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Abstract: Remote sensing is an efficient tool to detect vegetation heterogeneity and dynamics of crop
development in real-time. In this study, the performance of three maize hybrids (Fornad FAO-420,
Merida FAO-380, and Corasano FAO-490-510) was monitored as a function of nitrogen dose (0, 80 and
160 kg N ha−1), soil tillage technologies (winter ploughing, strip-tillage, and ripping), and irrigation
(rainfed and 3x25 mm) in a warm temperature dry region of East-Central Europe. Dynamics of the
Normalized Difference Vegetation Index (NDVI) were followed in the vegetation period of 2021, a
year of drought, by using sensors mounted on an unmanned aerial vehicle. N-fertilization resulted in
significantly higher NDVI throughout the entire vegetation period (p < 0.001) in each experimental
combination. A significant positive effect of irrigation was observed on the NDVI during the drought
period (77–141 days after sowing). For both the tillage technologies and hybrids, NDVI was found to
be significantly different between treatments, but showing different dynamics. Grain yield was in
strong positive correlation with the NDVI between the late vegetative and the early generative stages
(r = 0.80–0.84). The findings suggest that the NDVI dynamics is an adequate indicator for evaluating
the impact of different treatments on plant development and yield prediction.

Keywords: unmanned aerial vehicle; growth dynamics; yield–NDVI correlation; polyfactorial experi-
ment; remote sensing

1. Introduction

Field crop production is of paramount importance; it is an essential basis for food
production and a source of our existence. Maize is one of the most significant crops in the
world; it is necessary to provide both food and energy security [1,2]. Hungary covers a total
area of 9.3 million hectares, of which 4.1 million hectares are arable land. Soil moisture is the
most direct and important source of water demand for crops [3]. Therefore, climate change
is the largest challenge of our time, resulting in less and less precipitation in Hungary every
year [4]. Drought is currently a severe environmental limiting factor of crop survival and
productivity due to the continuous decline in global water resources [5]. The increasing
drought causes severe damage to agriculture, especially crop production [6,7]. According
to Noromiarilanto et al. [8], the situation will undoubtedly deteriorate as climate change
estimates show an increase in extreme weather events.

The long-term impacts of yield loss are crucial for socioeconomic stability and food
security [9]. Research by Horváth et al. [10] showed that the amount of N fertilizer and
application time recommended to achieve the highest yields varies among hybrids with
different FAO numbers, which is also influenced by environmental factors.

Maize is cultivated in many countries around the world [11] and it is an important
source of food, animal feed, and fuel [12]. In our country, the most dominant arable crop
is maize (Zea mays L.) [13], the cultivation of which is highly dependent on climate. In
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addition to the season, fertilization [14] and the applied hybrid [15] have a significant
influence on maize yield. The research of Rácz et al. [16] highlighted, in addition to the
environmental conditions during the season, the need for proper N ha−1 treatment as it
significantly affects maize biomass yield and increases the protein content of the crop.

Global agricultural production is extremely sensitive to the negative impacts of climate
change (extreme weather, drought, heatwaves), and Hungary is no exception [17]. Crops
react differently; they have different responses to abiotic and biotic environmental impacts
and, obviously, to other treatments. ML models could offer an appropriate scope for
analyzing the vast amounts of data. Agriculture may soon adopt ML technology on
a regular basis for tasks such as stress detection, yield prediction and estimation, and
real-time field operations [18,19].

The interaction of light and foliage is determined by the physical and chemical proper-
ties of vegetation that affect the absorption, transmission and reflectance of light [20], and
these create unique spectral properties for different species and phenotypes [21].

To record the different responses, we used UAV remote sensing to record Normalized
Difference Vegetation Index (NDVI) values at different measurement times. Plant biomass,
developmental stage, and environmental and other stress responses influence leaf spectral
values, thus providing a good indication of the current state of the plant. Verhulst et al. [22]
found a strong correlation between NDVI values and the accumulation of biomass both in
maize and wheat. Remote-sensing-based plant studies, including UAV-based plant studies,
are an excellent tool for assessing maize health and the response of different hybrids to
treatments [23]. Remote sensing can be used to cover large areas quickly and efficiently.

The NDVI provides producers with the opportunity to assess crop biomass and yield.
These indirect reflectance measurements have been used to estimate plant biomass and
yield [24].

UAVs can be used to observe vegetation heterogeneity and its dynamic temporal varia-
tion [25–27]. These unmanned aerial vehicles are increasingly used for crop surveys [28,29].

Research by Burke and Lobell [30] suggested that NDVI values in the range 0.14–0.88
can be used for yield mapping. The strong (r = 0.89) NDVI - yield correlation was confirmed
by other research [31,32], and can be used to monitor production.

The climate of Europe and our country has undergone significant changes in the
last 30 years, but especially in the last 4–5 years. The average monthly temperature is
rising, and the spatial and temporal distribution of precipitation is becoming more and
more unfavorable at the European level. The long-term experiment is a reference for the
production practice. The vegetation dynamics of different maize hybrids are different in
every geographic area; therefore, it is necessary to narrow down the spatial extent for a
more precise examination. UAV-based remote sensing is more accurate and reliable than
satellite-based surveys because there are fewer peripheral disturbing factors. In this way,
the tests can be better adapted to the given phenological phases.

NDVI measurements based on remote sensing at different times during the vegetation
period can be used to predict the expected yield.

2. Materials and Methods
2.1. Experimental Location and Setup

The study was carried out in Hungary, at the Látókép Experimental Station of the
University of Debrecen (N 47◦33′ E 21◦27′), on calcareous chernozem soil. The complex soil
tillage experiment (rotation x tillage x fertilization x irrigation x plant density x genotype)
was set up in 1989, which is unique in the country and in Europe (Figure 1) [33,34]. The
tillage block of the experiment is 8064 m2, divided into one irrigated and one non-irrigated
block. The main plot size is 2688 m2, while the size of the fertilizer treatment plots is 336 m2

in total. The trials were conducted with three maize hybrids, each with different genotype
(Merida FAO-380; Corasano FAO-490-510; Fornad FAO-420) in the crop year of 2021. The
sowing date was 22 April, and the first day of emergence was 4 May. The number of plants
was 80,000 plants ha−1. A total of 30 kg N ha−1 and 100% of P and K were applied as a basal
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fertilizer in autumn. The additional N active ingredient was applied in spring as liquid
Nitrosol (27% N + 2% S) by top-dressing in June. The irrigated part of the area received
25 mm of irrigation water in June and 25 - 25 mm in early and late July. In the experiment,
the NDVI dynamics of maize were studied under three different tillage regimes: winter
ploughing, strip-tillage, and ripping. Harvesting took place on 28 September 2021 with a
yield-measuring plot harvester.

Figure 1. Field map with basemap of RGB image of 1 July 2021 and location in Hungary. Note:
control, 80 kg N ha−1 + 60 kg P2O5 ha−1 + 90 kg K2O ha−1, and 160 kg N ha−1 + 60 kg P2O5 ha−1 +
90 kg K2O ha−1 fertilization treatments were randomized; I., II., III., IV: replications; three different
tillage methods, inside the treatment blocks of the three maize varieties (1) “Merida FAO-380”,
(2) “Corasano FAO-490-510”, and (3) “Fornad FAO-420”.

2.2. Soil Characteristics of the Experiment

The soil type is chernozem, solonetzic in the deeper layers, which is typical of the
Great Hungarian Plain, situated in the Carpathian Basin, East-Central Europe. Table 1
provides an overview of the soil characteristics.

Table 1. Main soil properties of the experimental area (Debrecen-Látókép, 2021).

Layer
0–20 cm

Layer
20–40 cm

Layer
40–60 cm

pH (KCl 1:2,5) 7.44 7.50 7.75
KA 45.5 46 46

CaCO3 (%) 12.12 12.32 17.37
Humus (%) 2.86 3.09 2.11

NO3 + NO2 (mg kg−1) 5.07 3.53 2.77
P O25 (AL) (mg kg−1) 515.98 533.43 173.05
K2 O (AL) (mg kg−1) 351.73 300.97 174.24

Note: KA: Arany’s plasticity index; AL: ammonium lactate-soluble.

2.3. Weather Characteristics of the Crop Season

The weather station of the experimental site measures air temperature by means of a
P100 plantinum resistance thermometer, global radiation is measured by a Kipp & Zonen
SP Lite2 pyranometer, and precipitation is measured by a Hungarian brand PG200 rain
gauge, which measures the gravimetric principle. Among the official Hungarian National
Meteorological Service (OMSZ) measurements, the temperature and precipitation data
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available for the city of Debrecen are 30-year averages, and the solar radiation data provide
a 20-year average [35].

Agrometeorological conditions for the 2021 year were generally unfavorable. The last
third of June was more than 3 ◦C warmer than the 30-year average, and this month is the
generative phase of maize. The very hot weather was accompanied by a severe lack of
precipitation. In June, 6.4 mm of rain fell in total, well below the 30-year average. The
drought continued in July and August (Figure 2).

Figure 2. Monthly average air temperatures and monthly precipitation totals compared to 30-year
average. The 30-year average: monthly average values for the last 30 years at the experiment site
(Debrecen-Látókép, 2021).

The intensity of solar radiation during the emergence was around the 20-year average,
but it exceeded the 20-year average by 23.5% in the intensive growth phase in June, and by
19.4% in the generative phase in July (Figure 3).

2.4. Methodology of Measurements and Calculations

NDVIUAV measurements were taken six times (days after sowing (DAS) 42; 56; 77; 90;
105; 141) using UAV. The DAS values correspond to the following phenological phases: V6;
V8; V12; VT; R1; R3. Remotely sensed NDVI photos were captured using a DJI Phantom 4
Pro V2 drone with a Sentera Double 4K NDVI sensor. In QGIS 3.16.12, the orthorectified
images were examined [36]. The methodology of the experiment was the same as conducted
in a previously published article [37].

The WebODM software was used for stitching to complete NDVI images. DEM
resolution was 2.0, DSM: true, DTM: true and the orthophoto spatial resolution was 2.0 cm.
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Figure 3. The 20-year average and 2021 monthly average of solar radiation at the experimental site
(Debrecen-Látókép, 2021).

As always, if the certified software of Sentera Inc. is not used, channels have to be
further separated. The impact of out-of-band channels on each band can be removed using
a set of equations. This calculation takes into account a roughly homogenous incoming
light source (which is the case with daylight). The Sentera camera is a multispectral camera
with a modified color filter, and the bands from the stored channels can be calculated using
the formulae below [38]:

Red = −0.966× DNblue + 1.000× DNred (1)

NIR = 4.350× DNblue− 0.286× DNred (2)

NDVI =
(NIR− Red)
(NIR + Red)

(3)

Trimble RTK was used to identify the edges of the plot. At different times, the
generated polygon shape file was input into the stitched orthophoto. The raster was then
updated using the formula by the QGIS program, and zone statistics were utilized to
ascertain the mean values on each plot.

2.5. Data Analysis

Statistical evaluation was carried out using the R 4.2.2 statistical software environ-
ment [39]. The graphical interface was implemented using RStudio [40], gplots [41], car [42]
and agricolae [43] packages. Graphs were created using Microsoft Excel. The first-order
error was set at 5%, i.e., alpha = 0.05. To investigate the effects of treatments, a repeated
measures ANOVA model was constructed [44], and to compare the mean of yields, the
least significant difference (LSD) approach was employed.

3. Results

The NDVIUAV values were significantly (p < 0.001) different between the different
measurement times for hybrid and treatment averages. The highest mean value was
measured on day 90 after sowing. The mean value measured on day 42 was 67.8% lower.
On day 46 it was 59.9% and on day 56 45.8% lower. Day 77 and day 105 were 15.7–17.4%
lower. On day 141 there was a significant 49% drop compared to day 90 (Figure 4).
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Figure 4. The NDVIUAV values of maize as the effect of days after sowing (DAS) (Debrecen, 2021);
means of the varieties± standard error. The differences among the measurement days were significant
at the p = 0.001 level. Different letters mean significant difference at the p < 0.05 level among the
measurement days. LSD = 0.003.

The correlation was inspected between the NDVIUAV values and yield t ha−1 with
Pearson correlation analysis which can be seen in Table 2.

Table 2. Pearson correlation coefficient (r) values among NDVIUAV and yield t ha−1 (2021, Debrecen).

95% Cl

DAS Variables Pearson’s r Lower Upper N

42 NDVIUAV - Yield t ha−1 0.420 *** 0.339 0.494 432
46 NDVIUAV - Yield t ha−1 0.661 *** 0.605 0.711 432
56 NDVIUAV - Yield t ha−1 0.676 *** 0.622 0.724 432
77 NDVIUAV - Yield t ha−1 0.803 *** 0.766 0.834 432
90 NDVIUAV - Yield t ha−1 0.821 *** 0.787 0.849 432
105 NDVIUAV - Yield t ha−1 0.844 *** 0.815 0.869 432
141 NDVIUAV - Yield t ha−1 0.577 *** 0.510 0.637 432

***. Correlation is significant at the 0.001 level; confidence level (Cl) 95%.

It was expected to find a close correlation between the NDVI values and maize yield
(Figure 5), and the coefficients pointed to very close positive connection between them at
DAS 77, 90, 105 (r = 0.803–0.844), except the other measurement times, where the correlation
was weaker (r = 0.420–0.676). The correlation was significant (p = 0.001).

When examining the effect of irrigation on NDVIUAV values measured at different
times, there was a significant (p < 0.001) difference between the given DAS except for 42
DAS. Vegetative development up to 56 DAS was minimally lower in the irrigated sections
by 1.1–7.9%. From 77 DAS, the irrigation effect was positive, 3.4–19.6%. The largest positive
irrigation effect was at 77 DAS: +19.6% (Figure 6).



Agriculture 2023, 13, 689 7 of 17

Figure 5. Pearson correlation coefficient (r) dynamic among NDVIUAV and yield t ha−1 (2021,
Debrecen). Note: ***. Correlation is significant at the 0.001 level.

Figure 6. The NDVIUAV values of maize as the effect of irrigation at different DAS (Debrecen,
2021); means of the varieties ± standard error. At the p = 0.001 level, the differences between the
DAS treatments were considered significant. The different letters indicate treatments that differ
significantly (p < 0.05). LSD = 0.004.

Pearson’s correlation coefficient trends were examined in both the non-irrigated and
irrigated variants (Table 3).
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Table 3. Pearson correlation coefficient (r) values among NDVIUAV and yield t ha−1 in non-irrigated
and irrigated conditions (2021, Debrecen).

95% Cl

DAS Group Variables Pearson’s r Lower Upper N

42 Non-irrigated NDVIUAV - Yield t ha−1 0.500 *** 0.393 0.594 216
Irrigated NDVIUAV - Yield t ha−1 0.437 *** 0.322 0.539 216

46 Non-irrigated NDVIUAV - Yield t ha−1 0.635 *** 0.548 0.708 216
Irrigated NDVIUAV - Yield t ha−1 0.760 *** 0.697 0.811 216

56 Non-irrigated NDVIUAV - Yield t ha−1 0.677 *** 0.598 0.743 216
Irrigated NDVIUAV - Yield t ha−1 0.813 *** 0.762 0.854 216

77 Non-irrigated NDVIUAV - Yield t ha−1 0.772 *** 0.712 0.821 216
Irrigated NDVIUAV - Yield t ha−1 0.893 *** 0.862 0.917 216

90 Non-irrigated NDVIUAV - Yield t ha−1 0.830 *** 0.784 0.868 216
Irrigated NDVIUAV - Yield t ha−1 0.858 *** 0.818 0.889 216

105 Non-irrigated NDVIUAV - Yield t ha−1 0.882 *** 0.849 0.909 216
Irrigated NDVIUAV - Yield t ha−1 0.860 *** 0.820 0.891 216

141 Non-irrigated NDVIUAV - Yield t ha−1 0.582 *** 0.486 0.664 216
Irrigated NDVIUAV - Yield t ha−1 0.547 *** 0.446 0.634 216

***. Correlation is significant at the 0.001 level; confidence level (Cl) 95%.

Medium correlation was observed at early measurement dates (r = 0.437–0.635) and at
the time of crop maturity (r = 0.547–0.582). From the 56th day of measurements, the start
of actual irrigation, to the end of the vegetative stage (DAS 90), the correlation coefficient
between NDVIUAV and yield t ha−1 was higher due to the effect of irrigation (Figure 7).

Figure 7. Pearson correlation coefficient (r) dynamics among NDVIUAV and yield t ha−1 in non-
irrigated and irrigated conditions (2021, Debrecen). Note: ***. Correlation is significant at the
0.001 level.

A significant difference is shown in Figure 8, when the effects of tillage types are
examined. The tillage types differed at the p < 0.001 level at the time of measurement.
Until 77 DAS, the maize crops after winter ploughing had the highest NDVIUAV values.
The variance for strip tillage maize plots ranged from 4.9 to 17.9%, while the variance
for ripping was lower with a negative variance of 1.8 to 4.5%. At 90 DAS, the highest
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NDVIUAV values were measured for ripping, with average values 0.3–4.3% lower in the
winter ploughing and 1.4–6.1% lower in strip-tillage.

Figure 8. The NDVIUAV values of maize as the effect of tillage at different DAS (Debrecen, 2021);
means of the varieties ± standard error. At the p = 0.001 level, the differences between the DAS treat-
ments were considered significant. The different letters indicate treatments that differ significantly
(p < 0.05). LSD = 0.005.

Correlation with yield varied across tillage treatments (Table 4).
At the early (DAS 42) measurement date, strip-tillage showed a weak correlation

(r = 0.129) and a lower correlation between NDVIUAV and yield t ha−1 at all measurement
dates. The strongest correlation was observed at 90 and 105 days after sowing, DAS 90 for
ripping (r = 0.869), and DAS 105 for winter ploughing (r = 0.920) (Figure 9).

Examining the NDVIUAV dynamics of the hybrids (Figure 10), the difference can
be statistically confirmed (p < 0.001). The highest mean values were measured for the
Fornad FAO-420 hybrid. Overall, there was no significant difference, with Merida FAO-380
having 0.2–11.2% lower NDVI at different time points, and Corasano FAO-490-510 having
0.3–10.5% lower NDVI at the last measurement time (141 DAS).

Figure 9. Pearson’s correlation coefficient (r) dynamics among NDVIUAV and yield t ha−1 as a result
of tillage systems (2021, Debrecen). Note: ***. Correlation is significant at the 0.001 level.
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Table 4. Pearson correlation coefficient (r) values among NDVIUAV and yield t ha−1 as a result of
tillage systems (2021, Debrecen).

95% Cl

DAS Group Variables Pearson’s r Lower Upper N

42 Winter ploughing NDVIUAV - Yield t ha−1 0.436 *** 0.293 0.559 144
Strip-till
Ripping

NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.129 ***
0.368 ***

−0.035
0.218

0.286
0.502

144
144

46 Winter ploughing NDVIUAV - Yield t ha−1 0.657 *** 0.553 0.741 144
Strip-till
Ripping

NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.498 ***
0.650 ***

0.365
0.545

0.612
0.736

144
144

56 Winter ploughing NDVIUAV - Yield t ha−1 0.590 *** 0.472 0.687 144
Strip-till
Ripping

NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.587 ***
0.719 ***

0.469
0.630

0.685
0.790

144
144

77 Winter ploughing NDVIUAV - Yield t ha−1 0.813 *** 0.749 0.862 144
Strip-till
Ripping

NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.712 ***
0.815 ***

0.621
0.751

0.785
0.863

144
144

90 Winter ploughing NDVIUAV - Yield t ha−1 0.846 *** 0.792 0.887 144
Strip-till
Ripping

NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.726 ***
0.869 ***

0.638
0.823

0.795
0.904

144
144

105 Winter ploughing NDVIUAV - Yield t ha−1 0.920 *** 0.891 0.942 144
Strip-till
Ripping

NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.825 ***
0.858 ***

0.764
0.808

0.871
0.896

144
144

141 Winter ploughing NDVIUAV - Yield t ha−1 0.685 *** 0.587 0.763 144
Strip-till
Ripping

NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.562 ***
0.624 ***

0.438
0.513

0.664
0.715

144
144

***. Correlation is significant at the 0.001 level; confidence level (Cl) 95%.

Figure 10. The NDVIUAV values of maize hybrids at different DAS (Debrecen, 2021); means of the
varieties ± standard error. Differences between the examined hybrids at DAS were significant at the
p = 0.001 level. Different letters indicate significant difference at the p < 0.05 level among the hybrids
and DAS. LSD = 0.005.

The correlation between the NDVIUAV values of the hybrids and the yield t ha−1

varied due to the genotypes (different FAO), as is shown in Table 5.
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Table 5. Pearson correlation coefficient (r) values among NDVIUAV and yield t ha−1 as a result of
hybrids (2021, Debrecen).

95% Cl

DAS Group Variables Pearson’s r Lower Upper N

42 Merida-380 NDVIUAV - Yield t ha−1 0.436 *** 0.293 0.559 144
Corasano-490-510

Fornad-420
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.129 ***
0.368 ***

−0.035
0.218

0.286
0.502

144
144

46 Merida-380 NDVIUAV - Yield t ha−1 0.657 *** 0.553 0.741 144
Corasano-490-510

Fornad-420
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.498 ***
0.650 ***

0.365
0.545

0.612
0.736

144
144

56 Merida-380 NDVIUAV - Yield t ha−1 0.590 *** 0.472 0.687 144
Corasano-490-510

Fornad-420
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.587 ***
0.719 ***

0.469
0.630

0.685
0.790

144
144

77 Merida-380 NDVIUAV - Yield t ha−1 0.813 *** 0.749 0.862 144
Corasano-490-510

Fornad-420
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.712 ***
0.815 ***

0.621
0.751

0.785
0.863

144
144

90 Merida-380 NDVIUAV - Yield t ha−1 0.846 *** 0.792 0.887 144
Corasano-490-510

Fornad-420
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.726 ***
0.869 ***

0.638
0.823

0.795
0.904

144
144

105 Merida-380 NDVIUAV - Yield t ha−1 0.920 *** 0.891 0.942 144
Corasano-490-510

Fornad-420
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.825 ***
0.858 ***

0.764
0.808

0.871
0.896

144
144

141 Merida-380 NDVIUAV - Yield t ha−1 0.685 *** 0.587 0.763 144
Corasano-490-510

Fornad-420
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.562 ***
0.624 ***

0.438
0.513

0.664
0.715

144
144

***. Correlation is significant at the 0.001 level; confidence level (Cl) 95%.

In the initial development, the Corasano FAO-490-510 hybrid shows a weak correla-
tion with yield (r = 0.129), which can be explained by its mid−late maturity (Figure 11).
The hybrids show the strongest correlation at different times during the growing season:
Merida FAO-380 at 105 days after sowing (r = 0.920), Fornad FAO-420 at 90 days after
sowing (r = 0.869), and mid−late maturing Corasano FAO-490-510 at 105 days after sowing
(r = 0.825).

Examining the effect of nutrient levels on NDVIUAV values (Figure 12) at different
measurement times, the difference was statistically confirmed (p < 0.001). For all DAS,
the 160 kg ha−1 N dose resulted in higher NDVI values. A nutrient level of 80 kg ha−1 N
resulted in 6.5% lower values in the DAS average, while the control was 15.5% lower.

The Pearson correlation values (r) show a large variation with N ha−1 fertilization in
Table 6.

In autumn 2020, both the 80 kg N ha−1 and 160 kg N ha−1 treatments received the
same amount of nutrients, therefore the 160 kg N ha−1 nutrient level shows a lower (weak)
correlation with yield at the initial developmental stages. After top-dressing in June, on
day 77 after sowing, there is already a strong correlation between NDVIUAV measured at
160 kg N ha−1 nutrient level and yield (r = 0.801). The control plots show weak to moderate
correlations throughout the growing season (r = −0.058–0.563). The 80 kg N ha−1 nutrient
level shows a strong coupling at days 77 and 90 after sowing (r = 0.704; 0.721), as shown in
Figure 13.
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Figure 11. Pearson correlation coefficient (r) dynamics among NDVIUAV and yield t ha−1 as a result
of different hybrids (2021, Debrecen). Note: ***. Correlation is significant at the 0.001 level.

Figure 12. The NDVIUAV values of maize as the effect of fertilization treatments at different DAS
(Debrecen, 2021); means of the varieties ± standard error. Different letters indicate significant
difference at the p < 0.05 level among the hybrids and DAS. LSD = 0.005.
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Table 6. Pearson correlation coefficient (r) values among NDVIUAV and yield t ha−1 as a result of N
ha−1 fertilization (2021, Debrecen).

95% Cl

DAS Group Variables Pearson’s r Lower Upper N

42 Control NDVIUAV - Yield t ha−1 −0.058 *** −0.219 0.107 144
80 kg N ha−1

160 kg N ha−1
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.514 ***
0.149 ***

0.383
−0.015

0.625
0.305

144
144

46 Control NDVIUAV - Yield t ha−1 0.258 *** 0.099 0.405 144
80 kg N ha−1

160 kg N ha−1
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.623 ***
0.268 ***

0.511
0.110

0.714
0.414

144
144

56 Control NDVIUAV - Yield t ha−1 0.179 *** 0.016 0.333 144
80 kg N ha−1

160 kg N ha−1
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.561 ***
0.224 ***

0.438
0.063

0.664
0.374

144
144

77 Control NDVIUAV - Yield t ha−1 0.550 *** 0.425 0.655 144
80 kg N ha−1

160 kg N ha−1
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.704 ***
0.801 ***

0.610
0.734

0.778
0.853

144
144

90 Control NDVIUAV - Yield t ha−1 0.563 *** 0.440 0.666 144
80 kg N ha−1

160 kg N ha−1
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.721 ***
0.566 ***

0.633
0.444

0.792
0.668

144
144

105 Control NDVIUAV - Yield t ha−1 0.535 *** 0.407 0.643 144
80 kg N ha−1

160 kg N ha−1
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.648 ***
0.717 ***

0.542
0.627

0.734
0.788

144
144

141 Control NDVIUAV - Yield t ha−1 0.225 *** 0.063 0.375 144
80 kg N ha−1

160 kg N ha−1
NDVIUAV - Yield t ha−1

NDVIUAV - Yield t ha−1
0.299 ***
0.296 ***

0.142
0.139

0.441
0.438

144
144

***. Correlation is significant at the 0.001 level; confidence level (Cl) 95%.

Figure 13. Pearson correlation coefficient (r) dynamics among NDVIUAV and yield t ha−1 as a result
of N fertilization (2021, Debrecen). Note: ***. Correlation is significant at the 0.001 level.
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4. Discussion

Our UAV−based NDVI dynamics showed a similar trend to those measured by Tunka
et al. [45] using satellite−based NDVI.

The NDVI dynamics of maize, averaged across cultivars and hybrids, showed a
significant correlation with yield on days 90–105 after sowing (r = 0.821 ***–0.844 ***). The
developmental stage of the plant at this time was VT and R1. According to research by
Yang et al. [46], NDVI values measured at the R3 phenological state can be used to predict
production, whereas our results suggest that it is more likely to be predicted at an earlier
mid-vegetative stage as noted by Chivasa et al. [47], although it is highly dependent on
environmental factors and agrotechnology, which may affect the accuracy of the model.

Irrigation in dry years is essential to maintain crop security. Smart nutrient man-
agement is also important for maximum yield potential. Irrigation and fertilization are
treatments that ensure stability of maize yields over the years, with the potential to increase
crop yields by an average of about 25% and by more than 80% in the dry season compared
to the control area [48]. In the analyzed year, precipitation in June and July was well below
the 30-year average, and irrigation in June significantly increased NDVI values, which can
be seen on day 77 after sowing. Ihuoma et al. [49] reported similar correlations in the case
of remote sensed NDVI and different measured factors by irrigation under the influence of
draught. In the examined year, the yield-enhancing effect of irrigation, on average of the
treatments, was 14%. In the control plots, there was a 1% increase in yield as a result of
irrigation. The 80 kg ha−1 N nutrient level resulted in a 6% increase, while the 160 kg ha−1

N treatment resulted in a 29% yield increase. Irrigation contributed to increased yields and
crop security, and Pearson’s correlation was strong.

N ha−1 doses also significantly (p < 0.001) increased NDVI values of maize. The
overall correlation with yield showed variability, as a significant proportion of the N active
ingredient was applied as liquid top-dressing in June, and therefore showed a strong
correlation (r = 0.704 ***–0.801 ***) with yield from day 77 of measurement. The strength of
the correlation was the highest at the V12 phenophase (DAS: 77) due to the 160 kg ha−1

N treatment. In the case of lower dose (80 kg ha−1 N), the correlation was more stable
during the vegetation. This can be attributed to the fact that the study was conducted in
the average of irrigated and non-irrigated treatments. Due to droughty weather at the end
of the vegetative phase and at the edge of the generative phase, the absorption of excess N
by the plants is limited and has a negative effect.

The NDVI values measured in the tillage treatments differed statistically (p < 0.001)
during the maize growing season. The negative effects of droughty weather in summer
were confirmed in the study of NDVI dynamics of maize under conventional tillage. Tillage
may be a tool for managing the effects of meteorological elements, particularly their abrupt
changes in habitat, in addition to being an agricultural technology tailored to the needs of a
certain crop [50]. The strongest correlation between NDVI values measured in the three
tillage modes studied and yield was observed on the 105th day after sowing (r = 0.825
***–0.920 ***).

The hybrids showed the strongest correlation at different times during the growing
season, which is due to the different maturity times (FAO). The NDVI dynamics showed
a similar trend for all three hybrids, but were statistically different (p < 0.001) among
measurement times.

5. Conclusions

With UAV-based remote sensing, more accurate information can be gathered about
plant condition, because atmospheric disturbing factors can be excluded and phenological
phases can be precisely determined.

Fertilization, tillage, hybrid and maize plant phenological stage (DAS) influenced NDVIUAV
values. In conclusion, based on our results, NDVI images taken with the help of UAVs showed
variable correlation with maize crop yield under different cropping technologies.



Agriculture 2023, 13, 689 15 of 17

The NDVI dynamics suggest that tolerance to environmental stress factors of hybrids
of different genotypes can be increased by different combinations of N ha−1 and constant
PK treatments, and by irrigation in response to climate change.

The promotion of environmentally friendly tillage techniques is an important aspect of
sustainability, and we recommend the use of ripping and strip-tillage over winter ploughing.

In a droughty year, the higher-FAO-number hybrids (Corasano FAO-490-510; For-
nad FAO-420) proved to be more economical than the early−maturing hybrids (Merida
FAO-380).

In the last few years in our region, irrigation has played a prominent role in terms
of crop safety. Only a few areas have the possibility of irrigation; therefore, water-saving
tillage methods and reasonable nutrient supply are insufficient from the point of view
of sustainability.

The accuracy of the NDVI−yield correlation can be further enhanced by analyzing
several years of data, which is the priority for us in the future.
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