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Abstract: Fruit is an essential element of human life and a significant gain for the agriculture sector.
Guava is a common fruit found in different countries. It is considered the fourth primary fruit in
Pakistan. Several bacterial and fungal diseases found in guava fruit decrease production daily. Leaf
Blight is a common disease found in guava fruit that affects the growth and production of fruit.
Automatic detection of leaf blight disease in guava fruit can help avoid decreases in its production. In
this research, we proposed a CNN-based deep model named SidNet. The proposed model contains
thirty-three layers. We used a guava dataset for early recognition of leaf blight, which consists of two
classes. Initially, the YCbCr color space was employed as a preprocessing step in detecting leaf blight.
As the original dataset was small, data augmentation was performed. DarkNet-53, AlexNet, and the
proposed SidNet were used for feature acquisition. The features were fused to get the best-desired
results. Binary Gray Wolf Optimization (BGWO) was used on the fused features for feature selection.
The optimized features were given to the variants of SVM and KNN classifiers for classification. The
experiments were performed on 5- and 10-fold cross validation. The highest achievable outcomes
were 98.9% with 5-fold and 99.2% with 10-fold cross validation, confirming the evidence that the
identification of Leaf Blight is accurate, successful, and efficient.

Keywords: AlexNet; BGWO; CNN; DarkNet-53; deep learning; entropy; KNN; ROI; SVM; YCbCr

1. Introduction

Food is the fundamental requirement for the existence of human beings, and it is the
notable outcome of agricultural activities. Agriculture is assumed to be the backbone of
economic development, as it exhibits the cultivation of multiple crops, fruits, and vegetables.
There is a large difference between the cultivation and annual production of fruits because of
inappropriate advancements in technology, lack of knowledge, and diseases that negatively
affect the production [1]. Disease detection in plants is a challenging task and is essential to
diagnose at early stages. Diseases are mostly diagnosed through leaves because they tend
to highlight contaminated parts immediately. Guava is an important fruit in agriculture;
therefore, its leaves are selected for the detection and recognition of diseases [2]. Guava
is nutritionally beneficial, serving calcium and iron to the human body. It is cultivated in
America, especially in Mexico, Thailand, South Africa, and many other countries. Many
laboratories such as the Central Institute of Subtropical Horticulture (CISH) and different
institutes are continuing to work on guava production in different areas of the world [3].
Several diseases, such as bacterial and fungal diseases, attack the guava fruit, which badly
affects its production [4]. There are different techniques of ML applied for disease detection.
Almost 177 types of diseases are found that damage leaves, causing leaf blight and leaf
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spots. Known diseases include brown roots, twig drying, bacterial wilt, anthracnose, ring
rots, and many others [5].

Many researchers aim for innovations in disease detection. Disease detection relies
on five major steps. Usually, the first step in image processing is image acquisition. After
obtaining images, preprocessing incorporates multiple steps that result in better accuracy.
After preprocessing, feature extraction is performed, where the features of the images
are boosted for further computation and selection. The final stage is classification. A
variety of models are presented using diverse methodologies such as convolution neural
network (CNN), gradient descent (GD), and many others for classification purposes [6].
Convolution neural networks play an essential part in the extraction of features through
hidden layers, as manual extraction is costly and time-consuming [7]. Plant pathologists
need an automatic detection system to diagnose leaf blight in plants.

The main focus of the proposed methodology is the detection and classification of
leaf blight. Leaf blight affects plants as a result of a pathogenic organism infecting leaves.
Therefore, an automated system is needed to detect leaf blight disease. Research of diseases
in guava fruit is a challenging task, as it seeks a variety of data regarding diseases in the
relevant field [8]. The forecasted production of guava is 498.95 thousand tonnes in 61.37
acres in the year 2020–2021 and the production of guava is 499.68 thousand tonnes in 61.37
acres in the year 2021–2022. Evaluation of the researched tasks becomes critical with time
due to the wide range of diseases, and a great deal of effort has already been applied
towards the relevant field [9].

There are several limits and difficulties in detecting and classifying guava plant
diseases in the existing literature. Some major problems per the literature are the poor
contrast, variation in shape, texture, and size, and illumination problems found in disease
images that make them difficult to recognize and classify.

This article presents a new methodology for the detection of leaf blight. The purpose
is to classify the healthy and diseased images of guava leaves with improved accuracy. The
significant contributions presented in this research are as follows:

• A new deep CNN Net named SidNet is presented, which consists of 33 layers along
with 35 connections. The pretraining of SidNet is performed on a plant imaging dataset.
The features are extracted from the proposed SidNet, darknet53, and AlexNet, which
are further fused using serial fusion. The deep features are also known as automatic
features; they automatically solve the issues related to contrast, shape, texture, and
illumination.

• The features are sorted using an Entropy Algorithm, and for better feature selection,
Binary Gray Wolf Optimization is used. The selected features are used to make a single
feature vector for classification using an SVM and KNN Classifier to achieve the best
performance and results.

• Data Augmentation is performed, as the selected dataset is small; therefore, the images
are flipped both horizontally and vertically to make the dataset large.

The paper consists of five sections, where Section 1 explains the introduction, motiva-
tion, contribution, and problem statements for leaf blight detection. Section 2 covers the
recent existing work. Section 3 provides the details of the presented proposed framework
and Section 4 describes the details of the experiments and outcomes. Lastly, Section 5
covers the conclusion.

2. Related Work

Diseases in fruit plants and leaves are a major cause of destruction and economic
loss. Automated systems help greatly with the detection of diseases at early stages. While
considering the field of detection of disease in plants, deep neural networks work perfectly
to identify and classify diseases. These networks are mentored to conduct high-value
results in detecting and classifying diseases, and to fulfill the demands of food deformation
prevention.
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There are different methods for collecting images under certain conditions. Images
are captured by multiple appliances, such as cameras, sensors, mobile phones, and other
devices. In this era, more datasets containing guava are publicly available on multiple
forums, such as Kaggle, Mendeley, and many others [10]. Pre-processing of images is an
important phase in image processing. The pre-processing phase entails multiple steps
which help highlight the focused parts and remove irrelevant information from guava leaf
images. In the real world, label noise on images is a matter of concern. Multiple techniques
have attained the best results in denoising images, especially mixed noise, speckle noise,
and salt and pepper noise. Low contrast and color distortion in guava leaf images make
them blur. Scattering and light absorption also affect clear image visualization [11]. Images
are preprocessed by using rotational filters such as horizontal and vertical flipping. Data
augmentation techniques are used, such as applying rotations and zooming into images [12].
Color spacing techniques are extensively applied in image processing. RGB, CIELAB, and
CMYK models are mostly used as color spacing techniques to give the best results.

Feature extraction is a process in which reatures are reduced from the raw dataset
and new features for manageable processing are created. Texture analysis has a wide
range of applications [13]. Pattern recognition requires feature extraction to solve problems
in prediction, cluster discrimination, and representation of data in the best way [14,15].
Content-Based Image Retrieval (CBIR) converts high-level image visuals into feature vectors
that contain some properties [16]. There are multiple techniques to extract the features
from guava leaf images, such as handcrafted-based features, region-based features, deep
CNN-based features, texture-based features, color-based features, morphological-based
features, etc. Extraction of features is categorized into hand-crafted-based features and
deep-based features.

The selection of features from plant leaf images is carried out after the extraction
of hand engineered and deep-based features. The set of features is chosen while noisy,
poor, and extra features are eliminated from the original set of features [17]. There are
five main types of feature selection, which are (1) Linear Method, (2) Non-Linear Method,
(3) Filter-Based Method, (4) Wrapper Method, (5) Embedded Method. Linear methods
include PCA and LDA. PCA stands for Principal Component Analysis, which is used
for data reduction [18]. LDA stands for Linear Discriminant Analysis and is used for the
conversion of high dimension features into lower dimension features [19]. Non-linear
methods include Entropy [20], Genetic Algorithm (GA) [21], Binary Gray Wolf [22], Slap
Swarm [23], Atom Search [24] and many others. Filter methods includes mRMR [25],
Missing Value Ratio [26], and many others. Wrapper methods include Jackstraw [27] and
Boruta [28]. Finally, embedded methods include LASSO [29], Ridge [30], Elastic [31], and
many others. Image fusion [32] helps greatly in improving classifier accuracy with less
computational cost [33]. Different algorithms are proposed that use image fusion to get the
best accuracy results.

Image classification is the last step in image processing [34]. Classification tends
to dominate the feature vector to determine which object belongs to which class [35].
There are different types of techniques used for the classification of healthy and diseased
images of plant leaves. Image classification is divided into three main categories, which are
(1) Supervised Learning, (2) Unsupervised learning, and (3) Object-based image analysis.
Supervised Learning is used to detect the new category of the object from training data [36].
Unsupervised Learning is a process in which an image is identified in an image collection
without using labeled training data [37]. Object-based analysis involves the grouping of
pixels on the basis of some similarities such as shape and neighborhood [38]. To get the
most accurate results, the Plant Village dataset is used for testing and training purposes.
A total of 80% of guava leaf images are used for testing while 20% of them are used for
training purposes. The achievable accuracy is 97.22% using Alex-Net and Squeeze-Net after
segmentation and classification [39]. Atila et al. [40] designed the Efficient-Net architecture,
which is designed for classification purposes. Different architectures are applied using
CNN for model training to get highly accurate results. The model training is performed on
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the dataset of 87,848 images. Images are preprocessed using different techniques such as
downscaling and squaring methods, they are then classified, and an accuracy of 99.53% is
achieved using AlexNet, VGG-16, and GoogLeNet [41]. Several algorithms are used for
image classification. These are SVM [42], K-Nearest Neighbor (KNN) [43], Naïve Bayes [44],
Shadow algorithms [45], Minimum Mean Distance (MMD) [46], Decision Trees [47], K-
Means Clustering [48] and many others. The datasets are frequently classified by SVM.
This involves supervised learning and comprises points that are in the sample space and
different regions [49]. Segmentation is performed on the preprocessed data in three stages.
In the first stage, the deep CNN is trained to learn the mapping from the space map. In the
second stage, prediction-based labels are acquired. At the last stage, these acquired labeled
images are sent to SVM for classification and achieve an accuracy of 86% [50]. In machine
learning, KNN is a statistical classification algorithm. It gathers the objects selected by
neighbors having the highest number of votes [51]. KNN is inspected for the detection of
weeds from UAV images of the chili crop of Australia. In comparison with KNN, SVM and
Random Forest (RF) are used. The achievable accuracies across RF, SVM, and KNN are 96%,
94%, and 63%, respectively [52]. KNN is also used for classifying facial expressions [53].
Additionally, KNN is used for the classification of grape leaves into healthy and unhealthy
leaves. Texture-based and color-based features are extracted from grape leaf images and
are classified by the KNN classifier, and an accuracy of 96.66% is achieved [54]. Table 1
depicts an overview of recent works related to plants diseases analysis

Table 1. An overview of recent literature regarding plants diseases analysis.

Ref. Year Techniques Dataset Diseases Results %

[41] 2018 Downscaling and squaring method, AlexNet,
VGG-16, AlexNetOWTBn.

87,848
58 classes

Apple Scab, Black
Rot, Early Blight,
Brown Leaf Spot

99.53

[55] 2018 ResNet-50, Deep Siamese convolutional
network, TSNE method, KNN PVD Black Rot, Esca,

Chlorosis 90

[56] 2018 Transfer learning, F-RCNN, classification. 4923 Phoma Rot, Leaf
Miner, Target Spot 95.75

[57] 2019

F-CNN, S-CNN, Segmentation, annotation and
labeling on region of interest (lesions), random
transformation
(stretch/rotation/brightness/contrast blur)

Independent
dataset

Spider Mite, Target
Spot 98.6

[58] 2019 VGG classification, resizing and
transformation of images into grayscale, 2465 Black dot and scurf 96

[40] 2021 Efficient-Net (B5Ver), Alexnet, ResNet50,
classification. 61,486 Late Blight,

Bacterial Spot 99.97

[59] 2021

Resizing, normalizing and augmentation,
Efficient-Net (B7Ver), Efficient-Net (B4Ver),
U-net, and modified U-net segmentation
model, Score-Cam visualization technique,

18,161 Target Spot 99.9

3. Materials and Methods

The proposed methodology consists of multiple phases of image processing. In
the first step, as a preprocessing step, color spacing is performed on the images of the
dataset. Images are converted from RGB color format to YCbCr color format. After getting
preprocessed data, feature extraction is performed using two pretrained models and a
newly proposed CNN deep model known as SidNet. This newly proposed model is based
on 33 convolutional layers. This proposed CNN deep model is pretrained using the Plant-
Village dataset, which consists of 38 classes. After pretraining, features are collected from
the proposed CNN deep model. These extracted features are then fused with AlexNet and
DarkNet-53 to find the best and most appropriate results. A deep CNN known as AlexNet
was developed in 2012, which is an 8-layer deep model and consists of 5 convolution layers
and 3 Fully Connected layers. After every convolution layer and fully connected layer,
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ReLU is applied. It contains a dropout layer, which is applied after the first and second
fully connected layer. The input size in AlexNet is 227 × 227. In all layers, the activation
function is ReLU. Softmax is designed as an activation function in the output layer. AlexNet
is the simplest deep CNN model and it is used to get highly accurate results. DarkNet-53 is
another used deep model, which works as the backbone for YoloV3 in object detection. It
contains 25 layers for batch normalization and Leaky ReLU. The input size is 256 × 256
in DarkNet-53. In the second step, the feature sorting entropy algorithm is used for the
selection of the best features. These selected core features are fused using serial-based
fusion. After fusing the core features, the binary gray wolf optimization algorithm is
used. Finally, these extracted fused features are provided to SVM and KNN classifiers for
the classification of Leaf Blight for the best achievable results. The complete view of the
proposed model is shown in Figure 1. It covers a complete view of the flow of the diagram
of the designed structure.

Figure 1. Proposed Framework for disease recognition in guava leaves.

3.1. Image Preprocessing

In image processing, color space conversion is an important task. RGB is used to store
real-time images and videos because it allows for the sensitivity of color detection cells
for the human visual system. YCbCr is beneficial for its low-resolution capability for the
human visual system. Therefore, the conversion of RGB to YCbCr is mostly used in image
processing. The general formula is given below:

YCbCr = RGB 2YCbCr (RGB) (1)
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This is the general formula that is used for the conversion of RGB to YCbCr and it
represents 8 bits per sample pixel in RGB format. The white and black colors are represented
on a scale from 0 to 255. Therefore, the components of YCbCr are obtained from the
following equations.

Y = 16 + 65.738/256 R + 129.057/256 G + 25.064/256 B (2)

Cb = 128 + 37.945/256 R− 74.494/256 G + 112.439/256 B (3)

Cr = 128 + 112.439/256 R− 94.154/256 G + 18.285/256 B (4)

where Y is used to represent the luma (luminance) component. Cb represents chrominance
blue and Cr represents chrominance red. These numbers are the constant values that are
used to adjust the value of Y. Figure 2 shows the conversion from RGB to YCbCr.

Figure 2. RGB to YCbCr conversion.

3.2. Data Augmentation

For data augmentation, horizontal and vertical flipping are used. According to the
mathematical model, the horizontal flipping of the images is presented as follows:

HF (−x, y) = HO (x, y) (5)

And the vertical flipping of the images is presented as follows:

HV (x,−y) = HO(x, y) (6)

HF shows the flipping function and HO shows the original image function that is to be
flipped. Hv shows the flipping function and HO shows the original image function that is
to be flipped.

3.3. Feature Extraction

After preprocessing and augmentation, the next phase is feature extraction. In this
phase, with the help of pretrained models, the most optimal features are extracted. Ac-
cording to our proposed methodology, a newly designed model named SidNet, and other
pretrained models such as DarkNet-53 and AlexNet, are used for extracting the most
optimal features.
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3.4. Proposed SidNet as CNN Net

This proposed CNN Net is a blockbuster CNN-based architecture used for the de-
tection and classification of Leaf Blight. The proposed SidNet model consists of 33 layers
involving 8 convolutional layers, 10 ReLU layers, 4 layers of batch normalization, one
dropout layer, one softmax layer, one classification output, one fully connected, and one
global average pooling layer. The Input size of the Proposed CNN Net is “227 × 227 × 3”
and it contains 35 connections. The stride is “1 × 1” throughout the proposed framework’s
convolution layer. The number of filters is set to 96 in all convolutional layers of the
framework, while the padding dimensions vary according to the convolution layer used in
the different stages of architecture. The padding of the last convolution layer is 5, 5, 5, 5.
Two pooling layers are used, where the stride for the two pooling layers in the architecture
is “2 × 2”. While the pooling size of the first pooling layer is 3, 2 and the pooling size of the
second pooling layer is 3, 3. The mean decay and variance decay for all batch normalization
layers are 0.1. Figure 3 shows the architecture of the proposed SidNet.

Figure 3. The architecture of the proposed CNN network, SidNet.

The proposed deep model named SidNet comprises 33 convolution layers. Its Input
size is “227 × 227 × 3” and it contains 35 connections.

Due to the small number of samples of the available dataset, the proposed deep
model with softmax (SM) classifier is first trained on the third-party dataset named CIFAR
100 [60]. Then, the guava leaf dataset is fed to SidNet for feature extraction. The features
are extracted from the fully connected (FC) layer. These features, after feature selection, are
trained and tested on various classifiers (such as SVM with its variants and KNN with its
variants) for evaluation. According to our model, the features in SidNet are presented as:

fe× f = { L1× 1 , L1× 2 , L1× 3 , . . . . . . . . . ..L1× p } (7)

where L (1 . . . p) represents the number of features obtained from the proposed CNN model,
which is known as SidNet, and e × f is the dimension of the resultant function.

Visualization of the strongest feature maps at different convolution layers with the
proposed SidNet architecture is shown in Figure 4. The visualization is performed on
conv_1, conv_2, conv_3, conv_4, conv_5, conv_6, conv_7, and conv2 of the proposed
architecture.
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Figure 4. Visualization of the images of strong feature maps of different convolution layers. (a) conv_1
(b) conv_ 2 (c) conv_ 3 (d) conv_4 (e) conv_5 (f) conv_6 (g) conv_7 (h) conv2.

3.5. DarkNet-53

DarkNet-53 acts as the backbone of YoloV3 for object detection. DarkNet comprises 53
layers and consists of multiple convolution layers. A total of 1024 features in DarkNet are
extracted with the help of the global average pooling layer. There are 25 layers in Batch
normalization. The input size is 256 × 256. According to our mathematical model, the
features in DarkNet are presented as:

fa×b = { j1× 1 , j1× 2 , j1× 3 , . . . . . . . . . . . . ..j1×m } (8)

where J (1 . . . m) shows the number of features extracted from DarkNet-53 and a × b is the
dimension of the resultant function. Visualization of the strongest feature maps at different
convolution layers with the DarkNet-53 architecture is shown in Figure 5

Figure 5. Visualization of the images of strong feature maps of different convolution layers of
DarkNet-53. (a) conv3 (b) conv1 (c) conv2 (d) conv4 (e) conv5 (f) conv6.

3.6. AlexNet

AlexNet is the simplest model that comprises 8 layers. There are 5 convolution layers
and 3 fully connected layers. Its input size is 227 × 227. The Activation function used in all
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layers is ReLU, which is applied after every convolution layer and fully connected layer.
The Drop layer is applied after the first and second fully connected layer. The Activation
function in the output layer is Softmax. The AlexNet contains 4096 features with the help of
a convolution layer named a fully connected layer. According to our mathematical model,
the features in AlexNet are presented as:

fc×d = { k1×1 , k1×2 , k1× 3, . . . . . . .k1× n} (9)

where k(1 . . . n) shows the number of features extracted from AlexNet and c × d shows
the dimensions of the resultant function. Visualization of the strongest feature maps at
different convolution layers with the AlexNet architecture is shown in Figure 6

Figure 6. Visualization of the images of strong feature maps of different convolution layers of AlexNet.
(a) conv2 (b) conv1 (c) conv3 (d) conv4 (e) conv5 (f) conv6.

3.7. Feature Selection

After extracting features from the proposed model and other pretrained models such
as DarkNet-53, AlexNet, and SidNet, the selection of features is done with the help of
feature sorting using entropy. The mathematical model for the selection of features using
entropy is represented as:
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n), k(1 − n) and L(1 − n) show the selected features obtained from the extracted features.
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AlexNet. (a) conv2 (b) conv1 (c) conv3 (d) conv4 (e) conv5 (f) conv6. 

3.7. Feature Selection 
After extracting features from the proposed model and other pretrained models 

such as DarkNet-53, AlexNet, and SidNet, the selection of features is done with the help 
of feature sorting using entropy. The mathematical model for the selection of features 
using entropy is represented as: 𝐸ൈ ሺᾳଵ, ᾳଶ, ᾳଷ, … . . ᾳሻ ൌ െ ∑𝑓a×bሼ 𝑗1×1 , 𝑗1×2, 𝑗1×3, … . 𝑗1×m ሽ𝑙𝑜𝑔 ሺ𝑗 1×1 , 𝑗1×2 , 𝑗1×3, … . . . 𝑗1×m ሻ (10)𝐸ൈௗ ሺ𝛽ଵ, 𝛽ଶ, 𝛽ଷ, … . . 𝛽 െ ∑𝑓 ൈௗ ൌ{k1×1,k1×2,k1×3,…..k1×n}𝑙𝑜𝑔 𝑙𝑜𝑔 ሺ𝑘ଵൈଵ , 𝑘ଵൈଶ , 𝑘ଵൈଷ, … … … 𝑘ଵൈሻ  (11)𝐸ൈ ሺ𝛾ଵ, 𝛾ଶ, 𝛾ଷ, … . . . . 𝛾 ൌ െ ∑𝑓 ൈ ൌ{L1×1,L1×2,L1×3,……L1×p}𝑙𝑜𝑔 𝑙𝑜𝑔 ሺ𝐿ଵൈଵ , 𝐿ଵൈଶ , 𝐿ଵൈଷ, … … . . 𝐿ଵൈሻ  (12)

where a × b, c × d, e × f represents the dimension of features obtained after sorting features. 
Log(j(1 − n)), Log(k(1 − n)), and Log(L(1 − n)) show the prediction of probability and j(1 − n), 
k(1 − n) and L(1 − n) show the selected features obtained from the extracted features. ᾳ (1 
− n), β(1 − n), 𝛾ሺ1 െ 𝑛ሻ show the features which are sorted. 

3.8. Feature Fusion 
Feature Fusion is performed to select the most optimal features. According to the 

mathematical model, the fusion of features is represented as: ∈ 𝑓 ൌ ∑ ሺ 𝐸ൈሻ௫ୀଵ ⋃ ∑ ሺ𝐸ൈௗሻ⋃௬ୀଵ ∑ ሺ𝐸ൈሻ௭ୀଵ   (13)

(1 − n), β(1 − n), γ(1− n) show the features which are sorted.

3.8. Feature Fusion

Feature Fusion is performed to select the most optimal features. According to the
mathematical model, the fusion of features is represented as:

∈ f = ∑L
x=1( Ea×b)

⋃
∑m

y=1(Ec×d)
⋃

∑n
z=1

(
Ee× f

)
(13)
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After fusing the features using the entropy algorithm, Binary Gray Wolf Optimization
is performed to obtain the most optimal results. The mathematical model representing the
features selected from Binary Gray Wolf Optimization are as follows:

∅d =∈ 1 i f γo <
1
3
∈ 2 i f

1
3
≤ γ6 <

2
3
∈ 3 i f , otherwise (14)

where ∅d is the function of BGWO and γo and γ6 are the adjusting parameters that are
used to set the value of the most optimal features.

3.9. Classification

Different classifiers are available for classification purposes, but SVM and KNN classi-
fiers are chosen. These two classifiers are selected to achieve high accuracy and the most
optimal results. In machine learning, features are reduced by carrying out the feature
vector dimension. Different classification algorithms are available, such as Minimum Mean
Distance (MMD), K means clustering, Decision Trees, Shadow algorithm, and Naïve Bayes.
In this work, SVM and KNN are selected to perform the classification on the guava leaf
dataset. These classifiers generate better results compared to other classifiers.

4. Results and Discussion

The purpose of this study is to classify the Leaf Blight disease with the best possible
results. After the processing of the dataset using YCbCr, the extraction of features is
performed using two pretrained models along with one proposed net. The selection of
features is performed using BGWO. For classification purposes, SVM and KNN are chosen
for the evaluation of execution. This section provides details about experiments that are
performed on multiple sets of features and the results are recorded accordingly. These
experiments and results are shown in two sets of test cases. Using 5 folds and 10 folds,
validation experiments are performed. In comparison with other classifiers, SVM and
KNN are selected, as they give the best results. The set of experiments are performed on
Windows 10 (64-bit) and a Core (TM) i7-8700 CPU, 3.20 GHz (12 CPUs) 3.2 GHz processor
with 16 GB RAM and an LCD and keyboard from HP. Training and testing of the designed
network are performed on MATLAB R2020b.

4.1. Dataset

The assembled dataset for the classification of Leaf Blight used in this analysis [61] is
small. These experiments are performed on guava leaves. The chosen dataset contains 415
guava leaf images in the original. This dataset contains a small number of images; therefore,
they are augmented using horizontal and vertical flipping techniques, which increases
the total number of images. The total number of images is 1000 after the augmentation
technique. This dataset is publicly available on the Mendeley website. It is a binary class
dataset (see Figure 7 for sample images) and many researchers have used it in their studies.

Figure 7. Sample dataset images of guava plant.
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4.2. Performance Evaluation Methods

The performance measures can be used to measure and detect the performance of leaf
blight disease in plants. The consequences are defined as follows: a True Positive rate as
TP, True Negative rate as TN, False Positive rate as FP, and False Negative rate as FN. The
Table 2 illustrates the performance measures that are used in this work.

Table 2. Performance evaluation metrics.

Measures Mathematical Expressions

Accuracy True Positive + True Negative
True Positive True Negative + False Positive + False Negative

Recall True Positive
True Positive + False Positive

PRC/Positive Prediction True Positive
True Positive + False Positive

F1 Score 2.Precision.Recall
Precision + Recall

Table 3 shows a summary of the best-achieved results performed on the guava
leaf dataset, which proves that the proposed methodology is efficient and robust. Here,
Quadratic SVM achieves the best results, i.e., 98.9% over 5 folds in 9.2 s and 99.2% over 10
folds in 16.2 s, with 3045 features on 5-fold cross validation.

Table 3. Summary of results.

Test Cases Experiment # Folds Features Classifier Accuracy % Training
Time (s)

1 1 (a) 5 3045 Quadratic SVM 98.9 9.2

2 2 (a) 5 200 Fine Gaussian
SVM 81.1 0.8

3 3 (a) 5 500 Quadratic SVM 84.1 2.2
4 4 (a) 5 750 Cubic SVM 85.6 2.4
5 5 (a) 5 1000 Cubic SVM 87.6 3.2
6 1 (b) 10 3045 Quadratic SVM 99.2 16.2

7 2 (b) 10 200 Fine Gaussian
SVM 82.6 1.2

8 3 (b) 10 500 Fine Gaussian
SVM 85.2 2.20

9 4 (b) 10 750 Cubic SVM 87.8 4.8
10 5 (b) 10 1000 Cubic SVM 87.5 6.2

The accompanying text contains some discussion on some of the experiments.

Experiment_1: Using 5-Fold and 10-Fold Validation on 3045 features

This section provides details about two test cases that were performed on 3045 features
using both 5 folds and 10 folds. The selected classifiers are variants of SVM and KNN,
which were chosen to get robust results. After augmentation, the chosen dataset contained
1002 images. The best results were recorded with measures such as accuracy, precision,
recall, F1-score, and training time.

Experiment_1(a): Using 5 Folds and 3045 Features (1002 × 3045 features)

This test case shows the results of 3045 features upon 1002 images using SVM and
KNN classifiers with 5-fold cross validation. Details are shown in Table 4.

The best results are achieved by the Quadratic SVM classifier in comparison with all
KNN classifiers, which is 98.9% in 9.2 s. Here, the confusion matrix in Figure 8 and the
ROC curve in Figure 9 are shown for the best results with the Quadratic SVM classifier. In
the confusion matrix, A represents the diseased class, While B depicts healthy class
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Table 4. Experiment_1 using 5 Folds (3045 Feature).

Classifier Accuracy (%) Total Cost Precision
Speed (obs/s) Training Time (s) Precision F1-Score Recall

Quadratic SVM 98.9 12 760 9.21 0.99 0.99 0.99
Linear SVM 98.0 20 780 9.65 0.98 0.98 0.98
Cubic SVM 98.6 14 770 9.43 0.985 0.985 0.99
Fine Gaussian SVM 80.1 199 490 16.3 0.78 0.785 0.86
Medium Gaussian SVM 97.3 27 770 9.76 0.97 0.975 0.97
Coarse Gaussian SVM 92.5 75 740 10.35 0.915 0.925 0.92
Weighted KNN 95.0 50 360 12.89 0.945 0.95 0.95
FINE KNN 93.5 65 360 13.62 0.935 0.935 0.94
Medium KNN 87.8 122 360 12.94 0.865 0.875 0.90
Coarse KNN 81.3 187 360 12.81 0.795 0.795 0.87
Cosine KNN 89.8 101 330 13.52 0.89 0.895 0.91
Cubic KNN 87.5 125 73 58.97 0.865 0.87 0.90

Figure 8. Confusion matrix for Q(SVM) with 3045 features and using 5-fold results.

Figure 9. ROC curve for two classes A and B with 3045 features and using 5-fold results.

Here the ROC curve is shown in Figure 9 for both classes A and B, which are presented
as ROC A and ROC B.

Experiment_1(b): Using 10 Folds and 3045 Features (1002 × 3045 features)

This test case shows the results of 3045 features upon 1002 images using SVM and
KNN classifiers with 10 folds. Details are shown in Table 5.
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Table 5. Experiment_1 using 10 Folds (3045 Feature).

Classifier Accuracy (%) Total Cost Precision
Speed (obs/s) Training Time (s) Precision Recall F1-Score

Quadratic SVM 99.2 8 460 16.221 0.995 0.99 0.99
Linear SVM 98.3 17 440 18.23 0.98 0.98 0.98
Cubic SVM 99.1 9 450 16.7 0.99 0.99 0.99
Fine Gaussian SVM 85.4 146 310 29.265 0.84 0.89 0.84
Medium Gaussian SVM 98.3 17 450 17.676 0.98 0.98 0.98
Coarse Gaussian SVM 93.6 64 450 18.689 0.93 0.94 0.93
Weighted KNN 94.3 57 190 23.037 0.935 0.95 0.94
FINE KNN 94.2 58 190 24.374 0.935 0.95 0.94
Medium KNN 88.2 118 190 23.12 0.87 0.91 0.87
Coarse KNN 82.7 173 190 23.278 0.81 0.88 0.81
Cosine KNN 91.0 90 180 24.438 0.9 0.92 0.90
Cubic KNN 88.3 117 57 73.713 0.87 0.91 0.87

The Quadratic SVM classifier achieved the best result in comparison with all KNN
classifiers, which is 99.2%. Here, the confusion matrix as presented in Figure 10 and the
ROC curve are shown for the best results against the Quadratic SVM classifier.

Figure 10. Confusion matrix for Q(SVM) with 3045 features and using 10-fold results.

Here, the ROC curve is shown in Figure 11 for both classes A and B, which are
presented as ROC A and ROC B.

Figure 11. ROC curve for two classes A and B with 3045 features and using 10-fold results.

Experiment_2: Using 5-Fold and 10-Fold Validation on 200 features

This section provides details about two test cases that were performed on 200 features
using both 5 folds and 10 folds. The efficiently selected classifiers are SVM and KNN, which
were chosen to get robust results. The chosen dataset contains 1002 images. The best results
are recorded with other measures, such as accuracy, precision, recall, F1-score, training
time, etc. Results are shown in the Table 6 in detail.
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Table 6. Experiment_2 using 5 Folds (200 Feature).

Classifier Accuracy (%) Total Cost Precision
Speed (obs/s) Training Time (s) Precision Recall F1-Score

Fine Gaussian SVM 81.1 189 14,000 0.81571 0.8 0.82 0.805
Linear SVM 73.7 264 16,000 1.3486 0.735 0.735 0.73
Cubic SVM 80.4 210 15,000 1.8572 0.805 0.805 0.8
Quadratic SVM 78.4 216 15,000 1.7431 0.785 0.78 0.785
Medium Gaussian SVM 72.8 273 15,000 0.7667 0.71 0.74 0.715
Coarse Gaussian SVM 60.5 396 14,000 0.671 0.565 0.71 0.5
Weighted KNN 78.2 218 7700 0.76741 0.785 0.785 0.78
FINE KNN 74.8 253 7600 1.1917 0.75 0.75 0.75
Medium KNN 66.8 333 7800 0.8367 0.66 0.665 0.66
Coarse KNN 62.4 377 7200 0.79092 0.59 0.675 0.555
Cosine KNN 67.2 329 7500 0.766606 0.67 0.665 0.67
Cubic KNN 69.0 311 1200 3.8096 0.68 0.685 0.68

Experiment_2(a): Using 5 Folds and 200 Features (1002 × 200 features)

This test case shows the results of 200 features upon 1002 images using SVM and KNN
classifiers with 5 folds. Details are shown in Table 6.

The Fine Gaussian SVM classifier achieved the best result in comparison with all KNN
classifiers, which is 81.1% in 0.8 s. Here, the confusion matrix in Figure 12 and the ROC in
Figure 13 curve are shown for the best results with the Fine Gaussian SVM classifier.

Figure 12. Confusion matrix for FG(SVM) with 200 features and using 5-fold results.

Figure 13. ROC curves for two classes A and B with 200 features and using 5-fold results.

The ROC curve is shown in Figure 13 for both classes A and B which are presented as
ROC A and ROC B.

Experiment_2(b): Using 10 Folds and 200 Features (1002 × 200 features)

This test case shows the results of 200 features upon 1002 images using SVM and KNN
classifiers with 10 folds. Details are shown in Table 7.
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Table 7. Experiment_2 using 10 Folds (200 Feature).

Classifier Accuracy (%) Total Cost Precision
Speed (obs/s) Training Time (s) Precision Recall F1-Score

Fine Gaussian SVM 82.6 174 8300 1.2664 0.815 0.83 0.825
Linear SVM 73.2 269 8000 1.8576 0.725 0.73 0.73
Cubic SVM 80.8 192 8400 5.6548 0.815 0.81 0.81
Quadratic SVM 78.2 218 7800 3.4237 0.78 0.78 0.78
Medium Gaussian SVM 73.9 262 8100 1.15 0.725 0.75 0.725
Coarse Gaussian SVM 60.2 399 8100 1.1668 0.565 0.715 0.49
Weighted KNN 78.6 214 4100 1.2662 0.79 0.785 0.78
FINE KNN 75.0 250 4200 1.8358 0.755 0.75 0.75
Medium KNN 65.9 342 4000 1.8129 0.655 0.655 0.65
Coarse KNN 62.0 381 4000 1.2544 0.59 0.67 0.55
Cosine KNN 65.9 342 3900 1.274 0.665 0.665 0.655
Cubic KNN 68.5 316 960 4.57 0.675 0.68 0.68

Here, the Fine Gaussian SVM classifier achieved the best result in comparison with all
KNN classifiers, which is 82.6% in 1.2 s. Here, the confusion matrix also shown in Figure 14
and the ROC curve are shown for the best results against the Fine Gaussian SVM classifier.

Figure 14. Confusion matrix for FG(SVM) with 200 features and using 10-fold results.

The ROC curve is shown in Figure 15 for both classes A and B, which are presented as
ROC A and ROC B.

Figure 15. ROC curve for two classes A and B with 200 features and using 10-fold results.

Experiment_3: Using 5-Fold and 10-Fold Validation on 500 features.

This section provides details about two test cases that are performed on 500 features
using both 5 folds and 10 folds. The efficiently selected classifiers are SVM and KNN, which
were chosen to get robust results. The chosen dataset contains 1002 images. The best results
are recorded with some other measures like Accuracy, precision, recall, F1-score, training
time, and others. Results are shown in the Table 8 in detail.
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Table 8. Experiment_3 using 5 Folds (500 Feature).

Classifier Accuracy (%) Total Cost Precision
Speed (obs/s)

Training Time
(s) Precision Recall F1-Score

Quadratic SVM 84.1 159 7000 2.2045 0.84 0.84 0.84
Linear SVM 79.0 210 6900 1.7001 0.785 0.79 0.79
Cubic SVM 82.4 176 7300 2.2117 1.64 1.65 1.65
Fine Gaussian SVM 83.6 164 6900 1.2768 1.66 1.68 1.67
Medium Gaussian SVM 75.8 242 6900 1.1461 0.745 0.765 0.75
Coarse Gaussian SVM 67.0 331 6800 1.1891 0.65 0.68 0.65
Weighted KNN 80.4 196 3100 1.5885 0.805 0.805 0.805
FINE KNN 77.6 224 3200 1.9972 0.78 0.775 0.775
Medium KNN 69.4 307 3200 1.6358 0.685 0.69 0.685
Coarse KNN 67.4 331 3100 1.584 0.65 0.695 0.64
Cosine KNN 68.5 316 3000 1.6165 0.685 0.685 0.685
Cubic KNN 73.3 268 470 9.3325 0.72 0.73 0.73

Experiment_3(a): Using 5 Folds and 500 Features (1002 × 500 features)

This test case shows the results of 500 features upon 1002 images using SVM and KNN
classifiers with 5 folds. Details are shown in Table 8.

Here, the classifier Quadratic SVM achieved the best result in comparison with all
KNN classifiers, which is 84.1% in 1.2 s. The confusion matrix in Figure 16 and the ROC
curve in Figure 17 are shown for the best results against the Quadratic SVM classifier.

Figure 16. Confusion matrix for Q(SVM) with 500 features and using 500 fatures with 5-fold results.

Figure 17. ROC curve for two classes A and B with 500 features and using 5-fold results.

The ROC curve is shown for both classes A and B, which are presented as ROC A and
ROC B in Figure 17.

Experiment_3(b): Using 10 Folds and 500 Features (1002 × 500 features)

This test case shows the results of 500 features upon 1002 images using SVM and KNN
classifiers with 10 folds. Details are shown in Table 9.
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Table 9. Experiment_3 using 10 Folds (500 Feature).

Classifier Accuracy (%) Total Cost
Precision
Speed
(obs/sec)

Training Time
(s) Precision Recall F1-Score

Fine Gaussian SVM 85.2 148 3800 2.2088 0.845 0.86 0.85
Linear SVM 79.8 202 3600 4.5137 0.79 0.8 0.79
Cubic SVM 84.2 158 4100 4.4002 0.845 0.84 0.84
Quadratic SVM 84.7 153 4000 4.1644 0.845 0.845 0.845
Medium Gaussian SVM 75.9 241 4000 2.1057 0.75 0.765 0.755
Coarse Gaussian SVM 67.7 324 3900 2.0635 0.66 0.69 0.655
Weighted KNN 82.5 175 1800 2.6916 0.83 0.825 0.825
FINE KNN 79.4 206 1700 3.7172 0.795 0.795 0.79
Medium KNN 71.5 286 1800 2.7012 0.71 0.71 0.71
Coarse KNN 66.4 337 1800 2.667 0.645 0.685 0.63
Cosine KNN 67.9 322 1600 2.786 0.685 0.68 0.68
Cubic KNN 75.4 246 380 11.154 0.75 0.75 0.75

Here, the classifier Fine Gaussian SVM achieved the best result in comparison with all
KNN classifiers, which is 85.2% in 2.2 s. Here, the confusion matrix and the ROC curve are
shown for the best results against the Fine Gaussian SVM classifier. The confusion matrix
for FG (SVM) is shown in Figure 18.

Figure 18. Confusion matrix for FG(SVM) with 500 features and using 10-fold results.

Here, the ROC curve is presented (in Figure 19) for both classes A and B, which are
presented as ROC A and ROC B.

Figure 19. ROC curve for two classes A and B with 500 features and using 10-fold results.

Figure 20 shows the 5-fold best achievable results between training time and features.
It shows the consumed time for training that is required for a particular set of features.
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Figure 20. Graph showing training time and features on 5-fold.

Here, features are presented on the x-axis and the training time is shown on the y-axis.
These results are taken on 5-folds for the best achievable results.

Similarly, the graph in Figure 21 shows the relation between accuracy and features at
5-fold results. It shows that the features are presented along the x-axis and the accuracy is
presented along the y-axis, and the line presents the best achievable results.

Figure 21. Graph showing accuracy and features on 5-fold.

The graph in Figure 22 shows the relation between training time and features upon
results taken on 10 folds. This graph shows that features are shown along the x-axis and
the training time is shown along the y-axis, and the time consumed by a particular set of
features for training is illustrated.

Figure 22. Graph showing features and training time.

The graph in Figure 23 shows the relation between training time and accuracy upon
results taken on 10 folds. This graph shows that features are shown along the x-axis and the
accuracy is shown along the y-axis, and the time consumed by a particular set of features
for training is illustrated.
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Figure 23. Graph showing features and accuracy on 10 folds.

5. Conclusions

Agriculture is the key to the development and rise of emergent nations. Diseases in
plants cause crop damage. Detection of leaf blight is enormously important as it affects
the annual production of guava fruit. Finally, the development of an automated system
becomes indispensable. In this paper, leaf blight can be detected, analyzed, and classi-
fied through the proposed methodology. In this proposed methodology, our own deep
CNN is designed, containing thirty-three layers. In the first phase of image processing,
preprocessing is done by using color spacing YCbCr. The Guava dataset is chosen for the
identification and analysis of leaf blight. Because the dataset is small, data augmentation is
performed. Horizontal and vertical flipping were performed on images of guava leaves.
After preprocessing, feature extraction was performed using Darknet-53 and AlexNet, as
well as the proposed SidNet. For the selection of the best features, optimization algorithms
such as Entropy and Binary Gray Wolf are used. Finally, classification is performed on
guava leaf images and the best results with higher accuracy and less computational cost
are achieved. Multiple experiments are performed while using the set of selected features
(200, 500, 750, 1000 features using 5- and 10-fold validation). Based on the selected features,
98.9% of the results are achieved using an SVM classifier, as it proves that this proposed
methodology is robust and efficient.

In the future, this work can be explored with quantum deep learning for improved
performance. Quantum computing-based machine learning and deep convolutional neural
networks can detect and classify leaf blight at its initial stage more precisely and meticu-
lously, which will help save crops and fruits, save plants from destruction, and increase the
production of guava fruit.
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