionally fitted using parametric response functions with a fixed
shape, assuming plateau-type, quadratic, or exponential behavior [60,61]. We argue that
fitting a single N-response curve for an entire field implies that the field is homogeneous
and behaves similarly at every location. What is more, traditional approaches assume
that the yield response can be modeled as a linear combination of the effect of multiple
covariates, implying that the shape of the N-response curve is not influenced by other
covariates. In contrast, by using the OFPE approach, we are able to generate non-parametric
N-response curves that took into account the information from all possible covariates. This
allowed us to produce N-response curves that were specific to each location. This also
allowed us to study how different covariates influenced the shape of the N-response curves
across the field.

As a big data industry, PA is overcoming prior barriers to adoption surrounding
the management and analysis of data by attracting significant investment and interest
in agronomic data analytics and software development [62-64]. However, open-source
decision support systems, such as the OFPE methodology, that use data that farmers
generate, or can obtain for free, are important ways to spur adoption by preventing farmers
from having to pay to make informed decisions. Though the OFPE methodology may not
immediately be adopted by farmers due to the data infrastructure and digital requirements,
it provides the logical underpinning of a decision support system for farmers in the form
of an open source or low-cost software and can be used as a framework for future software.

The OFPE methodology could benefit farmer cooperatives by facilitating empirically
driven adaptive management, where field-specific agronomic input decisions are gen-
erated and updated from iterative analyses of experimental data gathered in the given
field [65-67]. While increasing the adoption of variable rate technology remains a challenge,
providing and training farmers and crop consultants on our low-cost decision support
system can remove barriers to adoption surrounding the price associated with managing
and exploiting field-specific data (https:/ /www.youtube.com/watch?v=uRdaKmabnk4
(accessed on January 1 2022)). While full automation of PA technology and tools could
result in removing the farmer from the decision process, the OFPE methodology was pur-
posefully designed as a decision aid that augments rather than replaces farmer knowledge
of field-specific performance obtained through a range of learning approaches. Critically, a
farmer’s local knowledge of their fields is integrated into the OFPE methodology so that
agrarian livelihoods are supplemented, not threatened, by technology.

5. Conclusions

The on-farm precision experimentation methodology provides farmers with a novel
methodology to harness the data and tools from precision agriculture to inform manage-
ment decisions related to inputs and conservation. The on-farm precision experimentation
methodology addresses the challenge of implementing applied management with minimal
disruption of stakeholder practices while drawing on historic knowledge about the field.
Additionally, the methodology successfully bridges the gap between agronomic research
and agricultural management while addressing the unique constraints of individual farm-
ers’ fields. The flexibility and adaptability of the methodology mean that it can be adapted
to optimize agronomic inputs based on any reasonable user-defined criteria, as shown
by the case studies presented. The on-farm precision experimentation methodology has
been utilized by the Data-Intensive Farm Management project in over 150 fields across five
countries to generate site-specific agronomic input recommendations, demonstrating the
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ease of adoption by farmers and the broad applicability of the methodology to work across
different agroecosystems.
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Figure A1. Example of the type of N-response curves generated for different regions of a rain-fed
winter wheat field.
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