Influencing Factors on Bioavailability and Spatial Distribution of Soil Selenium in Dry Semi-Arid Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
Chemical Analysis of Soil Se and Plant Se
2.3. Enrichment Factor of Selenium in Zhongwei Soil
2.4. Spatial Analysis for Soil Se and Distribution Prediction Model
2.5. Statistical Data Treatment
Quality Control
3. Results and Discussion
3.1. Total Selenium Content and Spatial Distribution
3.1.1. Soil Se Enrichment Factor in Cultivated Soil
3.1.2. Soil Se Bioavailability Characteristics
3.1.3. Spatial Distribution of Se in Zhongwei
3.1.4. Selenium Characteristics in Different Crops
3.2. Impact of Soil Properties on Soil Se
3.2.1. Influences of Organic Matter (OM) in Se Content
T-Se (mg/kg) | B-Se (mg/kg) | B-Se (%) | pH | OM (%) | Clay (%) | Reference |
---|---|---|---|---|---|---|
2.00 | - | 8.00 | 8.11 | 4.00 | - | [95] |
- | - | <5 | 5.8 | 1.50 | - | [96] |
2.50 | - | - | 7.75 | 1.63 | 39.5 | [97] |
0.22 | 0.05 | 23.9 | 7.89 | 3.08 | 36.8 | [81] [98] |
0.14 | 0.04 | 27.1 | 8.06 | 3.44 | 35.7 | |
0.23 | 0.06 | 25.1 | 7.85 | 3.72 | 33.1 | |
0.17 | 0.04 | 22.6 | 7.25 | 4.43 | 41.3 | |
0.52 | 0.01 | 1.55 | 5.77 | 1.19 | 36.3 | [76] |
0.41 | 0.04 | 10.1 | 6.61 | 3.03 | 42.1 | |
0.53 | 0.08 | 15.8 | 8.14 | 0.85 | 39.6 | |
0.38 | 0.03 | 8.90 | 4.75 | 2.44 | - | [39] |
0.22 | 0.04 | 19.8 | 8.34 | 0.64 | 18.8 | [99] |
0.13 | 0.01 | 3.60 | 8.14 | 0.85 | 39.6 | |
0.36 | 0.01 | 1.94 | 6.82 | 5.14 | 11.1 | |
0.51 | 0.01 | 1.55 | 5.77 | 1.95 | 36.3 | |
0.08 | 0.01 | 12.9 | 7.75 | 1.63 | 39.5 | [100] |
0.68 | 0.08 | 13.0 | 6.70 | 2.90 | - | [67] |
- | - | 8.50 | - | - | - | [70] |
0.85 | 0.13 | 17.0 | - | - | - | [101] |
0.20 | 0.02 | 9.70 | - | - | - | [31] |
0.57 | 0.07 | 13.0 | 7.20 | - | - | [40] |
0.73 | 0.06 | 7.00 | 7.20 | - | - | |
0.37 | 0.12 | 3.00 | - | - | - | [88] |
0.59 | 0.01 | 3.40 | 5.60 | - | - | [69] |
- | - | 2.90 | - | - | [4] | |
0.25 | 0.02 | 11.10 | 7.90 | 2.24 | 31.4 | [41] |
0.167 (n = 371) | 0.028 | 16.76 | 8.27 | 0.71 | - | Present study |
3.2.2. Influence of pH on Se Content in the Soil
3.3. Verticals Distribution of Selenium in AS and NS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwarz, K.; Foltz, C.M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 1957, 79, 3292–3293. [Google Scholar] [CrossRef]
- Rayman, M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.-G.; Pilon-Smits, E.A.H.; Zhao, F.-J.; Williams, P.N.; Meharg, A.A. Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 2009, 14, 436–442. [Google Scholar] [CrossRef]
- Chilimba, A.D.C.; Young, S.D.; Black, C.R.; Rogerson, K.B.; Ander, E.L.; Watts, M.J.; Lammel, J.; Broadley, M.R. Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Sci. Rep. 2011, 1, 72. [Google Scholar] [CrossRef] [Green Version]
- dos Reis, A.R.; El-Ramady, H.; Santos, E.F.; Gratão, P.L.; Schomburg, L. Overview of Selenium Deficiency and Toxicity Worldwide: Affected Areas, Selenium-Related Health Issues, and Case Studies; Springer: Cham, Switzerland, 2017; pp. 209–230. [Google Scholar] [CrossRef]
- Li, D.-B.; Cheng, Y.-Y.; Wu, C.; Li, W.-W.; Li, N.; Yang, Z.-C.; Tong, Z.-H.; Yu, H.-Q. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci. Rep. 2015, 4, 3735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fordyce, F.M. Selenium Deficiency and Toxicity in the Environment. In Essentials of Medical Geology; Springer: Dordrecht, The Netherlands, 2013; pp. 375–416. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wang, N.; Li, S.; Li, L.; Su, H.; Liu, C. Distribution and transport of selenium in Yutangba, China: Impact of human activities. Sci Total Environ. 2008, 392, 252–261. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Jiang, Y.; Li, H.; Wang, W.; Yang, L. Effects of Soil Trace Elements on Longevity Population in China. Biol. Trace Elem. Res. 2013, 153, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, M.; Hou, J.; Jiang, C.; Li, S.; Wang, T. The prevalence of Keshan disease in China. Int. J. Cardiol. 2013, 168, 1121–1126. [Google Scholar] [CrossRef]
- Ellis, D.R.; Salt, D.E. Plants, selenium and human health. Curr. Opin. Plant Biol. 2003, 6, 273–279. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Tan, J.; Zhu, W.; Wang, W.; Li, R.; Hou, S.; Wang, D.; Yang, L. Selenium in soil and endemic diseases in China. Sci. Total Environ. 2002, 284, 227–235. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Luo, K.; Li, H. Environmental behaviors of selenium in soil of typical selenosis area, China. J. Environ. Sci. 2008, 20, 859–864. [Google Scholar] [CrossRef]
- Ni, R.; Luo, K.; Tian, X.; Yan, S.; Zhong, J.; Liu, M. Distribution and geological sources of selenium in environmental materials in Taoyuan County, Hunan Province, China. Environ. Geochem. Health 2016, 38, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; McDonald, T.J.; Sohn, M.; Anquandah GA, K.; Pettine, M.; Zboril, R. Biogeochemistry of selenium. A review. Environ. Chem. Lett. 2015, 13, 49–58. [Google Scholar] [CrossRef]
- Fordyce, F. Selenium geochemistry and health. AMBIO A J. Hum. Environ. 2007, 36, 94–98. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Xiang, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Huang, H.; Shang, C.; Luo, L.; Gao, J.; Tang, L. Selenium contamination, consequences and remediation techniques in water and soils: A review. Environ. Res. 2018, 164, 288–301. [Google Scholar] [CrossRef]
- Bailey, R.T. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health. Hydrogeol. J. 2017, 25, 1191–1217. [Google Scholar] [CrossRef]
- Johnson, C.C.; Ge, X.; Green, K.A.; Liu, X. Selenium distribution in the local environment of selected villages of the Keshan disease belt, Zhangjiakou district, Hebei Province, People’s Republic of China. Appl. Geochem. 2000, 15, 385–401. [Google Scholar] [CrossRef]
- Yu, T.; Yang, Z.; Hou, Q.; Lv, Y.; Xi, X.; Li, M. Topsoil selenium distribution in relation to geochemical factors in main agricultural areas of China. In Global Advances in Selenium Research from Theory to Application; CRC Press: London, UK, 2016; pp. 5–6. Available online: https://content.taylorfrancis.com/books/download?dac=C2014-0-365256&isbn=9781315687568&format=googlePreviewPdf#page=28 (accessed on 24 March 2019).
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran TA, T.; Wang, D.; Yang, W.; Zhou, F.; Wang, M.; Yu, D.; Liang, D. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef]
- Tan, J. (Ed.) The Atlas of Endemic Diseases and their Environment; Science Press: Beijing, China, 1989. [Google Scholar]
- Wang, Z.; Gao, Y. Biogeochemical cycling of selenium in Chinese environments. Appl. Geochem. 2001, 16, 1345–1351. [Google Scholar] [CrossRef]
- Tan, J.; Huang, Y. Selenium in geo-ecosystem and its relation to endemic diseases in China. Water Air Soil Pollut. 1991, 57, 59–68. [Google Scholar] [CrossRef]
- Sun, G.-X.; Meharg, A.A.; Li, G.; Chen, Z.; Yang, L.; Chen, S.-C.; Zhu, Y.-G. Distribution of soil selenium in China is potentially controlled by deposition and volatilization? Sci. Rep. 2016, 6, 20953. [Google Scholar] [CrossRef] [Green Version]
- Wadgaonkar, S.L.; Nancharaiah, Y.V.; Esposito, G.; Lens, P.N.L. Critical Reviews in Biotechnology Environmental impact and bioremediation of seleniferous soils and sediments Environmental impact and bioremediation of seleniferous soils and sediments. Crit. Rev. Biotechnol. 2018, 38, 941–956. [Google Scholar] [CrossRef]
- Eich-Greatorex, S.; Sogn, T.A.; Øgaard, A.F.; Aasen, I. Plant availability of inorganic and organic selenium fertiliser as influenced by soil organic matter content and pH. Nutr. Cycl. Agroecosystems 2007, 79, 221–231. [Google Scholar] [CrossRef]
- Tolu, J.; Thiry, Y.; Bueno, M.; Jolivet, C.; Potin-Gautier, M.; Le Hécho, I. Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Sci. Total Environ. 2014, 479, 93–101. [Google Scholar] [CrossRef]
- Xu, Y.; Hao, Z.; Li, Y.; Li, H.; Wang, L.; Zang, Z.; Liao, X.; Zhang, R. Distribution of selenium and zinc in soil-crop system and their relationship with environmental factors. Chemosphere 2020, 242, 125289. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Y.; Huang, B.; Zhang, H. Source apportionment of selenium and influence factors on its bioavailability in intensively managed greenhouse soil: A case study in the east bank of the Dianchi Lake, China. Ecotoxicol. Environ. Saf. 2019, 170, 238–245. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, G.; Sun, J.; Hu, Y.; Wang, T. Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation. Sci. Total Environ. 2019, 684, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Dinh, Q.T.; Anh Thu, T.T.; Zhou, F.; Yang, W.; Wang, M.; Song, W.; Liang, D. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil. Chemosphere 2018, 199, 417–426. [Google Scholar] [CrossRef]
- Lyu, C.; Qin, Y.; Zhao, Z.; Liu, X. Characteristics of selenium enrichment and assessment of selenium bioavailability using the diffusive gradients in thin-films technique in seleniferous soils in Enshi, Central China. Environ. Pollut. 2021, 273, 116507. [Google Scholar] [CrossRef]
- Jones, G.D.; Droz, B.; Greve, P.; Gottschalk, P.; Poffet, D.; McGrath, S.P.; Seneviratne, S.I.; Smith, P.; Winkel, L.H.E. Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 2848–2853. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Yin, R.; Wang, X.; Shao, S.; Chen, C.; Zhang, H. Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China. Sci. Total Environ. 2019, 669, 83–90. [Google Scholar] [CrossRef]
- Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. Selenium in Plants and Soils, and Selenosis in Enshi, China: Implications for Selenium Biofortification. In Ultrasound Technology in Green Chemistry; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Yuan, L.; Yin, X.; Zhu, Y.; Li, F.; Huang, Y.; Liu, Y.; Lin, Z. Selenium in Plants and Soils, and Selenosis in Enshi, China: Implications for Selenium Biofortification; Springer: Dordrecht, The Netherlands, 2012; pp. 7–31. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Li, H.; Wang, L.; Liao, X.; Wang, J.; Kong, C. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China. Sci. Total Environ. 2018, 633, 240–248. [Google Scholar] [CrossRef]
- Xiao, K.; Tang, J.; Chen, H.; Li, D.; Liu, Y. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a karst area of southwest China. Sci. Total Environ. 2020, 708, 135201. [Google Scholar] [CrossRef]
- Liu, N.; Wang, M.; Zhou, F.; Zhai, H.; Qi, M.; Liu, Y.; Li, Y.; Zhang, N.; Ma, Y.; Huang, J.; et al. Selenium bioavailability in soil-wheat system and its dominant influential factors: A field study in Shaanxi province, China. Sci. Total Environ. 2021, 770, 144664. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Yang, J.F.; Wei, L.X. Geochemical characteristics and bioavailability of selenium in alkaline soil in Shizuishan area, Ningxia. Geophys. Geochem. Explor. 2022, 46, 229–237. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Zhao, W. Distribution characteristics of selenium in cultivated soil and its influencing factors in Qingtongxia City of Ningxia. J. Agric. Resour. Environ. 2018, 35, 422–429. [Google Scholar]
- Wang, D.; Zhou, F.; Yang, W.; Peng, Q.; Man, N.; Liang, D. Selenate redistribution during aging in different Chinese soils and the dominant influential factors. Chemosphere 2017, 182, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.Y.; Li, Z.; Zhe, Y.Y.; Huang, J.; Liang, D.L. Selenate Adsorption and Desorption in 18 Kinds of Chinese Soil with Their Physicochemical Properties. Environ. Sci. 2016, 37, 3160–3167. [Google Scholar]
- Li, J.; Peng, Q.; Liang, D.; Liang, S.; Chen, J.; Sun, H.; Li, S.; Lei, P. Effects of aging on the fraction distribution and bioavailability of selenium in three different soils. Chemosphere 2016, 144, 2351–2359. [Google Scholar] [CrossRef]
- Wei, T.; Li, H.; Li, B. Analysis of Selenium Concentration in Soil and Fruit Samples of Jujube Orchard in Main Producing Areas and Test of Selenium-enriched Technology. Ningxia J. Agri. Fores. Sci. Tech 2018, 59, 16–19. [Google Scholar]
- Xuan, B.M. Effects of drip irrigation on potato planting in haiyuan county, ningxia hui autonomous region. Agric. Eng. Technol. 2017, 37, 15–17. [Google Scholar] [CrossRef]
- Liwen, M.A.; Jing LI, U.; Jinfu, M.A.; Xueyi, Z. A Meticulous Climatic Division Suitable for Potato Planting in Haiyuan County. Chin. Potato 2017, 31, 210–215. [Google Scholar]
- Li, Y.X.; Wang, S.D.; Ke, Y.; Luo, J.H.; Chen, X.Q.; Zhang, X.J. Characteristics of soil nutrients and present situation of fertilization in the major wolfberry producing areas of Ningxia. Gricultural Res. Arid Areas 2016, 34, 113–118. [Google Scholar] [CrossRef]
- Wang, X.; Shi, X.; Zhao, Y. effect of soil nutrients of different age grave-covered field on quality of water-melon in ningxia. Soil Fertil. 2015, 1, 150–153. [Google Scholar] [CrossRef]
- Chang, J.; Gao, X. Study on the benefit of planting selenium sand melon in zhongwei city. Soil Water Conserv. China 2009, 8, 48. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Wang, F. Spatial variability of soil organic matter in sands of Zhongwei City. Soil Bull. 2016, 47, 287–293. [Google Scholar]
- Qiao, P.; Yang, S.; Lei, M.; Chen, T.; Dong, N. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Sci. Total Environ. 2019, 664, 392–413. [Google Scholar] [CrossRef]
- Green, N. Principles of geographical information systems for land resources assessment. J. Quat. Sci. 1988, 3, 108. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Rafaqat, W.; Iqbal, M.; Kanwal, R.; Weiguo, S. Evaluation of Wildfire Occurrences in Pakistan with Global Gridded Soil Properties Derived from Remotely Sensed Data. Remote Sens. 2022, 14, 5503. [Google Scholar] [CrossRef]
- Hsiao, C. Analysis of Panel Data; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Wang, L.; Zhang, F.; Fu, W.; Tan, Q.; Chen, J. Analysis of Temporal and Spatial Differences and Influencing Factors of Energy Eco-Efficiency in Energy-Rich Area of the Yellow River Basin. Phys. Chem. Earth 2021, 121, 102976. [Google Scholar] [CrossRef]
- Hou, Q.Y.; Yang, Z.F.; Yu, T. Soil Geochemical Dataset of China; Geological Publishing House: Beijing, China, 2020. [Google Scholar]
- Pang, Y.; He, J.; Niu, X.; Song, T.; Fu, L.; Liu, K.; Bi, E. Selenium distribution in cultivated Argosols and Gleyosols of dry and paddy lands: A case study in Sanjiang Plain, Northeast China. Sci. Total Environ. 2022, 836, 155528. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, X.; Jiang, C.; Li, Q.; Liu, Y.; Gu, C.; Shang, L.; Lin, Y.; Larssen, T. Understanding the Paradox of Selenium Contamination in Mercury Mining Areas: High Soil Content and Low Accumulation in Rice. Environ. Poll. 2014, 188, 27–36. [Google Scholar] [CrossRef]
- DB 64/T 1220-2016; Standard for Selenium-Enriched Soil in Ningxia. Ningxia People’s Education Publishing House: Yinchuan, China, 2018.
- Gong, J.; Yang, J.; Wu, J.; Gao, J.; Tang, S.; Ma, S. Spatial Distribution and Environmental Impact Factors of Soil Selenium in Hainan Island, China. Sci. Total Environ. 2022, 811, 151329. [Google Scholar] [CrossRef]
- Yu, G.; Du, L.L.; Long, H.; Li, S. Characteristic research of Vertical Distribution of Selenium Element in Zhongning County, Ningxia. Resour. Environ. Eng. 2017, 31, 10. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, Y.; Chang, H. Soil quality and selenium evaluation of apple orchard in desertified area of Ningxia Hui Autonomous Region. Bullet Soil Water Conversat. 2019, 39, 66–76. [Google Scholar] [CrossRef]
- Xiao, K.; Lu, L.; Tang, J.; Chen, H.; Li, D.; Liu, Y. Parent material modulates land use effects on soil selenium bioavailability in a selenium-enriched region of southwest China. Geoderma 2020, 376, 114554. [Google Scholar] [CrossRef]
- Yu, D.; Liang, D.; Lei, L.; Zhang, R.; Sun, X.; Lin, Z. Selenium geochemical distribution in the environment and predicted human daily dietary intake in northeastern Qinghai, China. Environ. Sci. Pollut. Res. 2015, 22, 11224–11235. [Google Scholar] [CrossRef]
- Stroud, J.L.; Broadley, M.R.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; Mowat, H.; Norman, K.; Scott, P.; et al. Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil 2010, 332, 19–30. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Gao, S.; Tanji, K.K. Accumulation and speciation of selenium in evaporation basins in California, USA. J. Geochem. Explor. J. 2011, 110, 216–224. [Google Scholar] [CrossRef]
- Favorito, J.E.; Grossl, P.R.; Davis, T.Z.; Eick, M.J.; Hankes, N. Soil-plant-animal relationships and geochemistry of selenium in the Western Phosphate Resource Area (United States): A review. In Chemosphere; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; Volume 266, p. 128959. [Google Scholar] [CrossRef]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, M.; Eiche, E.; Neumann, T.; Winter, J.; Gallert, C. Hazardous concentrations of selenium in soil and groundwater in North-West India. J. Hazard. Mater. 2011, 189, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Watson, A. Desert soils. Dev. Earth Surf. Process 1992, 2, 225–260. [Google Scholar] [CrossRef]
- Blazina, T.; Sun, Y.; Voegelin, A.; Lenz, M.; Berg, M.; Winkel, L.H. Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nat. Commun. 2014, 5, 4717. [Google Scholar] [CrossRef] [Green Version]
- Zhai, H.; Xue, M.; Du, Z.; Wang, D.; Zhou, F.; Feng, P.; Liang, D.-L. Leaching behaviors and chemical fraction distribution of exogenous selenium in three agricultural soils through simulated rainfall. Ecotoxicol. Environ. Saf. 2019, 173, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.Z.; Cao, S.J. Investigation and analysis of selenium levels in four areas of Shandong and Sichuan Province. China J. Prev. Med. 2007, 41, 419–421. [Google Scholar]
- Meng, Z.L. Geochemical Characteristics of Selenium and Other Elements in Soil and Agricultural Products in Typical Areas of Shandong Province; Geological Engineering, China University of Geosciences: Beijing, China, 2016; p. 54. (In Chinese) [Google Scholar]
- Jia, S.J. Evaluation standards and genesis of selenium-rich soil in Anhui Province. Resour. Surv. Environ. 2013, 34, 133–137. (In Chinese) [Google Scholar]
- Peng, Q.; Guo, L.; Ali, F.; Li, J.; Qin, S.; Feng, P.; Liang, D. Influence of Pak choi plant cultivation on Se distribution, speciation and bioavailability in soil. Plant Soil 2016, 403, 331–342. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Li, Y.; Yu, J.; Yang, L.; Feng, F.; Chen, Z. Speciation, Distribution, and Bioavailability of Soil Selenium in the Tibetan Plateau Kashin–Beck Disease Area—A Case Study in Songpan County, Sichuan Province, China. Biol. Trace Elem. Res. 2013, 156, 367–375. [Google Scholar] [CrossRef]
- Li, Z.; Man, N.; Wang, S.; Liang, D.; Liu, J. Selenite adsorption and desorption in main Chinese soils with their characteristics and physicochemical properties. J. Soils Sediments 2015, 15, 1150–1158. [Google Scholar] [CrossRef]
- Peak, D. Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface. J. Colloid Interface Sci. 2006, 303, 337–345. [Google Scholar] [CrossRef]
- Supriatin, S.; Weng, L.; Comans RN, J. Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on Low-selenium arable land soils. Plant Soil 2016, 408, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.B.; Zhu, J.M.; Su, H. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China. Chemosphere 2012, 86, 626–633. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.; Peng, C. Distribution and storage of soil organic carbon in China. Glob. Biogeochem. Cycles. 2003, 17, 1048–1060. [Google Scholar] [CrossRef] [Green Version]
- Supriatin, S.; Weng, L.; Comans, R.N.J. Selenium speciation and extractability in Dutch agricultural soils. Sci. Total Environ. 2015, 532, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Yanai, J.; Mizuhara, S.; Yamada, H. Soluble selenium content of agricultural soils in Japan and its determining factors with reference to soil type, land use and region. Soil Sci. Plant Nutr. 2015, 61, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liang, D.; Peng, Q.; Cui, Z.; Huang, J.; Lin, Z. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma 2017, 295, 69–79. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Li, Z.; Tran TA, T.; Wang, D.; Liang, D. Role of organic acids on the bioavailability of selenium in soil: A review. Chemosphere 2017, 184, 618–635. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D.C. Stoichiometry in soil: Is there a ‘Redfield ratio’ for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Fierer, N.; Strickland, M.S.; Liptzin, D.; Bradford, M.A.; Cleveland, C.C. Global patterns in belowground communities. Ecol. Lett. 2009, 12, 1238–1249. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Frohne, T.; White, J.R.; DeLaune, R.D.; Rinklebe, J. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management. J. Environ. Manag. 2017, 186, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Winkel, L.H.; Annette Johnson, C.; Lenz, M.; Grundl, T.; Leupin, O.X.; Amini, M.; Charlet, L. Environmental Selenium Research: From Microscopic Processes to Global Understanding. Environ. Sci. Technol. 2012, 46, 571–579. [Google Scholar] [CrossRef]
- Wang, M.; Cui, Z.; Xue, M.; Peng, Q.; Zhou, F.; Wang, D.; Dinh, Q.T.; Liu, Y.; Liang, D. Assessing the Uptake of Selenium from Naturally Enriched Soils by Maize (Zea Mays L.) Using Diffusive Gradients in Thin-Films Technique (DGT) and Traditional Extractions. Sci. Total Environ. 2019, 689, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liang, D.; Wang, D.; Wei, W.; Fu, D.; Lin, Z. Selenium Fractionation and Speciation in Agriculture Soils and Accumulation in Corn (Zea Mays L.) under Field Conditions in Shaanxi Province, China. Sci. Total Environ. 2012, 427, 159–164. [Google Scholar] [CrossRef]
- Qin, P.; Wang, M.; Cui, Z.; Huang, J.; Chen, C.; Guo, L.; Liang, D. Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT). Environ. Pollut. 2017, 225, 637–643. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; Li, J.; Wan, Y.; Huang, Q.; Guo, Y.; Li, H. Effects of Different Forms of Selenium Fertilizers on Se Accumulation, Distribution, and Residual Effect in Winter Wheat–Summer Maize Rotation System. J. Agric. Food Chem. 2017, 65, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Dan, W.; Xue, M.; Wang, Y.; Zhou, D.; Tang, L.; Cao, S.; Wei, Y.; Yang, C.; Liang, D. Effects of Straw Amendment on Selenium Aging in Soils: Mechanism and Influential Factors. Sci. Total Environ. 2019, 657, 871–881. [Google Scholar] [CrossRef]
- Fayaz, A.; Peng, Q.; Wang, D.; Cui, Z.; Huang, J.; Fu, D.; Liang, D. Effects of Selenite and Selenate Application on Distribution and Transformation of Selenium Fractions in Soil and Its Bioavailability for Wheat (Triticum Aestivum L.). Environ. Sci. Pollut. Res. 2017, 24, 8315–8325. [Google Scholar] [CrossRef]
- Riikka, K.; Räty, M.; Yli-Halla, M. Selenium Fractions in Selenate-Fertilized Field Soils of Finland. Nutr. Cycl. Agroecosystems 2011, 91, 17–29. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Zhou, F.; Wang, M.; Peng, Q.; Wang, M.; Qi, M.; Tran TA, T.; Chen, H.; Liang, D. Assessing the potential availability of selenium in the soil-plant system with manure application using diffusive gradients in thin-films technique (DGT) and DOM-Se fractions extracted by selective extractions. Sci. Total Environ. 2021, 763, 143047. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Wang, M.; Tran, T.; Zhou, F.; Wang, D.; Zhai, H.; Peng, Q.; Xue, M.; Du, Z.; Bañuelos, G.S.; et al. Bioavailability of selenium in soil-plant system and a regulatory approach. Crit. Rev. Environ. Sci. Technol. 2019, 49, 443–517. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K. Adsorption-desorption reactions of selenium in some soils of India. Geoderma 1999, 93, 19–31. [Google Scholar] [CrossRef]
- Singh, M.; Singh, N.; Relan, P.S. Adsorption and desorption of selenite and selenate selenium on different soils. Soil Sci. 1981, 132, 134–141. [Google Scholar] [CrossRef]
- Masscheleyn, P.H.; Delaune, R.D.; Patrick, W.H. Transformations of Selenium As Affected by Sediment Oxidation–Reduction Potential and pH. Environ. Sci. Technol. 1990, 24, 91–96. [Google Scholar] [CrossRef]
- Johnsson, L. Selenium uptake by plants as a function of soil type, organic matter content and pH. Plant Soil 1991, 133, 57–64. Available online: http://www.jstor.org/stable/42937009 (accessed on 10 February 2022). [CrossRef]
- Song, T.; Cui, G.; Su, X.; He, J.; Tong, S.; Liu, Y. The origin of soil selenium in a typical agricultural area in Hamatong River Basin, Sanjiang Plain, China. Catena 2020, 185, 104355. [Google Scholar] [CrossRef]
- Lessa, J.H.L.; Araujo, A.M.; Silva GN, T.; Guilherme LR, G.; Lopes, G. Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome. Chemosphere 2016, 164, 271–277. [Google Scholar] [CrossRef]
- Zhijian, L.; Yu, G. Geochemical characteristics of selenium in soil in the selenium-rich area of Changshantou, Ningxia. Earth Envi Ronment 2017, 45, 628–633. [Google Scholar] [CrossRef]
- Kostopoulou, P.; Barbayiannis, N.; Noitsakis, B. Water relations of yellow sweetclover under the synergy of drought and selenium addition. Plant Soil 2010, 330, 65–71. [Google Scholar] [CrossRef]
- Reis, H.P.G.; de Queiroz Barcelos, J.P.; Junior, E.F.; Santos, E.F.; Silva, V.M.; Moraes, M.F.; Putti, F.F.; dos Reis, A.R. Agronomic biofortification of upland rice with selenium and nitrogen and its relation to grain quality. J. Cereal Sci. 2018, 79, 508–515. [Google Scholar] [CrossRef]
- Lyons, G. Selenium in cereals: Improving the efficiency of agronomic biofortification in the UK. Plant Soil 2010, 332, 1–4. [Google Scholar] [CrossRef]
- Mao, H.; Wang, J.; Wang, Z.; Zan, Y.; Lyons, G.; Zou, C. Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant Nutr. 2014, 14, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Galinha, C.; Sánchez-Martínez, M.; Pacheco AM, G.; do Freitas, M.C.; Coutinho, J.; Maçãs, B.; Almeida, A.S.; Pérez-Corona, M.T.; Madrid, Y.; Wolterbeek, H.T. Characterization of selenium-enriched wheat by agronomic biofortification. J. Food Sci. Technol. 2014, 52, 4236–4245. [Google Scholar] [CrossRef] [Green Version]
- Lyons, G.H.; Judson, G.J.; Ortiz-Monasterio, I.; Genc, Y.; Stangoulis, J.C.R.; Graham, R.D. Selenium in Australia: Selenium status and biofortification of wheat for better health. J. Trace Elem. Med. Biol. 2005, 19, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ren, J.; Xue, C.; Lin, E. Study on the Relationship between Soil Selenium and Plant Selenium Uptake. Plant Soil 2005, 277, 197–206. [Google Scholar] [CrossRef]
- Yuan, L.; Zhu, Y.; Lin, Z.Q.; Banuelos, G.; Li, W.; Yin, X. A Novel Selenocystine-Accumulating Plant in Selenium-Mine Drainage Area in Enshi, China. PLoS ONE 2013, 8, 65615. [Google Scholar] [CrossRef]
Se | B-Se | B-Se (%) | pH | OM | CaCO3 | Clay | AI | AA | CEC | |
---|---|---|---|---|---|---|---|---|---|---|
Se | 1.00 | |||||||||
B-Se | 0.76 ** | 1.00 | ||||||||
B-Se(%) | −0.02 | 0.53 ** | 1.00 | |||||||
pH | −0.22 * | 0.26 ** | 0.20 * | 1.00 | ||||||
OM | 0.47 ** | 0.22 * | −0.21 * | 0.07 | 1.00 | |||||
CaCO3 | 0.18 * | 0.35 ** | 0.28 ** | 0.62 ** | 0.03 | 1.00 | ||||
Clay | −0.04 | −0.04 | −0.06 | 0.08 | −0.02 | −0.01 | 1.00 | |||
AI | −0.07 | −0.28 ** | −0.16 | −0.11 | 0.00 | −0.09 | −0.06 | 1.00 | ||
AA | −0.05 | −0.06 | −0.12 | 0.07 | −0.09 | −0.02 | 0.07 | −0.05 | 1.00 | |
CEC | −0.07 | −0.03 | 0.05 | −0.08 | 0.08 | −0.07 | −0.10 | 0.15 | 0.215 * | 1.00 |
BSe | Coef. | St. Err. | t-Value | p-Value | 95% Confidence | Interval | Sig |
---|---|---|---|---|---|---|---|
Se | 0.734 | 0.054 | 13.59 | 0 | 0.627 | 0.841 | *** |
pH | 0.155 | 0.057 | 1.42 | 0.008 | 0.038 | 0.23 | ** |
OM | 0.252 | 0.069 | 3.10 | 0.002 | 0.249 | 0.055 | *** |
CaCO3 | 0.117 | 0.055 | 2.13 | 0.035 | 0.008 | 0.227 | ** |
Clay | −0.011 | 0.053 | -0.20 | 0.841 | −0.115 | 0.094 | |
AI | −0.178 | 0.042 | −4.24 | 0 | −0.26 | −.095 | *** |
AA | −0.06 | 0.05 | −1.22 | 0.226 | −0.159 | 0.038 | |
CEC | 0.104 | 0.054 | 1.91 | 0.059 | −0.004 | 0.211 | |
Constant | −5.023 | 5.52 | −0.91 | 0.365 | −15.953 | 5.906 | |
Mean dependent var | 26.836 | SD dependent var | 16.965 | ||||
R-squared | 0.700 | Number of observations | 128 | ||||
F-test | 34.713 | Prob > F | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farooq, M.R.; Zhang, Z.; Yuan, L.; Liu, X.; Rehman, A.; Bañuelos, G.S.; Yin, X. Influencing Factors on Bioavailability and Spatial Distribution of Soil Selenium in Dry Semi-Arid Area. Agriculture 2023, 13, 576. https://doi.org/10.3390/agriculture13030576
Farooq MR, Zhang Z, Yuan L, Liu X, Rehman A, Bañuelos GS, Yin X. Influencing Factors on Bioavailability and Spatial Distribution of Soil Selenium in Dry Semi-Arid Area. Agriculture. 2023; 13(3):576. https://doi.org/10.3390/agriculture13030576
Chicago/Turabian StyleFarooq, Muhammad Raza, Zezhou Zhang, Linxi Yuan, Xiaodong Liu, Abdul Rehman, Gary S. Bañuelos, and Xuebin Yin. 2023. "Influencing Factors on Bioavailability and Spatial Distribution of Soil Selenium in Dry Semi-Arid Area" Agriculture 13, no. 3: 576. https://doi.org/10.3390/agriculture13030576
APA StyleFarooq, M. R., Zhang, Z., Yuan, L., Liu, X., Rehman, A., Bañuelos, G. S., & Yin, X. (2023). Influencing Factors on Bioavailability and Spatial Distribution of Soil Selenium in Dry Semi-Arid Area. Agriculture, 13(3), 576. https://doi.org/10.3390/agriculture13030576