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Abstract: The potato plant is amongst the most significant vegetable crops farmed worldwide. The
output of potato crop production is significantly reduced by various leaf diseases, which poses a
danger to the world’s agricultural production in terms of both volume and quality. The two most
destructive foliar infections for potato plants are early and late blight triggered by Alternaria solani
and Phytophthora infestans. In actuality, farm owners predict these problems by focusing primarily on
the alteration in the color of the potato leaves, which is typically problematic owing to uncertainty
and significant time commitment. In these circumstances, it is vital to develop computer-aided
techniques that automatically identify these disorders quickly and reliably, even in their early stages.
This paper aims to provide an effective solution to recognize the various types of potato diseases by
presenting a deep learning (DL) approach called EfficientPNet. More specifically, we introduce an
end-to-end training-oriented approach by using the EfficientNet-V2 network to recognize various
potato leaf disorders. A spatial-channel attention method is introduced to concentrate on the damaged
areas and enhance the approach’s recognition ability to effectively identify numerous infections. To
address the problem of class-imbalanced samples and to improve network generalization ability,
the EANet model is tuned using transfer learning, and dense layers are added at the end of the
model structure to enhance the feature selection power of the model. The model is tested on an open
and challenging dataset called PlantVillage, containing images taken in diverse and complicated
background conditions, including various lightning conditions and the different color changes in
leaves. The model obtains an accuracy of 98.12% on the task of classifying various potato plant leaf
diseases such as late blight, early blight, and healthy leaves in 10,800 images. We have confirmed
through the performed experiments that our approach is effective for potato plant leaf disease
classification and can robustly tackle distorted samples. Hence, farmers can save money and harvest
by using the EfficientPNet tool.

Keywords: agriculture; classification; deep learning; transfer learning; convolutional neural networks;
EfficientNet; potato diseases

1. Introduction

According to the UN Food and Agriculture Organization (FAO), the global population
could reach 9.1 billion by 2050. Due to the rising population, food consumption will
increase [1]. In the meantime, the lack of farmland and access to clean water makes it hard
for nutrient levels to rise. In order to meet human needs, there is an immediate need to boost
food security while using the least amount of growing area. As opposed to this, a number
of crop anomalies cause a significant decrease in meal productivity and quality. Therefore,
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immediate detection of these plant pathogens is necessary, as they have the potential to
reduce agricultural profits and increase inflation rates. Such outcomes may cause market-
wide economic uncertainty. Additionally, agricultural crop disorders at their most severe
stages can wipe out harvests and cause hunger in a country, especially in developing
nations with poor incomes. Typically, plant assessments are performed with the aid of
domain specialists; however, this is a laborious and time-consuming task that depends on
the participation of local professionals. Additionally, such methods of crop evaluation are
not regarded as highly trustworthy, and it is difficult for people to individually evaluate
each crop [2]. Therefore, it is critical to accurately and promptly identify the numerous
plant illnesses that might prevent growers from deploying pricey treatment techniques
while improving the food growth rate. The science world is concentrating its effort on the
creation of computerized plant illness diagnosis and recognition systems to address the
aforementioned issues with manual approaches [3].

Despite the existence of numerous different crops, such as tomatoes, onions, straw-
berries, and cherries, among others, the potato plant is a highly consumed crop around
the globe. The potato crop is regarded as the major staple by more than a billion people
globally, and is considered the third largest food crop on the planet after rice and wheat.
More than 300,000 tons are produced globally each year, providing both nutrients and
an essential source of calories for people [4]. In addition to providing a sizeable share
of the world’s nutrition, potatoes are a common source of raw ingredients for industry.
Potatoes are produced all over the world, with the top three exporters being China, India,
and Russia [5].

Following a survey performed by the UN Food and Agriculture Organization (FOA),
the prevalence of many illnesses, the majority of those which originate from the leaves
of the potato crop and cause a reduction in output amount from 9% to 11% annually [6],
is the main obstacle to the pace of potato growth. To examine potato crop leaf disorders,
the scientific world initially used methods from the fields of biological sciences and cell
biology [7,8]. These methods, however, exhibit high processing complexity and demand
a significant need for expert skills [9]. The majority of agricultural production is done by
low-income individuals; hence, such pricey methods are not practical for farmers [10]. The
rapid advancement of machine vision and object classification algorithms is being used
in existing works to design automated methods for identifying crop pathogens. Image
processing and machine learning (ML) studies are receiving more focus, and these methods
are emerging as appealing alternatives to ongoing crop infection surveillance. Several
conventional ML predictors, such as K-Nearest Neighbors (KNN), Random Forest Tree
(RFT) [11], and Support Vector Machine (SVM), are highly employed in existing works for
accomplishing classification tasks related to various plant-related diseases. Although these
ML techniques are simpler to comprehend and only need a minimal quantity of samples
to build models, they take time and rely heavily on expert human capital. Additionally,
the classic ML information computation methods consistently necessitate a compromise
between processing effort and classification results [12].

Deep learning (DL) techniques are currently being evaluated to address the short-
comings of ML algorithms. Different DL methodologies, including CNN [13], RNN [14],
and long short-term memory (LSTM) [15], are currently widely praised in the field of food
security. DL methods are capable of accurately estimating the informative collection of
sample feature characteristics without the assistance of domain experts. Both these strate-
gies for object recognition and deep learning (DL) imitate how the human brain functions
when a person locates and recognizes a variety of items by looking at examples of them.
DL approaches provide reliable results in the field of modern agriculture research, and
are effectively suited to a variety of jobs, whereas different kinds of deep neural networks
(DNNs) exhibit greater precision than multispectral evaluation. The agricultural production
field is intensively investigating methods such as GoogLeNet [16], DenseNet [17], Incep-
tion, VGG [18], and Residual Net [19] for problems including quantifying grain volume,
detecting plant heads, quantifying fruits, crop disorder diagnosis and categorization, etc.
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Because of their capacity to utilize the structural and morphological information afrom
the investigated images, these approaches are able to demonstrate excellent recognition
accuracy while minimizing processing effort [20].

Even though experts have carried out a significant amount of work to classify potato
crop leaf infections, it remains difficult to identify illness in the initial stages, as infected
and healthy plant sections share many similar characteristics [20]. Recognition is made
more difficult by varied plant leaf shapes, fluctuations in lighting and luminosity, the
inclusion of distortion, and blurring in the processed images. Thus, there remains an
opportunity for potential improvement in terms of computing power as well as correctness
in identifying potato plant diseases. In the presented work, we attempted to tackle the
existing problem of potato plant leaf disease classification by proposing an effective DL
approach, namely, EfficientPNet. We have modified the existing EfficientNet-v2 model by
introducing an attention mechanism (AM) and additional dense layers at the end of the
framework structure. The presented EfficientPNet approach robustly extracts high-level
signs of infected regions and associates them with related groups via employing an end-to-
end training mechanism. In addition, the AM strategy improves the recall power of the
proposed solution by passing relevant details of noticeable attributes such as diseased areas
of plant leaves. The distinctive contributions of this work can be elaborated as follows:

(1) An effective light DL approach called EfficientPNet is suggested that is proficient
in calculating relevant and distinctive sample characteristics and shows improved
potato plant leaf disease classification results with little computational effort.

(2) The model includes the pixel and channel attention approach in the feature compu-
tation phase, which improves its ability to comprehend crosslinks and spacewise
orientation properties to accelerate the diagnosis of potato leaf disorders in realistic
scenarios.

(3) Transfer learning and multi-class focal loss are adopted to cope with the problem of
class imbalance and network overfitting, which improves the precision of classifying
potato leaf infected regions.

(4) In order to demonstrate the effectiveness of the suggested EfficientPNet model, we
performed huge comparison evaluations to check the classification results by utilizing
a collection of images of potato crop disease taken from a standard sample repository
called PlantVillage. The suggested method successfully categorizes potato crop ill-
nesses, even in the context of challenging external factors such as noise, distortion,
unbalanced lighting, and variations in the shape, color, and placement of infection
marks.

(5) To increase the size and ensure balance between the training and testing datasets,
we have applied data augmentation techniques. Using these data augmentation
techniques, the classifier become more able to generalize.

The rest of this paper is organized as follows: related works is presented in Section 2,
and the proposed method in Section 3; we discuss the obtained results in Section 4; finally,
the work is concluded, and our future research plans are elaborated in Section 5.

2. Related Works

There have been several approaches presented for potato leaf disease detection from
leaf images. In [21], the authors proposed a pre-trained ResNet50 CNN model for the
classification and detection of plant diseases. This method was applied to potato leaves
taken from the PlantVillage dataset. The presented approach included augmentation
and segmentation, which were then passed to ResNet-50 for classification, achieving 98%
accuracy. The method performed well; however, its accuracy depends on augmentation
and needs further improvements. Bhagat et al. [22] presented bag-of-words (BoWs) and
SURF-based techniques for the identification of potato leaf diseases. The bag of words
approach was utilized for feature extraction in the initial phase. After that, the SURF
method was selected to extract the strongest features, which were then passed to an SVM
for classification. Experiments were performed on potato leaves taken from the PlantVillage
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dataset, and the model attained 97% accuracy. The method in [22] performed well; however,
the model did not consider unseen or real-world samples.

Pal et al. [23] proposed the AgriDet (Agriculture Detection) approach. Their method
utilized the conventional Inception-Visual Geometry Group Network and Kohonen for the
detection and identification of potato leaf disease. The multi-variate Grabcut was applied
to reduce the occlusion problem. This method was applied to the PlantVillage dataset to
detect and segment potato leaf disease classification. The model achieved good results,
with 92.12 % accuracy. The presented approach can tackle the overfitting problem through
the dropout layer. However, it is unable to recognize multiple instances of the same disease
in one image. Yu, H. et al. described an improved deep learning model for classifying
potato plant leaf diseases in their paper [24]. They used a convolutional neural network
(CNN) and a transfer learning approach to train their model on a large dataset of potato leaf
images. The model achieves high accuracy rates in classifying different types of diseases,
and outperforms several other deep-learning models in terms of accuracy and training
time [24,25].

Chen, X. et al. presented a study on potato leaf disease classification using an improved
deep learning model. The authors used a modified Inception-V3 model and a transfer
learning approach to train the model on a dataset of potato leaf images. The model achieves
high accuracy rates in classifying different types of diseases and outperforms several other
deep-learning models in terms of accuracy and training time [26]. In [27], Kang et al.
proposed a lightweight CNN-based approach for the recognition of potato leaf diseases.
The authors utilized multi-scale pyramid fusion technology for efficient feature selection.
This fusion of features was achieved using the improved backbone model and optimized
features. This lightweight technique recognized and identified plant leaf diseases, achieving
93% accuracy. However, the presented model needs further improvements in accuracy.

To detect and classify potato leaves, Kumar et al. [28] presented an automated method
based on Gaussian filtering and Fuzzy c-means clustering. This method extracted different
types of features, including textual, geometrical, and statistical features. The extracted
features were then passed to a PCA for efficient feature selection. At last, several classifiers
were employed for the classification of potato leaves. The unbalanced data makes [29]
machine learning models more biased and leads to overfitting issues. This study shows a
way to add more information to data based on an image-to-image translation model. This
helps eliminate the bias from adding these bad potato leaf images. To produce pictures
representing more obvious disease textures, the authors suggested that the augmentation
approach translates healthy and unhealthy leaf images and uses attention processes.

Rashid et al. [30] proposed a multi-level DL-based model for the recognition of potato
leaf diseases. In the initial stage, the YOLOv5 technique was employed for the segmenta-
tion of images. Second, the Deep CNN model was utilized for potato leaf identification
from images. Experiments were performed on a proprietary dataset and achieved good
results. However, the presented model is unable to detect multiple diseases from a single
image. Tiwari et al. [31] proposed a deep learning technique for the detection of potato
leaf diseases. Their model was based on numerous approaches. In the first step, features
were extracted through a VGG19 model. The extracted features were then classified using
different classifiers, in which logistic regression performed well compared to the others,
achieving 97.8% accuracy on the PlantVillage dataset. The presented model needs further
improvements to efficiently detect unseen examples. Similarly, a CNN approach was
utilized in [32] to recognize potato leaf diseases. The technique was based on the Adam op-
timizer and cross-entropy for model analysis. The final classification was performed using
a softmax layer. Another CNN-based approach was employed in [33] for the detection of
potato leaf diseases. Experimentation was performed on the Kaggle dataset, and the model
attained 97% accuracy. However, the presented model tackles only binary classification.
Iqbal et al. [34] proposed a method for the segmentation and classification of potato leaf
diseases. The PlantVillage dataset was utilized for evaluation of the proposed technique.
The random forest approach was employed for classification of leaves into two types,
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diseased or healthy, with an accuracy of 97%. A deep learning technique was proposed
to efficiently detect potato leaf diseases using PlantVillage dataset in [35]. The model was
based on the lightweight MobileNet-V2, which was then modified using the addition of a
layer in the model. The model achieved 97.33% accuracy on the classification of potato leaf
disease. However, this model is computationally light in terms of time. In [36], the authors
presented a deep learning-based approach for the classification of potato leaf diseases. The
proposed technique was based on four types of models: MobileNet, VGG16, VGG19, and
ResNet. Fine-tuning of parameters was performed to enhance the accuracy of the proposed
model. Experiments were performed on the PlantVillage dataset, achieving 97.8% accuracy.
However, the presented approach did not tackle real-world samples.

3. Materials and Methods

Our proposed work is based on the EfficientNet approach called improved Efficient-
NetV2 for the recognition and classification of potato leaf diseases. To test and validate
the performance of the proposed system, the PlantVillage dataset, with a total number
of 54,306 images of potato plants, was utilized. To balance this dataset in each class, we
applied data augmentation techniques. The proposed work is focused on improving the
EfficientNet approach for potato leaf disease recognition and classification by introducing
additional layers at the bottom of the model. These additional layers were designed to
enhance the model’s performance by allowing it to identify more complex patterns and
features in the images. The improved model, called improved EfficientNetV2, was trained
on a large dataset of potato leaf images consisting of both healthy and diseased leaves.
The model was trained using a supervised learning approach in which it was provided
with labelled examples of healthy and diseased leaves and learned to classify new images
based on the patterns identified in the training data. The additional layers at the bottom
of the improved EfficientNetV2 model allow it to capture more low-level features and
patterns in the images, which in turn can improve the accuracy and robustness of the
model. Techniques such as transfer learning, data augmentation, and regularization can be
employed to further improve the model’s performance.

The proposed work has the potential to contribute to the development of more accurate
and reliable models for potato leaf disease recognition and classification, which can help
farmers and agricultural researchers in their efforts to improve crop yields and reduce
losses. The improved model has additional layers at the bottom of the model, which help to
enhance the performance. The complete flow of our improved model is shown in Figure 1.
The overall process is explained in Algorithm 1.
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Algorithm 1: Steps followed by EfficientPNet for potato plant leaf abnormality categorization

START
INPUT: TP, Labels
OUTPUT: The category of potato plant leaf diseased region, EfficientPNet

TP: Total potato images with various abnormalities.
Labels: Class of each potato sample
EfficientPNet: improved EfficientNet-V2 model.

//Data preparation and augmentation to balance dataset
Data Augmentation (x)

SampleDimension← [ j h]
// Labels associated with each input sample
Ä← ReadClassLabel (TP, Class)

// training phase //Functions

1. EffiNetV2(): employed to measure the keypoints with EfficientNet-V2 network
2. EvaluatFramework(): employed to accomplish the model training

// Improved EfficientNet-V2 model
EfficientPNET← EffiNetV2 (SampleDimension, Ä)

[ TrainingPart, TestPart← Database distribution
For each sample c in→ TrainingPart

Compute improved-EfficientNet-V2 features→tm
End
Utilize tm images EfficientPNet training, and calculate time
£abelA← IdentifyPotatoLeafAffectedAreaLabel (tm)
Ap← EvaluatFramework (improved-EfficientNet-V2, LoclizeA)

// test phase
For each image C in→ TestPart

(a) βC← Compute features via employing the trained model EfficientPNet
(b) [ConfidenceScore, ClassLabel]←Predict (βC)
(c) show samples ClassLabel

End
Exit

3.1. EfficientPNet Framework

A robust set of image features is essential to obtaining superior classification results,
as it directly helps to distinguish the numerous image data groupings. The use of dense
DL networks can help in calculating a collection of more effective characteristics, which
in turn causes the recall rate of methods to increase [16]. The deployment of these CNN
techniques depends heavily on the availability of processing power and memory needs,
which places a computational constraint on the models when deep networks are used.
Consequently, the cost of computing and the results of the evaluation are always tradeoffs.
For this reason, it is necessary to provide a system for identifying leaf diseases that can
demonstrate improved classification accuracy while maintaining computing costs [37]. In
this study, we introduce a simple and reliable computational strategy to improve model
performance for categorizing various anomalies.

An enhanced EfficientNetV2-B4 model is introduced for the identification of potato
plant diseases and given the name of EfficientPNet. EfficientNetV2is an expanded version
of EfficientNet [38]. Essentially, the improved EfficientNetV2 model is presented to increase
available resources while maintaining a high recall rate. The improved EfficientNetV2
model was created using a quick and effective composite scaling method that enables a
regular ConvNet to be scaled to any resource limitations while maintaining the method
capability. Therefore, the proposed approach offers an ideal choice for network design,
i.e., network layers or feature vector size, as well as an optimal solution for computing
cost. The EfficientNetV2 technique conducts classification operations robustly and only
uses a limited number of model parameters. Furthermore, it performs well in terms of
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efficiency compared to other methods such as GoogleNet [16], AlexNet [39], DenseNet [40],
ResNet [41], and MobileNet [42].

The motivation behind EfficientNet-V2 with dense layers for recognition of potato leaf
diseases is that it is an efficient and lightweight approach that requires less training time and
contains fewer parameters. The EfficientNetV2 approach makes use of neural architecture
search to increase classification accuracy while reducing the size of feature vectors and
training time (NAS). Additionally, by including the Fused-MBConv (FMBConv) blocks [43]
in the EfficiceiNetV2 architecture, the operative power is optimized and mobile or server
accelerators are employed effectively, whereas the conventional EfficientNet technique,
which only uses depth-wise convolutions, uses MBConv blocks [44] as its primary building
block. Despite the fact that depth-wise convolutions reduce the number of operations
required, they do not fully utilize new hardware accelerators. The EfficientNetV2 technique
fully utilizes both MBConv and FMBConv blocks to achieve computational gains. The
depth-wise 3*3 convolution is replaced in the FMBConv by conventional 3*3 convolution
layers. The main objective is to boost the implementation speed of the model while keeping
the classification results [45] as shown in Figure 2.
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We used EfficientNetV2 with the B4 architecture to complete the classification task. The
B4 base was chosen primarily because it shows a good trade-off between time complexity
and model classification performance. Table 1 provides a thorough overview of the en-
hanced EfficientNetV2 model. The revised EfficientNet-V2 model uses FMBConv blocks at
the bottom layers while using MBConv blocks with 3*3 and 5*5 convolutions, squeeze-and-
excitation block (SEB) [46], and swish activation at the advanced level. The MBConv blocks
preserve an up-set residual link through the SEB to produce robust classification results.

ReLU activation (ReLUAF) is replaced in the framework by the swish activation func-
tion (SAF) [47], as ReLU excludes values lower than zero and loses an essential component
of the used ECG signal. The following equation can be used to calculate the SAF (1):

SAF(x) = X.Sigmoid(x) (1)

Additionally, a Batch normalization layer was added at the beginning of a framework
to down-sample the input image sizes. Only three FMBConv blocks were used, as they
include many parameters for large values of O. After the MBConv, a global average pooling
layer was introduced to reduce the model parameters in order to prevent the issue of
model overfitting. Together with the ReLUAF and dropout layers, we included two
additional inner-dense layers that help to compute the more effective collection of image
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characteristics by effectively presenting them. A dropout rate of 30% was chosen arbitrarily
in order to progress the model’s performance. At the end, a softmax layer was utilized for
the classification of potato leaf diseases.

Table 1. Details of blocks and layers used in the proposed model.

Sr No. Layers

1 BatchNormalization
2 ConvL (3 × 3)
3 2 × FMBConv1 Block
4 3 × FMBConv4 Block
5 2 × FMBConv4 Block
6 5 ×MBConv4 Block
7 7 ×MBConv6 Block
8 12 ×MBConv6 Block
9 Conv2d (1 × 1) Block
10 Global average pooling
11 Dense Layer
12 Dropout
13 Dense Layer
14 Dropout
15 FC Layer
16 Softmax Layer

3.2. Loss Function (LF)

The loss function (LF) is a task employed by models to assess their performance.
Networks use automated learning to find rules and provide predictions for enormous
amounts of data. The primary goal of the LF is to determine how much the real and
anticipated values have changed. Throughout the model training process, the LF is adjusted
regularly until a robust fitting value is obtained to reduce error.

We removed the final layer of the EfficientPNet model by introducing an output
neuron to accomplish the categorization task for high-quality and distorted samples. For
this reason, the hyperparameters of the framework were nominated using an empirical
strategy. In our proposed approach, we have adopted the Adadelta optimizer during the
model training phase, along with a learning score of 0.1. Moreover, we used twenty epochs
for model training. The cross-entropy LF uses the Softmax function for classification tasks
to assess the variance between calculated and real values. Calculating the cross-entropy LF
is done as follows:

LF =
1
N ∑n

k=1 log(
esj

∑i esk
) (2)

Here, N represents the total neurons, sk indicates the input vector, and sj is the es-
timated label. The model permits the fine-tuning of only 20% of the entire framework
parameters without adjusting the remaining 80%. A validation set was utilized to ensure
the avoidance of model overfitting issues. Adaptive Moment Estimation [48] was adopted
to compute the value of the learning rate against each parameter. This method works by
storing the exponential decay of the previous gradient by adopting the impulse approach,
as shown in Equations (3) and (4), respectively.

Mt = b1Mt − 1 + (1− b1)Gt (3)

Vt = b2Vt − 1 + (1− b2)G2
t (4)

Here, b1, and b2 are constants with scores of 0.9, and 0.999, respectively, G indicates
the gradient score, and Mt and Vt represent the first-moment and second-moment vectors.
The values of these two factors show the link between the updated and previous gradient
values. Higher scores of these parameters show a close link between the previous and new
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gradient values. Initially, the values of both moments are initialized to zero, which requires
the bias correction factors b1 and b2 to avoid the 0 biases. Such biases can be removed by
computing the bias-corrected Mt, as elaborated in Equations (5) and (6), respectively:

Mt = Mt − (bt1) (5)

Vt = Vt − (bt2) (6)

The optimization approach in our model uses Equation (7) to update the gradient
value.

Wt+1 = Wt − η/(Vt + εM)0.5t (7)

Here, ε is a constant, η is a learning rate with a score of 0.00001, which is employed to
avoid the denominator from becoming zero, and W(t + 1) shows the framework parameters
at a given time (t + 1).

4. Experimental Results

This section briefly describes the dataset used to train and evaluate the classification
results of the proposed technique for classifying various types of potato plant leaf diseases.
In addition, it illustrates used performance measures. Finally, we carried out a huge
comparison with various other models to show the effectiveness of our approach.

4.1. Dataset Acquisition

To check the recognition ability of our framework, a standard dataset called the
PlantVillage repository [49] is utilized in this work. This data sample is free and available
online for model simulation. The PlantVillage dataset is a large collection of plant leaf im-
ages with a total of 54,306 images. As the presented approach is associated with classifying
plant leaf diseases only in potato crops, only a sample of the mentioned category was used
for the performance evaluation. Table 2 demonstrates the list of categories included in the
PlantVillage dataset. The reason for nominate this data sample for performance testing is
that it comprises samples that vary in mass, structure, size, and orientation of both leaves
and infected regions. Moreover, samples suffer from several distortions, including clutter,
blur, intensity variations, and color variations. A few samples of this dataset are shown in
Figure 3.

Table 2. List of categories included in the PlantVillage dataset without data augmentation.

Class Images in Dataset Training Set Test Set

Healthy Leaves 600 480 120
Early Blight 1200 960 240
Late Blight 1200 960 240
Total 3000 2400 600

4.2. Data Augmentation

We used the PlantVillage dataset to obtain pictures of potato leaf diseases that we used
to train, validate, and test the proposed DL model. The collection featured images of late
blight, early blight, and healthy potato leaf conditions. The resolution of each image in the
group was (256 × 256) pixels. The images of healthy potato leaves portrayed leaves in a
normal, healthy state. In contrast, the early and late blight photos illustrated the two stages
of shattering potato leaf disease. For the three classes in the dataset, we used the indices 0, 1,
and 2. The distribution of the dataset’s total number of pictures among its many categories
is shown in Table 2. In contrast to images of the other two groups of potato blight, the
dataset contained far fewer pictures of healthy potato leaves. The dataset’s photos were all
randomly chosen to create a training and test set with an 80/20 ratio.
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Figure 3. A visual figure of sample dataset.

By randomly picking ten healthy potato leaf photographs and making ten duplicates
of each, we increased the quantity of healthy potato leaf images to balance the dataset. This
procedure was repeated five times to balance the dataset in terms of photos of healthy potato
leaves. Table 3 lists the total number of pictures in each class in the dataset after balancing.
Originally, each category had 1200 images for early and late blight and 600 images of
healthy potato leaves. After data augmentation, each category had 3600 images for early
and late blight and 3600 images of healthy potato leaves.

Table 3. List of categories included in the PlantVillage dataset after data augmentation.

Class Images in Dataset Training Set Test Set

Healthy Leaves 3600 2880 720
Early Blight 3600 2880 720
Late Blight 3600 2880 720
Total 10,800 8640 2160

We normalized the data and increased the size of the training set to train the model
and ensure that it would not overfit. The photos were rotated between 20 and +20, sheared
between 40 and +40, and moved by width and height within a range of 0.2 for augmentation.
Figure 4 displays a visualization of the augmentation process.
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4.3. Performance Metrics

To quantitatively estimate the categorization results of our approach for recognizing
diseases of potato plant leaves, we used the standard measures of accuracy, F1 measure,
precision (p), and recall (r). The mathematical formulation of the accuracy measure, p, r,
and F1 is provided in Equations (8) to (11).

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

p =
TP

TP + FP
(9)

r =
TP

TP + FN
(10)

F1 =
2× p× r

p + r
(11)

4.4. Experimental Results

In the first phase of model evaluation, we tested the performance of the proposed
strategy in terms of class-wise results to check how much well approach is able to recognize
various types of potato plant leaf abnormalities. For this, we measured the performance
of our approach using different performance metrics. The results are discussed below. In
addition, the experimental results were verified by an expert who is currently working as a
Plant Pathologist. Figure 5 shows the results for their training/validation loss and accuracy
of the proposed model.
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First, the classification results of this approach are discussed in terms of precision and
recall measures, as these are the standard way of elaborating model categorization results.
The attained values are provided in Figure 6 for all three classes, showing healthy, early
blight, and late blight, respectively. The scores attained in Figure 6 clearly indicate that our
approach is able to effectively recognize all three classes in the employed dataset. For the
precision metric our approach attained results of 98.26%, 98.03%, and 97.99% for healthy,
early blight, and late blight, respectively, while for recall our solution showed values of
97.41%, 97.15%, and 97.10% for healthy, early blight, and late blight, respectively.
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Next, the model behavior is assessed from the perspective of the F1-score and error
rate, as the precision and recall metrics are unable to fully capture the classification behavior
of a model. This is because certain approaches are unable to attain a better value of recall
for a high value of precision, and vice-versa. Hence, employing the F1-score measure can
provide an overall performance assessment of a classification approach by employing both
the precisions and recall measures. The attained results for all three classes of the employed
dataset are provided in Figure 7. The suggested method reaches an average F1-score value
of 97.65%, as depicted in Figure 7. Moreover, we the highest and lowest error scores are
2.46%, and 2.17%, for the late blight and healthy classes of potato plant leaves, respectively.
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Further, class-wise accuracy value was computed for all three groups of potato plant
leaves; the obtained evaluation is shown with the help of box plots in Figure 8. Box plots
are proficient in providing a thorough understanding of attained performance results by
plotting the maximum, mean, and minimum values. The class-wise accuracy values shown
in Figure 8 clearly prove the effectiveness of our approach for categorizing the infected
areas of potato plant leaves. More descriptively, for the healthy, early, and late blight classes,
the proposed solution acquires average values of 98.24%, 98.11%, and 98.01%, respectively.
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Finally, we further depict the class-wise results of our approach by reporting the con-
fusion matrix, which is a powerful plot for showing the recognition ability of a framework
by reporting the values in terms of the true positive rate. The confusion matrix for our
proposed strategy is shown in Figure 9, demonstrating that our model achieves better
values on all three classes of potato plant leaves. Clearly, our approach attains an average
TPR of %, which shows its better recall behavior. Moreover, we attain a minimum error
of 97.22%, while the highest error rate of 1.61% is reported for the late and healthy blight
classes, which could be due to the structural resemblance of the infected regions in these
classes. However, both classes are highly differentiable.
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All class-wise performance evaluations of the proposed solution with the help of the
standard measures confirm the better recognition ability of our approach, which enables
it to better classify all the samples in all three classes. The major reason for the improved
classification behavior of our approach is due to the relevant and distinctive sample char-
acteristics computation of our approach, which assists and enhances its recall rate and
increases its classification performance.

4.5. Comparison with DL Models

In this section of the paper, a comparative analysis of the proposed work with other
DL approaches is accomplished to show the efficacy of our work in comparison. For
this purpose, a series of well-known DL frameworks, including VGG16 [50], VGG19 [51],
MobileNet [52], ResNet50 [53], and DenseNet-101 [54], were nominated. We compared
these DL architectures from the perspectives of model structure and performance by
comparing the total number of model parameters and accuracy. The results of the evaluation
are presented in Table 4. The values clearly depict our approach as being both effective and
efficient in comparison to the other DL frameworks. Clearly, the presented work comprises
the lowest number of model parameters, with 11 million. Comparatively, the VGG19 model
is more expensive in terms of model structure, with a total of 1.96 million parameters. In
terms of model accuracy, the lowest performance result is attained by ResNet50, with a
score of 73.75%. The second lowest performance score is reached by MobileNet, at 78.84%.
The DenseNet approach shows better performance outcomes, with an accuracy value of
93.93%; however, this approach is complex in terms of network structure, with a total of
40 million parameters. In comparison, our approach performs well with an accuracy score
of 98.12% and has a total of 11 million model parameters. Clearly, the comparison of these
approaches shows an average score of 83.92%, and is 98.12% for our model. Thus, we have
achieved a performance gain of 14.20%, that clearly showing the efficacy of our model.

Table 4. Assessment of the suggested approach compared to other DL models.

Sr No. Model Parameters (million) Accuracy (%)

1. VGG16 138 92.69
2. VGG19 196 80.39
3. MobileNet 13 78.84
4. ResNet50 23 73.75
5. DenseNet 40 93.93
6. Proposed 11 98.12

The main cause of these better model classification results is that the other techniques
are quite complex in terms of their model structure, which causes issues with model
overfitting. Comparatively, our approach is lighter in structure and better able to tackle the
overfitting issue. Moreover, our technique adopts the pixel and channel attention approach
during the feature computation phase and introduces layers at the end of the network
structure, which assists in better nominating the effective set of image characteristics and
enhances the cataloguing score. Thus, it can be said that we have presented both an efficient
and effective approach to recalling the various groups of potato plant leaf illnesses.

4.6. Proposed Approach in Comparison with the Latest Techniques

Next, we performed another experiment to check the potato plant disease classifi-
cation results of our model against other new techniques from history. Numerous latest
approaches [36,55–57] were nominated for this reason, and performance results in terms
of classification results are evaluated. The attained performance comparison is shown
in Table 5, from which it is quite clearly confirmed that our model is more robust for
classifying the abnormalities of potato plants as compared to the other approaches shown
in Figure 10.
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Table 5. Comparison of the proposed approach with new methods.

Sr. No Reference Accuracy (%)

1. Chen et al. [55] 97.73
2. Barman et al. [56] 96.98
3. Mahum et al. [57] 97.20
4. Chakraborty et al. [36] 97.89
5. Proposed Technique 98.12
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Chen et al. [55] used a DL approach called MobOca_Net to recognize different potato
plant leaves by introducing pixel and channel-wise attention units in the base network.
This approach attained an accuracy rate of 97.73%. Barman et al. [56] used a self-introduced
CNN model to classify various infections found on the leaf areas of the potato crop, and
achieved an accuracy of 96.98%. Another model, discussed in [57], used the concept
of transfer learning to perform potato plant leaf diseases categorization, and attained a
classification score of 97.20%, and the approach in [36] showed an accuracy value of 97.89%.

In comparison with these techniques, the proposed approach attains the highest
accuracy rate at 98.12%. The compared techniques exhibit an average accuracy rate of
97.45%, compared to 98.12% for the presented strategy. Consequently, we have provided
a performance gain of 0.67% in terms of the accuracy metric. The major cause of this
effective performance result is that the approach in [55] is unable to tackle the distorted
samples, while the technique in [56] lacks the ability to handle noisy data. On the other
hand, the approaches in [36,57] suffer from issues with model overfitting. Comparatively,
our approach is better able to handle these issues than existing approaches by presenting an
effective model that adopts the pixel and channel AM in the feature computation phase and
introduces dense layers at the end of the network structure, which results in nominating a
reliable set of sample features even in the presence of various image distortions, thereby
enhancing the classification score.

5. Conclusions

Farmers lose money and harvest due to potato plant diseases. Potato leaves are
mostly affected by early and late blight. According to estimates, these illnesses are the
cause of the majority of yield loss in potatoes. We divided photos of potato leaves into
three categories: healthy leaves, late blight leaves, and early blight leaves. To recognize
these classes, a solution called EfficientPNet is implemented in this paper. EfficientPNet
is a DL approach that classifies various types of potato plant leaves. We improved the
EfficientNet-v2 approach by adding the AM strategy and extra layers at the end of the
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model structure. The presented EfficientPNet approach robustly extracts high-level signs
of infected regions and associates them with related groups by employing an end-to-
end learning mechanism. In addition, the AM strategy improves the recall power of the
proposed solution by passing relevant information on noticeable attributes such as diseased
areas of plant leaves. We accomplished rigorous experimentation on a complex data sample
designated as PlantVillage to show the effectiveness of our framework, and proved through
the attained performance scores that our model is proficient in recognizing potato diseases
even from distorted images. As a future goal, we intend to develop another ensemble
model by integrating explainable AI [58] and EfficientPNet DL architectures on other
challenging datasets.

Author Contributions: Conceptualization, T.N., M.M.I., S.J. and A.H.; Data curation, T.N., M.M.I. and
S.J.; Formal analysis, A.H. and M.A.; Funding acquisition, M.A.; Investigation, M.M.I.; Methodology,
T.N. and M.A.; Project administration, M.A.; Resources, S.J. and A.H.; Software, S.J., A.H. and M.A.;
Supervision, M.A.; Validation, T.N., S.J. and A.H.; Visualization, T.N. and M.A.; Writing—original
draft, T.N., S.J., A.H. and M.A.; Writing—review and editing, M.M.I. and S.J. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at Imam
Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work through
Research Partnership Program no. RP-21-07-11.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: A standard online dataset PlantVillage [49] is utilized in this paper to
evaluate EfficientPNet model. It can be downloaded from https://data.mendeley.com/datasets/
tywbtsjrjv/1 [accessed on 12 January 2023].

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research
at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work
through Research Partnership Program no. RP-21-07-11. The authors would also like to thank our
master student (Wasif Ali) for providing us with the code of EfficientPNet model from the Department
of Computer Science, University of Engineering and Technology Taxila. This code was provided
without data augmentation techniques.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bruinsma, J. The Resource Outlook to 2050: By How Much Do Land, Water and Crop Yields Need To Increase by 2050; Food and

Agriculture Organization of the United Nations: Rome, Italy, 2009; pp. 24–26.
2. Pantazi, X.; Moshou, D.; Tamouridou, A. Automated leaf disease detection in different crop species through image features

analysis and One Class Classifiers. Comput. Electron. Agric. 2019, 156, 96–104. [CrossRef]
3. Wolfenson, K.D.M. Coping with the Food and Agriculture Challenge: Smallholders’ Agenda; Food Agriculture Organisation of the

United Nations: Rome, Italy, 2013.
4. Kumar, A.; Patel, V.K. Classification and identification of disease in potato leaf using hierarchical based deep learning convolu-

tional neural network. Multimedia Tools Appl. 2023, 81, 1–27. [CrossRef]
5. Elnaggar, S.; Mohamed, A.M.; Bakeer, A.; Osman, T.A. Current status of bacterial wilt (Ralstonia solanacearum) disease in major

tomato (Solanum lycopersicum L.) growing areas in Egypt. Arch. Agric. Environ. Sci. 2018, 3, 399–406. [CrossRef]
6. Sardogan, M.; Tuncer, A.; Ozen, Y. Plant leaf disease detection and classification based on CNN with LVQ algorithm. In

Proceedings of the 2018 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Herzegovina,
20–23 September 2018; pp. 382–385.

7. Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron.
Agric. 2010, 72, 1–13. [CrossRef]

8. Dinh, H.X.; Singh, D.; Periyannan, S.; Park, R.F.; Pourkheirandish, M. Molecular genetics of leaf rust resistance in wheat and
barley. Theor. Appl. Genet. 2020, 133, 2035–2050. [CrossRef] [PubMed]

9. Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318.
[CrossRef]

10. Patil, S.; Chandavale, A. A survey on methods of plant disease detection. Int. J. Sci. Res. 2015, 4, 1392–1396.
11. Birgé, L.; Massart, P. Gaussian model selection. J. Eur. Math. Soc. 2001, 3, 203–268. [CrossRef]

https://data.mendeley.com/datasets/tywbtsjrjv/1
https://data.mendeley.com/datasets/tywbtsjrjv/1
http://doi.org/10.1016/j.compag.2018.11.005
http://doi.org/10.1007/s11042-023-14663-z
http://doi.org/10.26832/24566632.2018.0304012
http://doi.org/10.1016/j.compag.2010.02.007
http://doi.org/10.1007/s00122-020-03570-8
http://www.ncbi.nlm.nih.gov/pubmed/32128617
http://doi.org/10.1016/j.compag.2018.01.009
http://doi.org/10.1007/s100970100031


Agriculture 2023, 13, 841 17 of 18

12. Bello-Cerezo, R.; Bianconi, F.; Di Maria, F.; Napoletano, P.; Smeraldi, F. Comparative Evaluation of Hand-Crafted Image
Descriptors vs. Off-the-Shelf CNN-Based Features for Colour Texture Classification under Ideal and Realistic Conditions. Appl.
Sci. 2019, 9, 738. [CrossRef]

13. Roska, T.; Chua, L.O. The CNN universal machine: An analogic array computer. IEEE Trans. Circuits Syst. II Analog. Digit. Signal
Process. 1993, 40, 163–173. [CrossRef]

14. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.
15. Salakhutdinov, R.; Hinton, G. Deep Boltzmann Machines. Available online: https://www.utstat.toronto.edu/~rsalakhu/papers/

dbm.pdf (accessed on 8 January 2023).
16. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.; Liu, W.; et al. Going

deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 7–12 June 2015; pp. 1–9.

17. Yuan, Z.W.; Zhang, J. Feature extraction and image retrieval based on AlexNet. In Proceedings of the Eighth International
Conference on Digital Image Processing (ICDIP 2016), Chengu, China, 20–22 May 2016; p. 100330E.

18. Vedaldi, A.; Zisserman, A. Vgg Convolutional Neural Networks Practical; Department of Engineering Science, University of Oxford:
Oxford, UK, 2016; Volume 2016, p. 66.

19. Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput.
Electron. Agric. 2019, 164, 104906. [CrossRef]

20. Paul, A.; Ghosh, S.; Das, A.K.; Goswami, S.; Choudhury, S.D.; Sen, S. A review on agricultural advancement based on computer
vision and machine learning. In Emerging Technology in Modelling and Graphics; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 567–581.

21. Olawuyi, O.; Viriri, S. Plant Diseases Detection and Classification Using Deep Transfer Learning; Springer: Berlin/Heidelberg, Germany,
2023; pp. 270–288.

22. Bhagat, M.; Kumar, D. Efficient feature selection using BoWs and SURF method for leaf disease identification. Multimed. Tools
Appl. 2023, 1–25. [CrossRef]

23. Pal, A.; Kumar, V. AgriDet: Plant Leaf Disease severity classification using agriculture detection framework. Eng. Appl. Artif.
Intell. 2023, 119, 105754. [CrossRef]

24. Jiang, P.; Chen, Y.; Liu, B.; He, D.; Liang, C. Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on
Improved Convolutional Neural Networks. IEEE Access 2019, 7, 59069–59080. [CrossRef]

25. Li, L.; Zhang, S.; Wang, B. Plant Disease Detection and Classification by Deep Learning—A Review. IEEE Access 2021, 9,
56683–56698. [CrossRef]

26. Xian, T.S.; Ngadiran, R. Plant Diseases Classification using Machine Learning. J. Physics Conf. Ser. 2021, 1962, 012024. [CrossRef]
27. Kang, F.; Li, J.; Wang, C.; Wang, F. A Lightweight Neural Network-Based Method for Identifying Early-Blight and Late-Blight

Leaves of Potato. Appl. Sci. 2023, 13, 1487. [CrossRef]
28. Kumar, S.; Shukla, A. Automatic Grading of Potato Leaf using Machine learning & Computer Vision. 2022. Available online:

https://assets.researchsquare.com/files/rs-2102065/v1/bf9e85cf-18fe-4287-a82d-16c252e06b4a.pdf?c=1667213983 (accessed on 1
January 2023).

29. Min, B.; Kim, T.; Shin, D.; Shin, D. Data Augmentation Method for Plant Leaf Disease Recognition. Appl. Sci. 2023, 13, 1465.
[CrossRef]

30. Rashid, J.; Khan, I.; Ali, G.; Almotiri, S.H.; AlGhamdi, M.A.; Masood, K. Multi-Level Deep Learning Model for Potato Leaf
Disease Recognition. Electronics 2021, 10, 2064. [CrossRef]

31. Tiwari, D.; Ashish, M.; Gangwar, N.; Sharma, A.; Patel, S.; Bhardwaj, S. Potato leaf diseases detection using deep learning. In
Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India,
13–15 May 2020; pp. 461–466.

32. Lee, T.-Y.; Yu, J.-Y.; Chang, Y.-C.; Yang, J.-M. Health detection for potato leaf with convolutional neural network. In Proceedings
of the 2020 Indo–Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN), Rajpura,
India, 14–15 February 2020; pp. 289–293.

33. Asif, M.K.R.; Rahman, M.A.; Hena, M.H. CNN based disease detection approach on potato leaves. In Proceedings of the 2020 3rd
International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 3–5 December 2020; pp. 428–432.

34. Iqbal, M.A.; Talukder, K.H. Detection of potato disease using image segmentation and machine learning. In Proceedings of the
2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 4–6
August 2020; pp. 43–47.

35. Chen, J.; Deng, X.; Wen, Y.; Chen, W.; Zeb, A.; Zhang, D. Weakly-supervised learning method for the recognition of potato leaf
diseases. Artif. Intell. Rev. 2022, 1–18. [CrossRef]

36. Chakraborty, K.K.; Mukherjee, R.; Chakroborty, C.; Bora, K. Automated recognition of optical image based potato leaf blight
diseases using deep learning. Physiol. Mol. Plant Pathol. 2022, 117, 101781. [CrossRef]

37. Ngugi, L.C.; Abelwahab, M.; Abo-Zahhad, M. Recent advances in image processing techniques for automated leaf pest and
disease recognition—A review. Inf. Process. Agric. 2020, 8, 27–51. [CrossRef]

38. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
conference on machine learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114.

http://doi.org/10.3390/app9040738
http://doi.org/10.1109/82.222815
https://www.utstat.toronto.edu/~rsalakhu/papers/dbm.pdf
https://www.utstat.toronto.edu/~rsalakhu/papers/dbm.pdf
http://doi.org/10.1016/j.compag.2019.104906
http://doi.org/10.1007/s11042-023-14625-5
http://doi.org/10.1016/j.engappai.2022.105754
http://doi.org/10.1109/ACCESS.2019.2914929
http://doi.org/10.1109/ACCESS.2021.3069646
http://doi.org/10.1088/1742-6596/1962/1/012024
http://doi.org/10.3390/app13031487
https://assets.researchsquare.com/files/rs-2102065/v1/bf9e85cf-18fe-4287-a82d-16c252e06b4a.pdf?c=1667213983
http://doi.org/10.3390/app13031465
http://doi.org/10.3390/electronics10172064
http://doi.org/10.1007/s10462-022-10374-3
http://doi.org/10.1016/j.pmpp.2021.101781
http://doi.org/10.1016/j.inpa.2020.04.004


Agriculture 2023, 13, 841 18 of 18

39. Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process.
Syst. 2012, 25, 1097–1105. [CrossRef]

40. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 July 2017; pp. 4700–4708.

41. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

42. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

43. Gupta, S.; Akin, B. Accelerator-aware neural network design using automl. arXiv 2020, arXiv:2003.02838.
44. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23
June 2018; pp. 4510–4520.

45. Tan, M.; Le, Q.V. Efficientnetv2: Smaller models and faster training. arXiv 2021, arXiv:2104.00298.
46. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
47. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
48. Khaire, U.M.; Dhanalakshmi, R. High-dimensional microarray dataset classification using an improved adam optimizer (iAdam).

J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5187–5204. [CrossRef]
49. Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease

diagnostics. arXiv 2015, arXiv:1511.08060.
50. Nawaz, M.; Masood, M.; Javed, A.; Iqbal, J.; Nazir, T.; Mehmood, A.; Ashraf, R. Melanoma localization and classification through

faster region-based convolutional neural network and SVM. Multimedia Tools Appl. 2021, 80, 28953–28974. [CrossRef]
51. Carvalho, T.; De Rezende, E.R.; Alves, M.T.; Balieiro, F.K.; Sovat, R.B. Exposing computer generated images by eye’s region

classification via transfer learning of VGG19 CNN. In Proceedings of the 2017 16th IEEE international conference on machine
learning and applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 866–870.

52. Qin, Z.; Zhang, Z.; Chen, X.; Wang, C.; Peng, Y. Fd-Mobilenet: Improved Mobilenet with a Fast Downsampling Strategy. In
Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018;
pp. 1363–1367.

53. Nawaz, M.; Javed, A.; Irtaza, A. ResNet-Swish-Dense54: A deep learning approach for deepfakes detection. Vis. Comput. 2022,
1–22. [CrossRef]

54. Albahli, S.; Nawaz, M. DCNet: DenseNet-77-based CornerNet model for the tomato plant leaf disease detection and classification.
Front. Plant Sci. 2022, 13, 1–22. [CrossRef]

55. Chen, W.; Chen, J.; Zeb, A.; Yang, S.; Zhang, D. Mobile convolution neural network for the recognition of potato leaf disease
images. Multimedia Tools Appl. 2022, 81, 20797–20816. [CrossRef]

56. Barman, U.; Sahu, D.; Barman, G.G.; Das, J. Comparative assessment of deep learning to detect the leaf diseases of potato based
on data augmentation. In Proceedings of the 2020 International Conference on Computational Performance Evaluation (ComPE),
Shillong, India, 2–4 July 2020; pp. 682–687.

57. Mahum, R.; Munir, H.; Mughal, Z.-U.; Awais, M.; Khan, F.S.; Saqlain, M.; Mahamad, S.; Tlili, I. A novel framework for potato leaf
disease detection using an efficient deep learning model. Hum. Ecol. Risk Assessment Int. J. 2022, 29, 303–326. [CrossRef]

58. Ullah, F.; Moon, J.; Naeem, H.; Jabbar, S. Explainable artificial intelligence approach in combating real-time surveillance of
COVID19 pandemic from CT scan and X-ray images using ensemble model. J. Supercomput. 2022, 78, 19246–19271. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3065386
http://doi.org/10.1007/s12652-020-01832-3
http://doi.org/10.1007/s11042-021-11120-7
http://doi.org/10.1007/s00371-022-02732-7
http://doi.org/10.3389/fpls.2022.957961
http://doi.org/10.1007/s11042-022-12620-w
http://doi.org/10.1080/10807039.2022.2064814
http://doi.org/10.1007/s11227-022-04631-z
http://www.ncbi.nlm.nih.gov/pubmed/35754515

	Introduction 
	Related Works 
	Materials and Methods 
	EfficientPNet Framework 
	Loss Function (LF) 

	Experimental Results 
	Dataset Acquisition 
	Data Augmentation 
	Performance Metrics 
	Experimental Results 
	Comparison with DL Models 
	Proposed Approach in Comparison with the Latest Techniques 

	Conclusions 
	References

