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Abstract

:

A sufficiently early and accurate prediction can help to steer crop yields more consciously, resulting in food security, especially with an expanding world population. Additionally, prediction related to the possibility of reducing agricultural chemistry is very important in an era of climate change. This study analyzes the performance of pea (Pisum sativum L.) seed yield prediction by a linear (MLR) and non-linear (ANN) model. The study used meteorological, agronomic and phytophysical data from 2016–2020. The neural model (N2) generated highly accurate predictions of pea seed yield—the correlation coefficient was 0.936, and the RMS and MAPE errors were 0.443 and 7.976, respectively. The model significantly outperformed the multiple linear regression model (RS2), which had an RMS error of 6.401 and an MAPE error of 148.585. The sensitivity analysis carried out for the neural network showed that the characteristics with the greatest influence on the yield of pea seeds were the date of onset of maturity, the date of harvest, the total amount of rainfall and the mean air temperature.
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1. Introduction


There are many challenges facing modern agriculture. The priority is to increase food production while minimizing environmental impact [1,2]. This task seems particularly difficult in the face of climate change and the occurrence of increasingly frequent extreme weather events, which pose a serious threat to crop yields [3]. It is assumed that about 67% of crop variability is governed by the weather conditions that prevail throughout the crop growing season, with 33% governed by other factors, such as agrotechnology or habitat conditions [4]. Therefore, early and accurate forecasting of crop yields is becoming increasingly important [5]. Being able to estimate yields a few weeks before harvest allows an appropriate strategy to be taken for the pricing of agricultural products. Yield prediction can also be a useful tool for decision makers in regulating both exports in case of surpluses and imports in times of agricultural commodity shortages [6]. In addition, early information on yields can help farmers in terms of work planning and storage space selection [7]. This knowledge can also help to improve the profitability of agricultural production by optimizing the number of crop protection and/or fertilization treatments. Lower usage of these products leads to a reduction in total labor inputs and on-farm energy inputs [8,9]. In the final balance, these factors contribute to increased labor productivity, conservation of natural resources and increased farm profitability through lower production costs [10]. Accurate and early prediction of crop yields also plays an important role in global food security by providing valuable information to various stakeholders (farm owners, agronomists, etc.) [11,12].



The need for accurate and timely predictive models for agricultural crop yield has led to a growing interest in this topic from the scientific community [13,14,15,16,17,18]. However, developing a predictive model is not an easy task [19]. The issue is extremely complex due to the multitude of factors affecting crop yield. The most commonly cited determinants include genotype and weather conditions, including rainfall, sunshine, minimum and maximum air temperature, habitat conditions (soil pH, soil nutrient abundance, etc.), agronomics and the interactions of these factors [20,21,22,23]. Many different approaches are used in yield forecasting, and each method has strengths as well as limitations [24]. One such method is multiple linear regression (MLR). MLR, as a statistical tool, is able to predict yield based on, among other things, agronomic data. However, the effectiveness of this method is often questioned due to its low prediction accuracy [25]. The major disadvantage of MLR models is that they are not appropriate for explaining non-linear and complex relationships between yield and the factors that influence yield [26].



With the development of information technology, modern mathematical algorithm techniques such as machine learning (ML) have begun to be applied. The possibility of using models based on artificial intelligence has contributed to an increase in accurate forecasting of random and non-linear issues [27]. This feature has made machine learning the method most commonly used in yield modeling [28,29]. In addition to its high prediction quality, ML is able to identify patterns in datasets and reveal complex relationships between independent variables [30]. Additionally, the advantage of ML over traditional linear regression methods lies in its ability to use, as explanatory variables, two or more spectral variables from satellite imagery [31]. The inclusion of these data in yield modeling is becoming an increasingly common practice due to further improvements in prediction quality and the prospect of capturing new correlations between these factors and crop yield [32]. Furthermore, in machine learning-based models, it is possible to use linguistic variables without having to code them in advance, as is the case with regression models [9,33]. The accuracy of yield estimation that is achieved by machine learning methods means that these models require large datasets from a variety of sources. In the case of a small number of predictors, the proper calculation of yield variability by ML usually suffers from a large prediction error [34]. Other limitations in the use of ML are that some methods require computationally powerful equipment and that analysis time is much longer than it is for multivariate linear regression [35,36]. Machine learning models are also sensitive to significant correlations between independent characteristics. For this reason, the dataset that is fed into the model often requires prior preparation, and additional statistical analyses may need to be performed to capture these correlations [37]. Some of the most successful machine learning techniques are support vector machines (SVMs), convolutional neural networks (CNNs), random forest (RF), k-nearest neighbors (kNNs) and artificial neural networks (ANNs) [38,39,40,41].



ANNs are a mathematical tool that can create a non-linear representation of the connections between the explained variable and the input variables [42]. ANNs are, to some extent, inspired by the functioning of parts of the real (biological) nervous system [43]. However, the connection patterns of neurons in artificial neural networks are chosen arbitrarily and are not a model of actual neural structures. ANNs as a computer tool are distinguished by their ability to solve practical problems in a computerized manner without prior mathematical formalization [44]. Another advantage is that it is not necessary to refer to any theoretical assumptions about the problem being solved when working with neural networks. Even the assumption of causal relationships between exploratory and explanatory features need not be enforced [45]. The computations performed by the ANN are performed in parallel. The artificial neurons that make up the network perform their computational tasks simultaneously. This makes the network capable of solving the problem under analysis in a short period of time. However, the more complex the problem the neural network investigates, the more time it takes to find the right solution [46]. The most characteristic feature of artificial neural networks is the ability to learn from examples and the ability to self-generalize the acquired knowledge (generalization) [47]. The threat to generalization is overlearning. An overlearned network excessively adapts the acquired knowledge to irrelevant details of specific learning cases [48].



One commonly used ANN model is the multilayer perceptron (MLP) [17,18,49,50,51]. It is a fully connected unidirectional neural network [7] that typically consists of three layers: an input layer, at least one hidden layer consisting of sigmoidal neurons and an output layer consisting of sigmoidal or linear neurons. The back-propagation method is the most commonly used technique for learning MLP networks [52]. This method is based on the concept of correcting, at each stage of learning, the values of the weights based on the evaluation of the error made by each neuron during the learning of the network [53].



The present work is a continuation of the authors’ previous research [54], which aimed to determine the effectiveness of linear (MLR) and non-linear (MLP) models in predicting the protein content of Pisum sativum L. pea seeds. The current study focused on the possibility of predicting the seed yield of general pea seeds using ANNs, and MLR was used as a comparative model. In addition, the study aimed to test three hypotheses: (i) the artificial neural networks model is an effective tool in predicting pea seed yield 20 days before harvest; (ii) five-year field trials under a variety of experimental conditions allow for the construction of a model predicting pea yield; and (iii) neural networks can predict yield more accurately than the MLR model.




2. Materials and Methods


This research was carried out between 2016 and 2020 at the Stations and Experimental Plants of the Research Center for Cultivar Testing (COBORU). The mission of COBORU is to stimulate innovation in plant breeding and seed science and to support the implementation of diverse progress into agricultural practice [55]. The work of this unit is focused, among other things, on research into the distinctiveness, uniformity and stability of crop varieties in Poland. In addition, COBORU is involved in conducting field research on the assessment of the cultivation and use value of agricultural crops. These studies are conducted under conditions as close as possible to production conditions. The results of the conducted experiments make it possible to determine whether a given variety can be entered into the National List of Varieties [56].



The experimental plots were located in Poland at the following locations: Bezek (N 51°12′6.722″ E 23°16′7.656″), Głębokie (N 52°38′33.18″ E 18°26′16.26″), Kawęczyn (N 52°10′15.157″ E 20°20′49.328″), Krzyżewo (N 53°1′33. 535″ E 22°45′28.438″), Pawłowice (N 50°27′14.049″ E 18°29′28.912″), Radostowo (N 53°59′20.566″ E 18°44′41.429″) and Sulejów (N 51°21′8.03″ E 19°52′7.517″). The experiments were situated in locations that are optimal for pea cultivation in terms of habitat. These localities are characterized by a temperate warm climate, with average monthly air temperatures ranging from −5.0 to −2.0 °C in January and 16 to 18 °C in July. Average annual precipitation is in the range of 550–800 mm [57]. According to Polish soil classification, clay soils of classes II-IIIb prevail in these localities. The data for the construction of the models are official data, coming from a variety of COBORU tests, and are acceptable to all authorities related to agricultural production in Poland. The nature of the experiments and the way in which they were carried out are recorded in the methodology [58], which is a set of experimental concepts and guidelines. This ensures that all research assumptions are met. The research was conducted in the same way at each COBORU point. The meteorological data were obtained from the archive database of the Institute of Meteorology and Water Management at the National Research Institute. A detailed description of the conduct of the experiments, the acquisition of the dataset and the sources of these data were previously described by the authors of this paper [54]. The construction of an ANN (N2) and MLR (RS2) model was performed based on 11 general purpose pea cultivars: Arwena, Astronaute, Batuta, Mecenas, Medyk, Mentor, Olimp, Spot, Starski, Tarchalska and Tytus.



2.1. Construction of the Database


The first and most important step in the construction of linear and non-linear models is the appropriate selection of input variables. The importance of this step is due to the fact that the chosen input parameters directly affect the performance of the resulting models [37]. The input variables shown in Table 1 were used to build the N2 and RS2 model. The output variable was pea seed yield expressed in t·ha−1. The dataset consisted of 1155 cases/plots. Each plot was a separate case for model building. All cases that formed the dataset were divided into two sets: A and B. Data from 1040 plots were assigned to set A, while set B was created from the remaining 115 cases and was used for model validation.




2.2. Construction of the N2 Model


In the present study, it was assumed that the forecast of pea seed yield would be made before harvesting [59], i.e., 14 July. The forecast date was selected based on the dominance of the onset of maturity of the pea varieties included in the dataset. The analysis of the dataset showed that the harvesting of peas of general use varieties was most often performed on 3 August. Therefore, the obtained linear and non-linear model predicted the yield 20 days before the harvest of peas grown under experimental conditions.



The construction of N2 models consisted of input variables being repeatedly provided to the network [60]. A total of 10,000 neural networks were tested using an automatic network designer. Different ANN model structures were analyzed, including variations in the number of neurons in the hidden layer. This method selected a model with an MLP architecture of 19:19-24-1:1 (Figure 1). The multilayer perceptron is a type of ANN widely recommended in works on similar topics due to its high potential for non-linear function estimation [18,61,62,63]. The main advantage of MLPs is the ability to discriminate data that cannot be linearly separated [7].



The optimization of the artificial neural network structure was performed by obtaining the minimum validation error. The selection of the neural network model was also guided by the size of the training and test set errors and other important quality parameters, as shown in Table 2. In this research, set A was divided into three subsets: learning, test and validation. This division is common in the development of predictive models using ANNs [5,59,64]. In the present study, 50% of the records (or 520 cases) were assigned to the learning subset. The test and validation subsets consisted of the same number of objects, i.e., 260, each representing 25% of the cases from the entire A set. The construction of the N2 model was carried out using Statistica v7.1 (TIBCO Software Inc., Palo Alto, CA, USA).




2.3. Construction of the RS2 Model


Due to their simplicity, multivariate linear regression models are commonly used in the prediction of agricultural crop yields [65]. MLR models the combination of a dependent trait and two or more independent traits by creating a linear equation to the observed data [66]. The value of the explanatory variable (Y) is related to the value of the explanatory variables (X) according to Equation (1) [62]:


Y = b0 + b1·X1 + b2·X2 + ... + bp·Xp + ε,



(1)




where Y is the dependent variable (explained variable), X1, X2…Xp represents the independent variables (explanatory variable), b0, b1, b2…bp represents equation parameters and ε denotes the random component (rest of the model).



For the purpose of this work, an MLR model (stepwise progressive) was built based on the explanatory variables presented in Table 1. The procedure for building the RS2 model was similar to that for the N2 model. The computational analysis took eighteen steps. All the steps involved in building and verifying the RS2 model were performed, as with the N2 models, in Statistica v7.1 (TIBCO Software Inc., Palo Alto, CA, USA).




2.4. Evaluation Criteria for the N2 and RS2 Models


Six performance criteria (global relative error of model approximation (RAE), root mean square error (RMS), mean absolute error (MAE), mean absolute percentage error (MAPE), maximum error determined for the whole model (MAX) and maximum percentage error (MAXP)) were used to evaluate the resulting predictive models [54]. In order to calculate the values of these errors, a set B was required, which was used to determine the difference between the predicted and observed values. The magnitudes of these errors were calculated from the equations below:


  RAE =       ∑   i = 1  n     (   y i  −   y ′  i   )   2      ∑   i = 1  n    (  y i  )  2        ,  



(2)






  RMS =       ∑   i = 1  n     (   y i  −   y ′  i   )   2   n       



(3)






  MAE =  1 n    ∑   i = 1  n   |   y i  −     y ′  i   |     



(4)






  MAPE =  1 n      ∑   i = 1  n   |     y i  −   y ′  i     y i     |    ·   100 %  



(5)






  MAX =  max i    ·    |   y i  −     y ′  i   |     



(6)






  MAXP =  max i     |     y i  −   y ′  i     y i     |    · 100 %  



(7)




where n is the number of observations, yi is the actual values and y′i is the predictive values obtained with the model.




2.5. Sensitivity Analysis of the Neural Network


The final stage in the construction of predictive models based on ANNs is sensitivity analysis of the neural network. This stage consists of differentiating the independent variables in terms of their influence on the dependent variable. The method of calculating and interpreting the results obtained from the sensitivity analysis has been discussed in previous works by the authors of this paper [17,18,54].





3. Results


3.1. Overall Assessment of the Predictive Quality of the N2 and RS2 Models


Building predictive models based on artificial neural networks requires partitioning of the dataset. In this paper, the dataset was divided into three subsets: learning, validation and testing. The learning set contains both input and output data as patterns of valid signals. Based on these, the learning algorithm confronts the actual behavior of the network. The validation set is used indirectly in the learning process. Its task is to participate in periodic validation during the learning of the model, which prevents the occurrence of network overfitting [67]. The test set, on the other hand, is intended for one-time control after the training is completed. In general, this procedure is aimed at checking whether there was any loss of network generalization ability during training that may have resulted from coincidence, despite cyclical internal validation. Table 2 shows the error sizes and the quality of each subset. From this, we can observe that the learning set had the smallest error size (0.0556). The test set, on the other hand, was characterized by the largest error among the analyzed subsets. The error value for this subset was 0.0679. A different relationship can be observed in the case of subset quality. The test set was characterized by the highest value of this feature (0.4311), and the learning set by the lowest (0.3576). The validation set took an intermediate position (0.3645).



The N2 model was learned using two methods: back-propagation of the error and the coupled gradients method. The point at which there is an increase in error for the validation set is the signal to stop training the neural network and recover the best weight from the epoch that preceded the start of the error increase. In the case at hand, the first learning method lasted for 100 epochs, and by continuing the learning process with the coupled gradients method, it was possible to obtain the best result, which was achieved at 110 epochs.



The obtained N2 model predicting pea seed yield was characterized by a relatively low mean error value, which was about 0.015 (Table 3). The model also obtained a small mean absolute error, which did not exceed the value of 0.305. In turn, the correlation coefficient reached a relatively high value (0.936). In developing predictive models, it is important that the model built is characterized by low error magnitudes and a high correlation coefficient value, as only such a model will be able to accurately predict the dependent variable.



Multivariate linear regression analysis showed that the input variables that were not statistically significant (α = 0.05) were the date of harvest (HAR), the date of plant technical maturity (TECH_M) and the dose of potassium brought into the soil with mineral fertilizer (K2O_F).



Based on the results in Table 4, the form of the MLR equation was determined:


YIELD = 0.215 × P2O5_C − 0.23 × N_F − 0.089 × P_EMER + 0.123 INI_MA − 0.007 × TEMP − 0.007 × RAIN − 0.003 × SUN + 0.022 × P2O5_F + 0.481 × PH + 0.169 × K2O_C − 0.040 × FLOWE − 0.150 × MGO_C − 0.031 × GEN + 0.005 × P_HIG + 0.034 × WEGW



(8)








3.2. Evaluation of Neural Network Sensitivity Analysis


The purpose of sensitivity analysis is to identify the independent variables that most influenced the dependent trait, pea seed yield. Based on the study, it can be observed that the onset of pea plant maturity (INI_MA) influenced the yield to the greatest extent (Table 5). This feature was ranked 1, and not including it in the N2 models would increase the cumulative error by a factor of 2378. The feature that received a rank of 2 was harvest date (HAR). Not including this variable in the model would increase the cumulative error by about 1.677 times. The variables ranked 3 and 4 were rainfall (RAIN) and mean air temperature (TEMP) calculated from sowing to 14 July. The absence of these variables in the N2 models would increase the cumulative error by 1.575 and 1.471 times, respectively.



Figure 2 shows a scatter plot of observed versus predicted values. From it, it can be concluded that the N2 model was characterized by a good level of prediction of pea seed yield, as evidenced by the relatively high value of the coefficient of determination (R2), which was about 0.84. A much lower value of this indicator was obtained for the RS2 model (Figure 3). The R2 coefficient did not exceed a value of 0.58, indicating that the response of the model is strongly discrepant with the observed values. The resulting model has virtually no ability to adequately represent the relationships characteristic of the issue under consideration.



The sensitivity analysis of the N2 model shows that some of the most important variables affecting pea yield were the date of onset of plant maturity (INI_MA) and the date of harvest (HAR). The relationship of these variables is shown in Figure 4. The plants reaching the maturity stage results in low seed yield. The same is true for early harvesting, which can also result in low yields. Higher yields were achievable when plants reached the onset of maturity later and when the harvest date was later.



The relationship between pea yield and seed harvest date (HAR) and mean daily air temperature (TEMP) is shown in Figure 5, from which we can observe that the yield increased with increasing mean daily air temperature. A later harvest date also contributed to higher yields. At low TEMP, harvesting too early resulted in low crop efficiency. In addition, it can be observed from Figure 5 that temperature was the characteristic that most determined harvest date. An average daily air temperature of 18 °C allowed the seeds to be harvested around 29 June (180 days from the beginning of the year).



Based on the sensitivity analysis of the neural network, it was possible to determine the relationship of the independent variables of onset of maturity (INI_MA) and mean daily temperature (TEMP) in relation to seed yield (Figure 6). Plants yielded best when they reached the onset of maturity stage later (215 days) and when the average air temperature exceeded 17 °C. When peas reached the onset of maturity stage at 165 days (counted from the beginning of the year), plants were characterized by low yields (about 2 t·ha−1). An increase in the TEMP trait contributed to an increase in plant yield. However, when the onset of maturity was reached early, this increase was insignificant and pea seed yield did not exceed 3 t·ha−1.




3.3. Comparative Analysis of N2 and RS2 Models Based on Model Evaluation Criteria


The constructed models were verified for their validity. For this purpose, basic quality criteria were used, the values of which are shown in Table 6. The N2 model achieved a root mean square error (RAE) of 0.094 and the maximum percentage error (MAPE) was around 7.98. Much larger error values were obtained for the RS2 model. The RMS error was determined to be 6.401 and the MAPE reached a value of 148.585. Such high errors make the multiple linear regression method an unsuitable tool for forecasting pea seed yield. The strongly non-linear relationships affecting pea yield cause the linear method to mispredict the dependent variable.





4. Discussion


Yield prediction methods have been used extensively in a number of works and have built models predicting the yields of maize, potato, winter wheat and orchard fruit, among others [68,69,70,71,72,73]. Specialized equipment, such as drones equipped with multispectral cameras, has been used to build some models in order to obtain information on crop characteristics. However, these devices can often be very expensive, and it is additionally necessary to have adequate knowledge of their operation. Consequently, models based on field imaging can be very difficult for agricultural producers and their application in agricultural practice may be limited. The proposed N2 and RS2 models were built using weather, agronomic and phytophenological data. Analysis of the prediction quality of the models showed that multiple linear regression was ineffective in estimating pea seed yield under the experimental conditions. The obtained MAPE error of 148.585 significantly exceeded the prediction accuracy threshold, disqualifying the obtained model as a suitable tool in yield prediction. According to Peng et al. [15], a predictive model that achieves an MAPE error greater than 30% is characterized by a poor representation of the predicted and observed values of the compound and should therefore be discarded. When MAPE is <10%, the model exhibits an excellent degree of fit. Such a low mean absolute percentage error was obtained for the N2 model based on ANNs. This model had an MAPE error of 7.976 (Table 6). It should be noted, however, that there is no appropriate comparative method for ANNs, and such models are therefore mainly compared with classical regression analyses worldwide. Such comparisons have been made, among others, by Kumari et al. [74], who predicted the yield of Indian nickel (Cajanus cajan—a bean crop) using a two-layer feed-forward neural network and an MLR model. The study was conducted in the Varanasi region (India) and the input data used were for the 1985–1986 and 2011–2012 periods. Five weather characteristics were used to build the models, i.e., minimum and maximum temperature, rainfall, and maximum and minimum relative humidity. The study conducted showed that the ANN model outperformed the MLR model in the prediction of Indian nickel yield. The RMS error for the ANN model was 299.93 kg·ha−1, while the MLR model had an error magnitude of 884.02 kg·ha−1. Artificial neural networks and multiple regression models were also used for the prediction of crescent beans (Phaseolus lunatus L.) [75]. The study was conducted in the northeastern part of Brazil, and independent variables used included the date of flowering onset, the date of pod maturity onset and pod length. The analysis showed that the MLP model forecasted yield more accurately compared to the MLR model, as evidenced by the MAPE, RMS and MAE error values. These error values were 1.701, 0.565 and 0.425 for the MLP model and 6.458, 0.828 and 0.690 for the MLR model, respectively. The effectiveness of feed-forward neural networks in predicting the yield of oilseed rape and mustard grown in northeast India was also demonstrated by Kakati et al. [5]. The ANN model predicted crop yield for the Dhubri region with an RMS error of 11.3 and an R2 value of 0.976, while the stepwise multiple linear regression (SMLR) model had an R2 value of 0.756 and an RMS error of 65.4 Ang et al. [76] investigated the feasibility of using different models, including MLR models and DNNs (deep neural networks), to predict the yield of oil palm grown in the state of Pahang (Malaysia). The deep neural network consisted of three hidden layers: the first layer contained 256 neurons, the second layer contained 480 neurons and the third layer contained 256 neurons. The model accurately predicted yield with an RMS error of 2.92 and an MAPE error of 0.09. In contrast, the MLR model had RMS and MAPE errors of 6.20 and 0.7, respectively. In addition, the R2 coefficient of determination was 0.91 for the DNN model and 0.49 for the MLR model.



Other machine learning techniques are also effective in crop yield prediction, surpassing the quality of predictions made by classical MLR models. This is confirmed by the study by Sun et al. [77]. The authors used the random forest (RF) method to predict the yield of winter wheat grown in China. The study covered the years 2014–2018, and the integration of satellite, weather and geographical data was used to build the model. The average RMS error for the MLR model was 1229.97 and the coefficient of determination was 0.73. These results are significantly different from those obtained by the RF model. The mean RMS error for this model was more than 2.5 times smaller than that of the MLR model (465.32), and the R2 coefficient was equal to 0.85. Zhao et al. [78] obtained similar results by investigating the ability of RF and MLR models in estimating the yield of winter wheat grown in the North China Plain. The researchers analyzed the applicability of these models at different periods of plant development. The results showed that the RF and MLR models obtained the best results for the period from the beginning of grain filling to the milk stage. However, the MLR model had a larger RMS error (778.0) and r-ratio (0.79) compared to the RF model, for which these parameters were 683.0 and 0.86, respectively.



A comparison of actual and predicted values (Figure 2 and Figure 3) shows that the coefficient of determination for the N2 model (R2 = 0.8254) was at a higher level than it was for the RS2 model (R2 = 0.5819). These results show that the RS2 model had much weaker predictive properties with respect to the N2 model. However, multiple linear regression models, as already mentioned, are commonly used in yield prediction. This method has many limitations, such as the assumption of a linear relationship between the exploratory variable and the explanatory variable [17]. If the relationship between these variables is non-linear, the regression model will tend to perform poorly. In addition, linear regression assumes that the input variables are not correlated with each other. If there is multicollinearity in the dataset, then this assumption is violated, and the performance of the regression model will be reduced. Additionally, linear models are assumed to have a constant variance under error conditions (homoskedasticity), which is often not true. Another problem that hinders proper prediction using MLR models is the presence of outlier points, which significantly affect its performance [65]. On the other hand, ANN models, including those with MLP architecture, are capable of predicting agricultural crop yields even in the case of strong non-linear relationships between the independent variables and the dependent variable. In addition, the main function of neural networks is to identify hidden patterns and features in the dataset. This activity is made possible by the two most important parts of the network, i.e., the activation function and the weighting parameters [5]. From the research carried out, all the variables tested in the study are characterized by non-linear patterns. Therefore, the RS2 model could not properly estimate the yield. Our research shows that the choice of method for creating the model is a kind of compromise that requires its creator to have a very thorough knowledge of the test object. This ensures that accurate yield predictions are obtained. However, ANNs are also not free from certain limitations. One of the biggest is that neural network models require a lot of, sometimes very specific, input data to train [79]. Acquiring such data can often be cumbersome, and for regions where observational records are lacking, obtaining short-term predictions is significantly difficult [80]. In addition, the appropriate selection of independent characteristics must be supported by extensive knowledge of the issue being modeled [9]. In the present study, three categories of independent variables were used: weather data, agronomic information and phytophenological data. These variables are publicly available and the results of analyses involving these data are easy to interpret.



The inclusion of climatic conditions when modeling agronomic issues is an important element when seeking to obtain a high-performance model. The inclusion of information related to air temperature, sunshine and precipitation during the growing season is reasonable, as these factors strongly determine plant growth and development [81]. Plant productivity is significantly affected by the temperature distribution during the growing season. However, the influence of this factor is reduced when there is an adequate water supply to the plants [82]. This assumption was fulfilled in this work because data from typical years, without weather anomalies that affect the quality of the models, were selected for analysis. According to a study by Aubakirov et al. [19], the amount of precipitation and temperature had the greatest impact on the multiplicity of yield of wheat grown in the North Kazakhstan region. Consideration of these data by the authors made it possible to build a back-propagation artificial neural network model that predicted wheat yield multiplicity with an MAPE error of 12.02 and an RMS error of 3.368. Similar observations were reached by Nedbała et al. [59], who identified key meteorological factors affecting soybean (Glycine max [L.] Merrill) yield and harvest date. A sensitivity analysis of the MLP network found that the variable that most influenced soybean seed yield was air temperature in the second ten days of May. In contrast, the variables that most influenced soybean harvest date were rainfall totals in the first ten days of June and the first ten days of August. The inclusion of environmental variables in modeling is also highlighted by Vojnov et al. [60], who attribute significant effects on plant parameters and on the performance of ANN models to these data.



Many scientific disciplines and the agricultural industry commonly use phytophenological periods of plant development. Among other things, they are helpful in determining when to apply inputs. These phases have been standardized for ease of communication between agronomists, naturalists, breeders of new agricultural varieties, etc. [7]. In modeling agricultural crop yields, this information is exploited to enhance the efficiency of the models built. As reported by Shamsabadi et al. [20], the inclusion of data such as number of days to emergence, days to maturity and number of days to flowering in the model significantly affected the performance of the MLP model. The model predicted the seed yield of hybrid wheat that was grown in the northern part of Iran. In the present study, empirical data in the form of phytophenological periods were also used, which allowed for the construction of an N2 model with an MAPE error of 7.976 (Table 6) and a correlation coefficient of 0.936 (Table 3).



A sensitivity analysis of the N2 model showed that the independent variables with the greatest impact on pea seed yield under the conditions tested were the date of onset of maturity and the harvest date. These traits received a rank of 1 and 2, respectively. From Figure 4 and Figure 6, we can observe that the later occurrence of onset of the maturity phase resulted in an increase in yield. The rate of transition of plants from one phenological phase to another depends on weather conditions [83]. Peas at the onset of maturity tolerate lower temperatures than those at the flowering stage. The length of this period is determined by average and minimum daily temperatures. Lower temperatures during this period favor the accumulation of starch in the seeds, thereby increasing yield [84]. Pea harvesting should be optimized based on weather conditions and seed moisture content. Figure 4 and Figure 5 show that harvesting at a later date has a positive effect on yield. Pea varieties grown in Poland are characterized by uneven maturation. At the beginning, pods located at the lower part of the plant ripen, and pods located in the higher parts of the plant ripen at the end [85]. Harvesting too early may result in the upper pods not reaching the stage of technical maturity and not accumulating enough starch, proteins or other assimilates; thus, the weight of 1000 seeds may be lower than that of the seeds placed in the lower pods. It should be remembered, however, that harvesting peas from the field too late may result in a decrease in yield due to lodging of the plants and pod breakage [86].



The sum of precipitation and mean air temperature are the variables ranked 3 and 4 in the sensitivity analysis of the network. Weather conditions during the growing season of plants are one of the most important environmental factors affecting plant growth and development. Temperature and the amount of rainfall vary the yield of peas from one crop year to another [87]. A study conducted by Pandey et al. [88] proved that water deficiency in pea cultivation reduces the photosynthetic efficiency of plants, disrupts nutrient transport and affects structural changes in leaves due to the presence of reactive oxygen species. These changes ultimately lead to a decrease in plant yield. Therefore, the optimum rainfall over the growing season of peas should be 280 mm on light soil, 250 mm on medium soil and 22 mm on compact soils [85].



The results obtained from the study show that the N2 model can be a promising information tool due to its accurate prediction of seed yield in pea. Our study further confirmed the hypothesis that the right approach to independent trait selection supports the process of identifying the most important variables affecting yield [76]. Such models may be of interest to breeders of new pea varieties. Knowing the variables with the greatest impact on yield, it is possible to improve new varieties by optimizing certain time intervals in the phenology so as to obtain a high final yield. An opportunity for the advancement of predictive models is the possibility of using new types of data, such as ground-based phenological imaging, or the use of the same dataset but of higher quality, such as high- or very high-resolution spectral data [7].




5. Conclusions


With climate change and an increasing global population, there is a growing need to better predict the yield of agricultural crops, as well as the correct way for farmers to grow their crops. The analyses conducted show that an artificial neural network model is a useful tool in predicting pea yield 20 days before harvest. The N2 model accurately predicted the independent variable with a correlation coefficient r > 0.9 and MAPE and RMS values of 7.976 and 0.443, respectively. At the same time, it was proven that the RS2 model is not able to accurately estimate pea yield. The model had an MAPE error of 148.585. Therefore, the potential practical application of this model in pea production is not possible. The choice of modeling technique is crucial in accurately estimating yield. Furthermore, modeling pea yields a few weeks before harvest carries promising possibilities for practical application.



Pre-harvest yield forecasting is a valuable source of information that is particularly relevant for farmers, agronomists and decision makers. Further research will focus on comparative analysis of the ANN model against other machine learning techniques such as RBF.
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Figure 1. Network structure for the N2 model. 
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Figure 2. Correlation diagram of observed values against predicted values for the N2 model. 
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Figure 3. Correlation diagram of observed values against predicted values for the RS2 model. 
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Figure 4. Response surface for yield size and two variables: HAR (harvest date) and INI_MA (start of crop maturity). 
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Figure 5. Response surface for yield size and two variables: HAR (harvest date) and TEMP (mean daily air temperature). 
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Figure 6. Response surface for yield size and two variables: INI_MA (start of crop maturity) and TEMP (mean daily air temperature). 
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Table 1. The structure and scope of the independent variables used in the construction and verification of the N2 and RS2 models.
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Symbol

	
Unit of Measure

	
Description of the Variable

	
The Scope of Data






	
Independent Variables




	
RAIN

	
mm

	
Rainfall in the period from sowing to 14 July

	
96.9–312.4




	
SUN

	
h

	
Sum of insolation that occurred in the period from sowing to 14 July

	
630.5–1051.5




	
TEMP

	
°C

	
Average daily air temperature in the period from sowing to 14 July

	
11.0–17.5




	
N_F

	
kg/ha

	
Amount of nitrogen introduced into the soil with mineral fertilizers

	
10–90




	
P2O5_F

	
kg/ha

	
Amount of phosphorus incorporated into the soil with mineral fertilizers

	
0–80




	
K2O_F

	
kg/ha

	
Amount of potassium introduced into the soil with mineral fertilizers

	
0–119




	
SOWI

	
days

	
Date of sowing of field peas—defined as number of days since the beginning of the year

	
83–102




	
P_EMER

	
days

	
Pea crop emergence—defined as number of days since the beginning of the year

	
96–133




	
HAR

	
days

	
Date of harvesting of field pea plants—defined as the number of days from 1 January

	
184–221




	
FLOWE

	
days

	
Flowering onset date—number of days from the beginning of the year

	
126–169




	
INI_MA

	
days

	
Maturity onset date—defined as the number of days from 1 January

	
167–211




	
TECH_M

	
days

	
Technical maturity date—number of days since the beginning of the year

	
171–216




	
P_HIG

	
cm

	
Height of plants

	
43–156




	
WEGW

	
days

	
Number of plant growing days

	
87–137




	
PH

	
-

	
Soil reaction (pH)

	
5.5–7.5




	
P2O5_C

	
Range from 0 to 4 *

	
Phosphorus (V) oxide content of the soil

	
0–4




	
K2O_C

	
Range from 0 to 4 *

	
Potassium oxide content of the soil

	
0–4




	
MGO_C

	
Range from 0 to 4 *

	
Magnesium oxide content of the soil

	
0–4




	
GEN

	
Feature coded 101 to 111

	
Variety of peas

	
–




	
Dependent Variable




	
YIELD

	
t·ha−1

	
Pea seed yield

	
2.30–8.02








* The range from 0 to 4 refers to the nutrient abundance of the soil. A value of 0 indicates very low abundance, 1 indicates low abundance, 2 indicates medium abundance, 3 indicates high abundance and 4 indicates very high abundance. Range from 0 to 4.
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Table 2. Quality parameters and error rates of subsets and the number of learning epochs of neural networks.
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Subsets

	
Teaching

	
Validation

	
Testing






	
Size of error

	
0.0556

	
0.0590

	
0.0679




	
Quality

	
0.3576

	
0.3645

	
0.4311




	
Epochs of learning




	
Back-propagation method of error

	
100




	
Coupled gradients method

	
110b *








* b (best)—the best result in the indicated learning epoch.
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Table 3. Qualitative measures of the N2 model.
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	Quality Parameter
	Value





	Average
	4.504



	Standard deviation
	1.106



	Average error
	0.015



	Error deviation
	0.389



	Average absolute error
	0.305



	Deviation quotient
	0.352



	Correlation coefficient r
	0.936
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Table 4. Results of multiple linear regression (MLR) analysis.
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Factor

	
MLR: r = 0.7656

R2 = 0.5788

Standard Error of Estimate = 0.7184




	
Beta

	
Standard Error Beta

	
b

	
Standard Error b

	
p

	
Significance






	
Free Term

	
−

	
−

	
−2.207

	
2.018

	
0.274282

	
−




	
HAR

	
−0.086

	
0.136

	
−0.010

	
0.017

	
0.526117

	
−




	
P2O5_C

	
0.177

	
0.026

	
0.215

	
0.031

	
0.000000

	
+




	
N_F

	
−0.1166

	
0.030

	
−0.012

	
0.003

	
0.000108

	
+




	
P_EMER

	
−0.480

	
0.046

	
−0.089

	
0.009

	
0.000000

	
+




	
INI_MA

	
1.027

	
0.124

	
0.123

	
0.015

	
0.000000

	
+




	
TEMP

	
0.398

	
0.080

	
0.283

	
0.057

	
0.000001

	
+




	
RAIN

	
−0.343

	
0.030

	
−0.007

	
0.001

	
0.000000

	
+




	
SUN

	
−0.225

	
0.029

	
−0.003

	
0.000

	
0.000000

	
+




	
P2O5_F

	
0.370

	
0.040

	
0.022

	
0.002

	
0.000000

	
+




	
PH

	
0.209

	
0.029

	
0.481

	
0.068

	
0.000000

	
+




	
K2O_C

	
0.143

	
0.029

	
0.169

	
0.035

	
0.000001

	
+




	
FLOWE

	
−0.199

	
0.040

	
−0.040

	
0.008

	
0.000001

	
+




	
MGO_C

	
−0.144

	
0.031

	
−0.150

	
0.032

	
0.000004

	
+




	
GEN

	
−0.089

	
0.021

	
−0.031

	
0.007

	
0.000017

	
+




	
P_HIG

	
0.077

	
0.030

	
0.005

	
0.002

	
0.010286

	
+




	
TECH_M

	
−0.200

	
0.114

	
−0.024

	
0.013

	
0.078386

	
−




	
WEGW

	
0.358

	
0.167

	
0.034

	
0.0158

	
0.032558

	
+




	
K2O_F

	
0.067

	
0.038

	
0.003

	
0.002

	
0.081382

	
−








Determination of the level of statistical significance: − non-significant; + significant for α = 0.05.
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Table 5. Results of the neural network sensitivity analysis.
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	Variable
	Quotient
	Rank





	INI_MA
	2.378
	1



	HAR
	1.677
	2



	RAIN
	1.575
	3



	TEMP
	1.471
	4



	P_EMER
	1.468
	5



	MGO_C
	1.395
	6



	SOWI
	1.387
	7



	K2O_C
	1.356
	8



	P2O5_F
	1.333
	9



	WEGE
	1.261
	10



	P_HIG
	1.170
	11



	PH
	1.136
	12



	TECH_M
	1.129
	13



	K2O_F
	1.112
	14



	P2O5_C
	1.110
	15



	GEN
	1.079
	16



	SUN
	1.052
	17



	FLOWE
	1.052
	18



	N-F
	1.045
	19
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Table 6. The quality of the generated neural models.
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	Error Type
	N2 Model
	RS2 Model





	RAE
	0.094
	1.361



	RMS
	0.443
	6.401



	MAE
	0.347
	6.361



	MAPE
	7.976
	148.585



	MAX
	1.398
	7.739



	MAXP
	48.050
	237.384
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