Environmental and Agronomical Factors Limiting Differences in Potato Yielding between Organic and Conventional Production System
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Influence of Climatic and Soil Conditions on the Yield of Potato Tubers Cultivated in an Organic System
3.2. Influence of Cultivar on the Yield of Potato Tubers Cultivated in an Organic System
3.3. Influence of Selected Agronomical Treatments on the Yield of Potatoes Cultivated in Organic System
The Effect of Seed Potato Preparation on the Yield of Potato Tubers Cultivated in an Organic System
3.4. Influence of the Complementary Fertilization on the Yield of Potato Cultivated in an Organic System
3.4.1. The Use of Microbiological Preparations in the Organic Potato Cultivation
3.4.2. The Use of Humic Preparations as an Alternative and Supplement to Traditionally Used Forms of Natural and Organic Fertilizers in Organic Potato Cultivation
3.4.3. Complementary Foliar Feeding of Potato Plants with the Use of Nutritional Biological Agents
3.5. Influence of Irrigation of a Plantation on the Yield of Potato Tubers Cultivated in an Organic System
3.6. Influence of Treatments Limiting the Development of Late Blight on the Yield of Potato Grown in an Organic System
4. Main Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cassman, K. Editorial response by Kenneth Cassman: Can organic agriculture feed the world—Science to the rescue? Renew. Agric. Food Syst. 2007, 22, 83–84. [Google Scholar]
- Connor, D.J. Organic agriculture cannot feed the world. Field Crops Res. 2008, 106, 187–190. [Google Scholar] [CrossRef]
- Wilbois, K.-P.; Schmidt, J.E. Reframing the Debate Surrounding the Yield Gap between Organic and Conventional Farming. Agronomy 2019, 9, 82. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L.; Robertson, G.P. Effects of crop diversity on agroecosystem function: Crop yield response. Ecosystems 2008, 11, 355–366. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Pocketbook; Food & Agriculture Organization: Rome, Italy, 2020; ISBN -13: 978-9251334720/-10: 9251334722. Available online: https://www.fao.org/3/cb1521en/CB1521EN.pdf (accessed on 24 May 2021).
- Finckh, M.R.; Schulte-Geldermann, E.; Bruns, C. Challenges to Organic Potato Farming: Disease and Nutrient Management. Potato Res. 2006, 49, 27–42. [Google Scholar] [CrossRef]
- Palmer, M.W.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Shotton, P.N.; Volakakis, N.; Cakmak, I.; Ozturk, L.; et al. The influence of organic and conventional fertilisation and crop protection practices, preceding crop, harvest year and weather conditions on yield and quality of potato (Solanum tuberosum) in a long-term management trial. Eur. J. Agron. 2013, 49, 83–92. [Google Scholar] [CrossRef]
- Badgley, C.; Moghtader, J.; Quintero, E.; Zakem, E.; Jahi Chappell, M.; Avilés-Vázquez, K.; Samulon, A.; Perfecto, I. Organic agriculture and the global food supply. Renew. Agric. Food Syst. 2007, 22, 86–108. [Google Scholar] [CrossRef]
- de Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Ponisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; de Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B Biol. Sci. 2015, 282, 20141396. [Google Scholar] [CrossRef]
- Möller, K.; Habermeyer, J.; Zinkernagel, V.; Reents, H. Impact and Interaction of Nitrogen and Phytophthora infestans as Yield-limiting and Yield-reducing Factors in Organic Potato (Solanum tuberosum L.) Crops. Potato Res. 2007, 49, 281–301. [Google Scholar] [CrossRef]
- Zarzyńska, K.; Pietraszko, M. Influence of climatic conditions on development and yield of potato plants growing under organic and conventional systems in Poland. Am. J. Potato Res. 2015, 92, 511–517. [Google Scholar] [CrossRef]
- Lapwood, D.H. Factors affecting the field infection of potato tubers of different cultivars by blight (Phytophthora infestans). Ann. Appl. Biol. 1997, 85, 23–42. [Google Scholar] [CrossRef]
- Platt, H.; Tail, G. Relationship between resistance to late blight in potato foliage and tubers of cultivars and breeding selections with different resistance levels. Am. J. Potato Res. 1998, 75, 173–178. [Google Scholar] [CrossRef]
- Kapsa, J. The use of cultivar resistance in protection against late blight. Ziem. Pol. 2005, 4, 20–23. [Google Scholar]
- Zarzyńska, K.; Goliszewski, W. The role of cultivar in orgnic potato production. J. Res. Appl. Agric. Eng. 2006, 51, 214–219. [Google Scholar]
- Zarzyńska, K.; Szutkowska, M. Develpment of potato fungal diseases and tuber yield on organic and conventional plantation. J. Res. Appl. Agric. Eng. 2012, 57, 205–212. [Google Scholar]
- Zarzyńska, K. Polish and foreign potato cultivars under organic production—Comparison. J. Res. Appl. Agric. Eng. 2011, 56, 208–212. [Google Scholar]
- Zarzyńska, K.; Goliszewski, W. Cultivar differentiation of potato plant production in organic and integrated systems. Fragm. Agron. 2015, 32, 113–120. [Google Scholar]
- Haase, T.; Schuler, C.; Kolsch, E.; Heb, J. The influence of variety, stand density and tuber seed size on yield and grading of potatoes (Solanum tuberosum L.) in organic farming. In Proceedings of the Potatoes Today and Tomorrow. 15th Triennial Conference of EAPR, Hamburg, Germany, 14–19 July 2002; Wenzel, G., Wulfert, I., Eds.; WPR Communication GmbH and Co. KG: Hamburg, Germany, 2022; p. 106. [Google Scholar]
- Koppel, M. Selection of potato varieties for organic growing. In Proceedings of the Abstracts of Conference Papers, EAPR Patology Section Meeting, Bonin, Poland, 10–15 July 2001; pp. 73–74. [Google Scholar]
- El Hage Scialabba, N.; Hattam, C. (Eds.) Organic Agriculture, Environment and Food Security; FAO: Rome, Italy, 2002; p. 252. [Google Scholar]
- Skrabule, I.; Gaile, Z.; Vigovskis, J. Optimizing agricultural output production: Theory and praxis. Evaluation of potato varieties for organic farming. Latv. J. Agron. 2005, 8, 348. [Google Scholar]
- Zarzyńska, K. Preparation of seed potatoes, for organic production. Zesz. Probl. Post. Nauk Roln. 2002, 489, 103–113. [Google Scholar]
- Zarzyńska, K.; Goliszewski, W. The role of selected agrotechnical treatments in shaping the size and structure of the yield of potatoes cultivated in an organic system. Ziem. Pol. 2011, 3, 16–20. [Google Scholar]
- Hagman, J. Pre-sprouting as a Tool for Early Harvest in Organic Potato (Solanum tuberosum L.) Cultivation. Potato Res. 2012, 55, 185–195. [Google Scholar] [CrossRef]
- Karalus, W.; Rauber, R. Effect of presprouting on yield of maincrop potatoes (Solanum tuberosum) in organic farming. J. Agron. Crop Sci. 1997, 179, 241–249. [Google Scholar] [CrossRef]
- Möller, K.; Reents, H.J. Impact of Agronomic Strategies (Seed Tuber Pre-sprouting, Cultivar Choice) to Control Late Blight (Phytophthora infestans) on Tuber Growth and Yield in Organic Potato (Solanum tuberosum L.) Crops. Potato Res. 2007, 50, 15–29. [Google Scholar] [CrossRef]
- Awad, M.; Ali, A.M.; Hegab, S.A.; Abd El Gawad, A.M. Organic Fertilization Affects Growth and Yield of Potato (Cara. cv) Plants Grown on Sandy Clay Loam. Commun. Soil Sci. Plant Anal. 2022, 53, 688–698. [Google Scholar] [CrossRef]
- Hamouz, K.; Lachman, J.; Dvořǎk, P.; Pivec, V. The effect of ecological growing on the potatoes yielding and quality. Plant Soil Environ. 2005, 51, 397–402. [Google Scholar] [CrossRef]
- Islam, R.; Hoque, T.S.; Islam, S.; Ahmed, M.; Hoque, M. Performance of Different Organic Manures with Chemical Fertilizers in Increasing Growth, Yield and Nutritional Quality of Potato (Solanum tuberosum, L.). Bangladesh J. Bot. 2021, 50, 651–657. [Google Scholar] [CrossRef]
- Makarewicz, A.; Płaza, A.; Gąsiorowska, B. Yield and quality of potato tubers fertilized with undersown crops in an integrated and organic production system. Acta Sci. Pol. Agric. 2015, 14, 39–48. [Google Scholar]
- Schrama, M.; de Haan, J.J.; Kroonen, M.; Verstegen, H.; Van der Putten, W.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Trawczyński, C.; Bogdanowicz, P. The use of Soil Fertiliser in the aspect of ecological potato cultivation. J. Res. Appl. Agric. Eng. 2007, 52, 94–97. [Google Scholar]
- Zarzecka, K.; Gugała, M. The effects of soil fertilizer UG max on yield of potato tubers and its structure. Biul. Inst. Hod. I Aklim. Roślin 2013, 267, 107–112. [Google Scholar]
- Jabłoński, K. Directions of expected changes in potato production technology until 2020. Stud. I Rap. IUNG—PIB 2009, 17, 117–127. [Google Scholar] [CrossRef]
- Kowalska, J. Effect of fertilization and microbiological biostimulators on healthiness and yield of organic potato. Prog. Plant Prot. 2016, 56, 230–235. [Google Scholar] [CrossRef]
- Wijesinghe, D.; Sangakkara, R.; Rahmann, G.; Aksoy, U. (Eds.) Successful Potato production in Nature Farming with effective Microorganisms—A case Study. In Proceedings of the 4th ISOFAR Scientific Conference. ‘Building Organic Bridges’, at the Organic World Congress, Istanbul, Turkey, 13–15 October 2014. (eprint ID 24318). [Google Scholar]
- Kołodziejczyk, M. Effectiveness of nitrogen fertilization and application of microbial preparations in potato cultivation. Turk. J. Agric. For. 2014, 38, 299–310. [Google Scholar] [CrossRef]
- Ali, A.M.; Awad, M.Y.M.; Hegab, S.A.; Abd El Gawad, A.M.; Eissa, M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2020, 44, 411–420. [Google Scholar] [CrossRef]
- Baranowska, A.; Zarzecka, K.; Mystkowska, I.; Gugała, M. The impact of the soil fertilizer UGmax on the yield of commercial fraction, the content of protein nitrogen and nitrates in potato tubers (Solanum tuberosum L.). Zesz. Probl. Post. Nauk Rol. 2016, 585, 3–11. [Google Scholar]
- Jeske, M.; Pańka, D.; Wichrowska, D. Effect of chemical protection, organic fertilization and UGmax soil conditioner on health status of potato tubers. Prog. Plant Prot. 2015, 55, 92–97. [Google Scholar]
- Wichrowska, D.; Szczepanek, M. Possibility of Limiting Mineral Fertilization in Potato Cultivation by Using Bio-fertilizer and Its Influence on Protein Content in Potato Tubers. Agriculture 2020, 10, 442. [Google Scholar] [CrossRef]
- Mijwel, A.K.; Abed Al-Aedha, A.N.; Bresim, T.H. Effect of Compost and Humic Acid on Potato Growth and Quality. Eng. Technol. J. 2019, 37 Pt C, 145–148. [Google Scholar] [CrossRef]
- Rizk, F.A.; Shaheen, A.M.; Singer, S.M.; Sawan, O.A. The Produtivity of Potato Plants Affected by Urea Fertilizer as Foliar Spraying and Humic Acid added with Irrigation Water. Middle East J. Agric. Res. 2013, 2, 76–83. [Google Scholar]
- Sarhan, T.Z. Effect of humic acid and seaweed extracts on growth and yield of potato plant (Solanum tubersum) Desiree cv. Mesop. J. Agric. 2011, 39, 19–27. [Google Scholar] [CrossRef]
- Man-hong, Y.; Lei, Z.; Sheng-tao, X. Effect of water soluble humic acid applied to potato foliage on plant growth, photosynthesis characteristics and fresh tuber yield under different water deficits. Sci. Rep. 2020, 10, 7854. [Google Scholar] [CrossRef] [PubMed]
- Suh, H.Y.; Yoo, K.S.; Suh, S.G. Tuber growth and quality of potato (Solanum tuberosum L.) as affected by foliar or soil application of fulvic and humic acids. Hortic. Environ. Biotechnol. 2014, 55, 183–189. [Google Scholar] [CrossRef]
- Ekin, Z. Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture. Sustainability 2019, 11, 3417. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Naderi, M.R.; Danesh-Shahraki, A. Nanofertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci. 2013, 5, 2229–2232. [Google Scholar]
- De Rosa, M.C.; Montreaal, C.M.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010, 5, 91. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Firoz, M.; Al-Khaishany, M.Y. Role of nanoparticles in plants. In Nanotechnology and Plant Sciences; Siddiqui, M., Al-Whaibi, M., Mohammad, F., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Trawczyński, C. The effect of biostimulators on the yield and quality of potato tubers grown in drought and high temperature conditions. Biul. IHAR 2020, 289, 11–19. [Google Scholar] [CrossRef]
- Mystkowska, I.T. Biostimulators as a factor affecting the yield of edible potato. Acta Agroph. 2018, 25, 307–315. [Google Scholar] [CrossRef]
- Prajapati, A.; Patel, C.K.; Singh, N.; Jain, S.K.; Chongtham, S.K.; Maheshwari, M.N.; Patel, R.N. Evaluation of seaweed extract on growth and yield of potato. Environ. Ecol. 2016, 34, 605–608. [Google Scholar]
- Röder, C.; Mógor, Á.F.; Szilagyi-Zecchin, V.J.; Gemin, L.G.; Mógor, G. Potato yield and metabolic changes by use of biofertilizer containing L-glutamic acid. Comun. Sci. 2018, 9, 211–218. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Cwalina-Ambroziak, B.; Głosek-Sobieraj, M.; Sienkiewicz, S. Effect of biostimulators on yield and selected chemical properties of potato tubers. J. Elem. 2015, 20, 757–768. [Google Scholar] [CrossRef]
- Trawczyński, C. Effect of foliar fertilization with multicomponent fertilizers in form nanoparticle on the yield and quality of potato tubers. Agron. Sci. 2002, 77, 77–90. [Google Scholar] [CrossRef]
- Al-Juthery, H.W.A.; Ali, N.S.; Al-Taey, D.K.A.; Ali, E.A.H.M. The impact of foliar application of nanofertilizer, seaweed and hypertonic on yield of potato. Plant Arch. 2018, 18, 2207–2212. [Google Scholar]
- Al-Zebari, Y.I.; Kahlel, A.M.S.; AL-Hamdan, S. Response of four potato (Solanum tuberosum, L.) varieties to four nano fertilizers. IOP Conf. Ser. Earth Environ. Sci. 2021, 761, 012060. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Sabaghnia, N.; Nouraein, M.; Dashti, S. Responses of potato (Solanum tuberosum L.) var. Agria to application of bio, bulk and nano-fertilizers. Ann. Univ. Lub. Pol. 2015, 70, 57–67. [Google Scholar] [CrossRef]
- Mahmoud, A.W.M.; Abdeldaym, E.A.; Abdelaziz, S.M.; Mohamed, B.I.E.; Mottaleb, S.A. Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy 2020, 10, 19. [Google Scholar] [CrossRef]
- Fabeiro, C.; de Santa Olalla, F.M.; de Juan, J.A. Yield and size of deficit irrigated potatoes. Agric. Water Manag. 2001, 48, 255–266. [Google Scholar] [CrossRef]
- Lahlou, O.; Ouattar, S.L.; Ledent, J.F. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie 2003, 23, 257–268. [Google Scholar] [CrossRef]
- Gładysiak, S.; Grześ, S. Yield of very early potatoes depending on irrigation, sprouting of seed potatoes and nitrogen fertilization. Rocz. Akad. Rol. W Poznaniu. CCCXXX Rol. 2006, 66, 91–97. [Google Scholar]
- Mazurczyk, W.; Głuska, A.; Trawczyński, C.; Nowacki, W.; Zarzyńska, K. Using of irrigation in organic farm growing potatoes. In Organic Potato Production; Polish Ministry of Agriculture and Rural Development: Warsaw, Poland, 2007; pp. 132–143. [Google Scholar]
- Clark, M.E.; Horwaht, W.R.; Shennan, C.; Scow, K.M.; Lantni, W.T.; Ferris, H. Nitrogen, weeds and water as yield limiting factors in conventional, low input and organic tomato systems. Agric. Ecosyst. Environ. 1998, 73, 257–270. [Google Scholar] [CrossRef]
- Ojala, J.C.; Stark, J.C.; Kleinkopf, G.E. Influence of Irrigation and Nitrogen Management on Potato Yield and Quality. Am. Potato J. 1990, 67, 29–43. [Google Scholar] [CrossRef]
- Ierna, A.; Parisi, B. Crop growth and tuber yield of early potato crop under organic and conventional farming. Sci. Hortic. 2014, 165, 260–265. [Google Scholar] [CrossRef]
- Rębarz, K.; Borówczak, F. The influence of sprinkler irrigation, cultivation technology and nitrogen fertilization on the quality of Bila potatoes. Zesz.Prob. Post. Nauk Roln. Zeszyt 511. Part. II. Food and industrial potato and its processing. Qual. Pol. Potato Var. 2006, 287–301. [Google Scholar]
- Van Delden, A. Yield and growth of potato and wheat under organic N- Management. Agron. J. 2001, 93, 1370–1385. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Średnicka-Tober, D.; Hallmann, E.; Kopczyńska, K.; Zarzyńska, K. The impact of organic vs. conventional agricultural practices on selected quality features of eight potato cultivars. Agronomy 2019, 9, 799. [Google Scholar] [CrossRef]
- Baukema, H.P.; Van der Zaag, D.E. Introduction to Potato Production; Pudoc: Wagheningen, The Netherlands, 1990. [Google Scholar]
- Dzierżyc, J. Agriculture under Irrigation Conditions; PWRiL: Warszawa, Poland, 1998. [Google Scholar]
- Głuska, A. Influence of water shortage at different stages of potato plant and tuber yield quality. Potato Res. 2004, 41, 195–196. [Google Scholar]
- Borówczk, F. Irrigation of potatoes. In Production and Market of Potato; Chotkowski, J., Ed.; Wieś Jutra: Warsaw, Poland, 2012; pp. 205–211. [Google Scholar]
- Fatma, A.H.; Mohamed, A.I.A.A.; Abdel-Nasser, G.; Abd-Alla, S.M.; Yousryn, M.M. Response of Potato to Irrigation Water Levels and Organic Manure Fertilization Under Drip Irrigation System. J. Adv. Agric. Res. (Fac. Agric. Saba Basha) 2018, 23, 230–249. [Google Scholar]
- Harris, P.L. The Potato Crop—The Scientific Basis for Improvement, 2nd ed.; Chapman & Hall: London, UK, 1992. [Google Scholar]
- Marscher, H. MINERAL Nutrition for Higher Plants, 2nd ed.; Academic Press: London, UK, 1995. [Google Scholar]
- Bruns, C.; Finckh, M.R.; Długowski, S.; Leifert, C.; Hospers, M. Interaction between soil fertility management and variety specific characteristics with the infestation of potatoes with Phytophthora infestans. In Őkologischer Landbau der Zukunft. Beiträge zur 7. Wissenschaftstagung zum Őkologischen Landbau; Freyer, B., Ed.; Őkologischer: Frankfurt am Main, Germany, 2005. [Google Scholar]
- Lynch, D.H.; Sharifi, M.; Hammermeister, A.; Burton, D. Nitrogen management in organic potato production. In Sustainable potato Production: Global Case Studies; He, Z., Larkin, R., Honeycutt, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Wright, I. Nutrition, Blight and Skin Finish in Early Potato Production—Organic Advisory Service Organic Early Potato Production in Devon. In Proceedings of the UE Project QLK-Ct-2000-01065 BLIGHT- MOP. Workshop, a HDRA Event, Beesands near Kinderbridge, South Devon, UK, 2002. [Google Scholar]
- Harrison, J.G. Factors involved in the development of potato late blight disease (Phytophthora infestans). In Potato Modeling and Ecology of Crops under Conditions Limiting Growth; Haverkort, A.J., MacKerron, D.K.L., Eds.; Kluwer: London, UK, 1995; pp. 215–236. [Google Scholar]
- Fry, W.E.; Apple, A.E. Disease implications of age—Related changes in susceptibility of potato foliage to Phytophthora infestans. Am. Potato 1986, 63, 47–56. [Google Scholar] [CrossRef]
- Hospers-Brand, A.J.T.M.; Ghorbani, R.; Bremer, E.; Bain, R.; Litterick, A.; Holder, F.; Leifer, C.; Wilcockson, S.J. Effects of Presprouting, Planting Date, Plant Population and Configuration on Late Blight and Yield of Organic Potato Crops Grown with Different Cultivars. Potato Res. 2008, 51, 131–150. [Google Scholar] [CrossRef]
- Phillips, S.L.; Shaw, M.W.; Wolfe, M.S. The effect of potato variety mixture on epidemic of late blight in relation to plot size and level of resistance. Ann. App. Biol. 2005, 147, 245–252. [Google Scholar] [CrossRef]
- Visker, M.H.P.W.; Keizer, L.C.P.; Budding, D.J.; Van Loon, L.C.; Colon, L.T.; Struik, P.C. Leaf position prevails over plant age in reflecting resistance to late blight in potato. Pthytopathology 2003, 93, 666–674. [Google Scholar] [CrossRef]
- Chmielarz, M.; Sobkowiak, S.; Dębski, K.; Cooke, D.E.L.; Brurberg, M.B.; Śliwka, J. Diversity of Phytophthora infestans from Poland. Plant Pathol. 2014, 63, 203–211. [Google Scholar] [CrossRef]
- Hansen, J.G.; Koppel, M.; Valskyte, A.; Turka, I.; Kapsa, J. Evaluation of foliar resistance in potato to Phytophthora infestans based on an international field trial network. Plant Pathol. 2005, 54, 169–179. [Google Scholar] [CrossRef]
- Runno-Paurson, E.; Ronis, A.; Hansen, M.; Aav, A.; Williams, I.H. Lithuanian populations of Phytophthora infestans revealed a high phenotypic diversity. J. Plant Dis. Prot. 2015, 122, 57–65. [Google Scholar] [CrossRef]
- Lalaymia, I.; Naveau, F.; Arguelles Arias, A.; Ongena, M.; Picaud, T.; Declerck, S.; Calonne-Salmon, M. Screening and efficacy evaluation of antagonistic fungi against Phytophthora infestans and combination with arbuscular mycorrhizal fungi for biocontrol of late blight in potato. Front. Agron. 2022, 4, 948309. [Google Scholar] [CrossRef]
- El-Naggar, M.A.; Abouleid, H.Z.; El-Deeb, H.M.; Abd-El-Kareem, F.; Elshahawy, I.E. Biological and Chemical Sciences Biological Control of Potato Late Blight by Means of Induction Systemic Resistance and Antagonism. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 1339–1348. [Google Scholar]
- Kowalska, J.; Remlein-Starosta, D. Influence of frequency and way of application of bio-preparate (Trichoderma asperellum) on limitation of potato late blight and yield of organic potato. Prog. Plant Prot. 2012, 52, 347–350. [Google Scholar]
- Zarzyńska, K.; Boguszewska-Mańkowska, D.; Feledyn-Szewczyk, B.; Jończyk, K. The Vigor of Seed Potatoes from Organic and Conventional Systems. Agriculture 2022, 12, 1764. [Google Scholar] [CrossRef]
- Wasilewska-Nascimento, B.; Boguszewska-Mańkowska, D.; Zarzyńska, K. Challenges in the Production of High-Quality Seed Potatoes (Solanum tuberosum L.) in the Tropics and Subtropics. Agronomy 2020, 10, 260. [Google Scholar] [CrossRef]
Year | Site | Sielianinov Hydrothermal Coefficient (K) | Year | Sielianinov Hydrothermal Coefficient (K) |
---|---|---|---|---|
2005 | Jadwisin | 1.0 | 2011 | 1.8 |
Osiny | 1.3 | 1.5 | ||
2006 | Jadwisin | 1.1 | 2012 | 1.5 |
Osiny | 1.3 | 1.2 | ||
2007 | Jadwisin | 1.7 | 2013 | 1,8 |
Osiny | 1,7 | 0.8 | ||
2008 | Jadwisin | 1.1 | 2014 | 0.9 |
Osiny | 1.4 | 1.8 | ||
2009 | Jadwisin | 1.2 | 2015 | 0,6 |
Osiny | 1.2 | 0.9 | ||
2010 | Jadwisin | 2.0 | 2016 | 1.3 |
Osiny | 1.5 | 1.2 |
Maturity Group | Cultivar | Country of Origin | Total Yield (t∙ha−1) | Yield of Big Tubers (>60 mm) (t∙ha−1) |
---|---|---|---|---|
Very early | Miłek | Poland | 22.9 | 1.9 |
Berber | The Netherlands | 20.1 | 2.0 | |
Early | Owacja | Poland | 27.0 | 5.3 |
Vitara | Germany | 27.8 | 5.5 | |
Mid early | Tajfun | Poland | 29.5 | 5.0 |
Agnes | Germany | 26.1 | 4.4 | |
Mid late and late | Ursus | Poland | 28.8 | 4.6 |
Fianna | The Netherlands | 19.1 | 1.0 | |
Mean for Polish cultivars | 27.1 | 5.7 | ||
Mean for foreign cultivars | 23.3 | 3.2 | ||
LSD | 3.1 | 1.9 |
Seed Potatoes Preparation | Total Yield (t∙ha−1) | Yield of Small Tubers (<35 mm) t∙ha−1 | Yield of Medium Tubers (35–60 mm), t∙ha−1 | Yield of Large Tubers (>60 mm) t∙ha−1 |
---|---|---|---|---|
Presprouted | 32.2 a | 1.9 a | 26.6 a | 3.7 a |
Without presprouting (control) | 30.8 a | 1.8 a | 25.5 a | 2.6 b |
Difference in relation to control (%) | 4.3 | −5.3 | 4.1 | 29.7 |
Bilogical Agent | Increase of Total Tuber Yield [%] |
---|---|
UG max | 9.2 |
Rosahumus | 11.9 |
Naturamin Plus Naturamin WSP | 15.9 19.0 |
Herbagreen Basic Nano Active Forte | 10.8 11.5 |
Combination | Total Yield (t∙ha−1) | Share of Small Tubers (<35 mm) (%) | Share of Medium Tu Bers (35–60 mm) (%) | Share of Big Tubers (>60 mm) (%) |
---|---|---|---|---|
With irrigation | 33.3 a | 3.7 b | 82.1 a | 14.2 a |
Without irrigation (control) | 24.8 b | 5.4 a | 87.5 a | 6.1 b |
Difference in relation to control (%) | 25.5 | −30.9 | −6.2 | 56.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarzyńska, K.; Trawczyński, C.; Pietraszko, M. Environmental and Agronomical Factors Limiting Differences in Potato Yielding between Organic and Conventional Production System. Agriculture 2023, 13, 901. https://doi.org/10.3390/agriculture13040901
Zarzyńska K, Trawczyński C, Pietraszko M. Environmental and Agronomical Factors Limiting Differences in Potato Yielding between Organic and Conventional Production System. Agriculture. 2023; 13(4):901. https://doi.org/10.3390/agriculture13040901
Chicago/Turabian StyleZarzyńska, Krystyna, Cezary Trawczyński, and Milena Pietraszko. 2023. "Environmental and Agronomical Factors Limiting Differences in Potato Yielding between Organic and Conventional Production System" Agriculture 13, no. 4: 901. https://doi.org/10.3390/agriculture13040901
APA StyleZarzyńska, K., Trawczyński, C., & Pietraszko, M. (2023). Environmental and Agronomical Factors Limiting Differences in Potato Yielding between Organic and Conventional Production System. Agriculture, 13(4), 901. https://doi.org/10.3390/agriculture13040901