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Abstract: Overlooked diseases in agriculture severely impact crop growth, which results in significant
losses for farmers. Unfortunately, manual field visits for plant disease diagnosis (PDD) are costly and
time consuming. Although various methods of PDD have been proposed, many challenges have yet
to be investigated, such as early stage leaf disease diagnosis, class variations in diseases, cluttered
backgrounds, and computational complexity of the diagnosis system. In this paper, we propose
a Convolutional Neural Network (CNN)-based PDD framework (i.e., PDD-Net), which employs
data augmentation techniques and incorporates multilevel and multiscale features to create a class
and scale-invariant architecture. The Flatten-T Swish (FTS) activation function is utilized to prevent
gradient vanishing and exploding problems, while the focal loss function is used to mitigate the
impact of class imbalance during PDD-Net training. The PDD-Net method outperforms baseline
models, achieving an average precision of 92.06%, average recall of 92.71%, average F1 score of
92.36%, and accuracy of 93.79% on the PlantVillage dataset. It also achieves an average precision of
86.41%, average recall of 85.77%, average F1 score of 86.02%, and accuracy of 86.98% on the cassava
leaf disease dataset. These results demonstrate the efficiency and robustness of PDD-Net in plant
disease diagnosis.

Keywords: plant disease diagnosis; computer vision; convolutional neural network; multilevel
features; multiscale features; leaf diseases diagnosis; disease classification

1. Introduction

Agriculture is the backbone of the food supply chain [1], and the economies of nu-
merous developing countries depend on it [2]. Outbreaks of plant diseases impact the
condition of crops and reduce their yield, resulting in significant losses [3]. The loss of
yields can influence the food supply chain and economy of the country. Plant infections
are generally caused by bacteria, fungi, viruses, parasites, or environmental factors, and
many farmers are unaware of some types of plant disease [4]. Early stage plant disease
recognition helps control the disease and prevent widespread damage to crops [5]. To
control plant disease outbreaks, regular and continuous consultations with experts are
required. However, the regular visual inspection of experts in remote areas of developing
countries is expensive, less accurate, and time consuming [6]. The automatic identification
of crop disease symptoms is a very beneficial, fast, and cost-effective solution [7].

Generally, a crop’s disease symptoms appear on the leaves. Additionally, digital im-
ages of leaves are strong candidates for plant disease recognition. During the last few years,
plenty of expert systems have been proposed for crop disease diagnosis. These systems
are grouped into two categories: (i) conventional computer vision-based diagnosis [7] and
(ii) deep-learning-based [5,6] diagnosis. Conventional computer vision-based crop disease
diagnosis systems are based on feature extraction and feature classification mechanisms [7].
In recent decades, well-known feature extraction approaches such as Local Binary Patterns
(LBP) [8], Scale Invariant Features Transform (SIFT) [9], Supported Up Robust Features
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(SURF) [10,11], Histogram of Oriented Gradients (HOG) [12], Gabor Transform (GT) [13],
etc., have been used. Meanwhile, machine-learning (ML)-based classifiers such as Support
Vector Machine (SVM) [11], Naive Bayes (NB) [14], Random Forest (RF) [14], Fisher Linear
Discriminator (FLD) [15], etc., have been applied to classify leaf diseases. The accuracy of
conventional diagnosis systems is highly dependent on hand-crafted feature extraction
mechanisms and classification algorithms [16]. In particular, the selection of optimal and
robust handcrafted features for disease identification is very challenging because every fea-
ture has its own limitations (i.e., scale variation, illumination variation, interclass variation,
deformation variation, etc.) [17].

Recently, with the advent of domain-specific architectures [18] (i.e., GPU, TPU, etc.),
deep learning (DL)-based classifiers, particularly CNN, are becoming increasingly
popular [19–33]. A CNN-based classifier (i.e., VGG-Net [34], ImageNet [35], Inception-
Net [36], DenseNet-121 [37], MobileNet [38], ResNet50 [39], etc.) automatically extracts
and learns optimal low-level features for classification. Additionally, CNN-based architec-
tures have shown good performance during image classification tasks [19]. Despite the
promising results achieved by general CNN-based image classifiers, real-time plant-disease-
classification applications face several challenges, such as early stage diagnosis [23,24],
disease class variation [22,25], limited samples in benchmark datasets [24,29], and class im-
balance problems of datasets [25]. Moreover, General CNN-based classification approaches
often suffer from high computational costs and have many parameters to train [23].

To resolve these challenges, this research proposes a hybrid CNN architecture that
combines the advantages of current advancements. The proposed model incorporates a
spatial pyramid pooling block [40] that enhances the extraction of local and global multi-
scale features, which improves the accuracy of small-scale lesion classification. A dense
connection block [37] is introduced to maximize information flow within network layers
and boost multilevel feature extraction capabilities. To decrease the model complexity and
total training parameters, a global averaging layer [23] is introduced to replace the fully
connected layers. The Flatten-T Swish (FTS) activation function [41] is used to overcome
the gradient vanishing problem during backpropagation, which is commonly encoun-
tered with traditional activation functions. The FTS activation function provides a high
convergence rate during training, which ensures a better classification performance. The
proposed model is evaluated using the PlantVillage and cassava leaf disease datasets, and
the results demonstrated significant improvements in the classification accuracy compared
to traditional CNN-based methods.

In this study, the following significant contributions are made to address the limitations
of existing computer vision-based systems for plant disease diagnosis (PDD):

• A novel CNN-based framework, PDD-Net, is proposed; it incorporates data augmen-
tation techniques and transfer learning to efficiently handle limited data samples and
enhance the model-training process.

• The PDD-Net architecture was designed to include multilevel and multiscale features,
a stable FTS activation function, and a Global Average Pooling (GAP) layer, which
together improve the classification accuracy and prevent overfitting in the model.

• To ensure model generalization and stability, fivefold cross-validation was employed
as an essential part of the model evaluation process.

• The reported performance results such as precision, recall, F1 score, and accuracy
demonstrated the superior performance of PDD-Net compared to baseline methods,
including DenseNet-201, DenseNet-121, ResNet-50, and VGG-16.

Overall, this research contributes to the development of a robust and efficient PDD
system that can handle early stage leaf disease diagnosis and class variation in plant diseases.

The remainder of this paper is organized as follows: Section 2 presents a review of
the related work in PDD. Section 3 describes the materials and methods employed in our
study, including the proposed PDD-Net framework. Section 4 provides a detailed analysis
of the results obtained from our experiments. Section 5 contains the discussion. Finally,
Section 6 concludes the paper and outlines potential future research directions.
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2. Literature Review

In the field of artificial intelligence, two types of vision-based frameworks based
on deep learning (DL) and machine learning (ML) are used for plant disease recognition.
Although traditional ML-based models are lighter than sophisticated DL-based frameworks,
their recognition accuracy is less promising than that of DL based models. As a result, this
study concentrated solely on DL-based plant disease recognition frameworks.

For plant disease recognition, several Convolutional Neural Network (CNN)-based
strategies have been suggested with promising results. However, these DL systems demand
a huge number of training instances. Furthermore, the labeling of training data demands a
comprehensive biological understanding.

To address such challenges, Cap et al. [42] introduced LeafGAN, a Generative Adver-
sarial Network (GAN)-based approach used to augment training samples in plant disease
classification tasks. This innovative augmentation technique employs image-to-image trans-
lation to generate novel data samples that enrich the training set and thereby potentially
upgrade the overall performance and generalization of the classification model. In [29],
Abbas et al. utilized DenseNet-121 [37] for plant disease classification. In their proposed
framework, a Conditional GAN was used to enhance the training samples. Multilevel
features are used to cope with class variations between plant diseases. Their proposed
framework only targeted tomato plant diseases and did not consider the multiscale features
crucial for early stage lesion recognition. In Ref. [24], the Dilated and Inception CNN
(DICNN) paradigm for classifying cucumber diseases is explained. Two types of data
augmentation, such as translation and rotation, have been used to improve training data in
their architecture. In another study, Zhang et al. [20] utilized a thirteen-layer deep CNN
architecture for fruit classification in supermarkets, factories, and other fields. They intro-
duced three different data augmentation methods to minimize the learning data starvation
problem of CNN models. They also observed that data augmentation enhanced the accu-
racy of the CNN-based classifier. In Ref. [31], Mostafa et al. designed a PDD framework
for the guava plant. The image rotation technique was used for data augmentation. Their
framework utilized unsharp masking and color-histogram equalization techniques along
with deep learning features for disease identification.

Other than limited training data samples, plant disease diagnosis has faced several
major challenges, including early stage detection, handling leaf disease class variation,
and addressing dataset class imbalance. Researchers have proposed various techniques
to address these issues by enhancing and modifying existing frameworks. They have
proposed hybrid CNN architectures that combine various methodologies and techniques,
aiming to mitigate the limitations of traditional classifiers. Wang et al. [26] designed an
architecture that classifies and localizes plant diseases using object detection algorithms (i.e.,
Faster RCNN [43], YOLO [44], SSD [45], etc.) from digital images. They introduced the deep
block attention to improve the feature extraction capability of their backbone architecture
(i.e., VGG-16). Alatawi et al. [32] also utilized a VGG-16 [34] backbone architecture for
plant disease classification. They utilized SoftMax and ReLu activation functions along
with “Sparse Categorical Cross Entropy Loss” for CNN model training. To validate the
performance of their architecture, they trained VGG-16 on nineteen selected classes of
the PlantVillage benchmark, achieving a 95% testing accuracy for these selected classes.
In [21], Chen et al. designed a CNN-based PDD framework by utilizing the VGG-19 [34]
architecture. To enhance the VGG-19 model, they incorporated the inception module, which
resulted in an improved performance. In [28], Wagle et al. suggested a compact CNN-
based framework for leaf infection classification. Their compact CNN-based architecture
utilized “Rectified Linear Unit” ReLu [46] activation functions throughout the network
and fully connected layer before making a final prediction, which increased the total
training parameters and overall model complexity. In [23], Zhang et al. suggested a deep-
learning-based model called Global Pooling Dilated CNN (GPDCNN) for leaf disease
classification. Their proposed CNN architecture is based on AlexNet architecture. To
decrease the complexity of the CNN framework, the GPDCNN methodology uses a global
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averaging layer [23] rather than fully connected layers (FCL). Furthermore, GPDCNN uses
a dilated-CNN layer to efficiently recover spatial information from images, which is vital
for small lesion detection. These CNN models ignore multilevel features that help diminish
the influence of class variations among different plant diseases. Moreover, in their datasets,
certain diseases appear with notably low frequency; the imbalanced nature of these datasets
negatively impacted the model’s training and overall performance.

To resolve the class imbalance, Zhong et al. [25] applied focal loss as an alternative to
cross-entropy loss to rectify the imbalanced composition of plant disease datasets. Addition-
ally, to cope with the class variation, the DenseNet-121 [37] architecture was used in their
proposed multiclass classification scheme. Tiwari et al., 2021 [22] utilized DenseNet-201
for plant disease classification. To improve the DenseNet-201 basic design, they added
four layers of dense blocks. Additionally, fivefold cross validation was employed to as-
sess the model. Although their suggested CNN frameworks [22,25] are resilient to class
diversity in plant diseases, these models failed to detect plant infections at an early stage.
Tariq et al. [30] suggested a hybrid framework for plant infection classification. They uti-
lized the ResNet-50 [39] deep learning model for training. In their framework, handcrafted
features (i.e., color and LBP [8]) are fused with deep learning features. Research shows
that feature fusion strategies enhance the robustness of monotonic gray-scale variations.
However, the skip connection of ResNet-50 architecture increases the overall complex-
ity of the model. In [27], Chakraborty et al. utilized CNN-based image classifiers (i.e.,
VGG-16 [34], VGG-19 [34], MobileNet [38], and ResNet50 [39]) for potato leaf disease iden-
tification. In [33], Eunice et al. utilized four (i.e., VGG-16 [34], DenseNet121 [37], Inception
V4 [47], and ResNet-50 [39]) state-of-the-art CNN-based frameworks for plant infection
classification. To handle the data nonlinearity, they utilized the ReLu activation function
in CNN architectures. In [48], Attallah proposed a framework for tomato leaf infection
classification using three different CNNs: ResNet-18, ShuffleNet, and MobileNet. The
study employed transfer learning to extract features from the last fully connected layer,
resulting in an additional high-level interpretation. Subsequently, features from all three
CNNs were merged to harness the benefits of each structure. A hybrid feature selection
approach was then applied to generate a comprehensive, lower-dimensional feature set.
Attallah’s study achieved notable progress in tomato leaf disease classification, but the
pipeline’s generalizability to other economically significant crops remains untested. A more
versatile and broadly applicable pipeline could be achieved through the generalization
and exploration of data augmentation methods to increase the model’s robustness and
performance, especially in cases with limited or imbalanced training data.

The literature highlights several research gaps in plant disease recognition using deep
learning frameworks, including early stage detection, handling class variation, addressing
dataset class imbalances, overcoming limited training data, managing model complex-
ity, and improving scalability and generalizability. Addressing these gaps will provide
precise and robust plant disease recognition models, which will ultimately benefit agri-
culture and food security. Therefore, we propose the PDD-Net architecture to overcome
these challenges.

3. Materials and Methods
3.1. Image Preprocessing and Augmentation

To ensure the input parameters meet the needs of the CNN model, we preprocessed the
dataset’s images before feeding them to the CNN architectures. During preprocessing, each
input image was resized to 224 × 224 dimensions. Then, normalization (i.e., image/255.0)
was applied to ensure that all the data were described under the same distribution, which
enhances the training convergence and stability [49]. Figure 1 displays the original dataset
image alongside its preprocessed form, where it has been resized and normalized.
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Figure 1. Image resizing and normalization applied to an image sample from PlantVillage
benchmark dataset.

The CNN-based models’ performance is strongly dependent on the size of the training
samples [28]. To avoid overfitting (i.e., when a model discovers a function with particu-
larly high variance to accurately characterize the training data) of the CNN architecture,
large numbers of training examples are essential. To increase the training samples, three
geometric transformation-based (i.e., not label-preserving transformation) augmentation
methods (i.e., rotation, flipping, and noise injection) are used in this research, and some
augmented samples are shown in Figure 2.
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3.2. Transfer Learning

Transfer learning is applied when information gained in one area is utilized in
another [21,29]. Deep CNNs, which are used in deep learning, require a lot of train-
ing material. When the required volume of data is insufficient, pretrained CNN models are
used for training. These networks have been previously trained on a significant number
of images; the process of sharing existing knowledge to learn a new domain is known
as transfer learning. A CNN’s pretrained network is then fine-tuned using a relatively
small quantity of new data to facilitate the transfer of knowledge. In this study, similar to
other instances of image categorization, the accumulated knowledge is introduced by a
pre-trained framework from the ImageNet task. ImageNet is a database that contains more
than fourteen million images corresponding to 1000 standard classes.

3.3. Benchmark Acquisition

Two publicly available benchmarks known as cassava leaf disease (CLD) and PlantVil-
lage are utilized to authenticate the performance of the designed PDD-Net.

The cassava leaf disease (CLD) benchmark dataset is employed to assess the functioning
of the suggested PDD-Net architecture in this study. The dataset contains 21,397 annotated
images of cassava plant leaves. These annotated images are classified into five categories
based on their respective labels: (i) Healthy Cassava Leaves (HCL), (ii) Cassava Bacterial
Blight (CBB), (iii) Cassava Brown Streak Disease (CBSD), (iv) Cassava Mosaic Disease (CMD),
and (v) Cassava Green Mottle (CGM). In the CLD benchmark, the CMD class has significantly
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more samples than all other classes. To increase the number of data samples and mitigate the
impact of class imbalance, data augmentation methods are applied to all classes except the
CMD category. After augmentation, the total number of data samples expanded to 54,353. A
selection of data samples from the CLD benchmark dataset along the class labels are shown
in Figure 3.
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To evaluate the PDD-Net architecture, the CLD benchmark dataset was partitioned
into training and testing subsets, with 80% of the data allocated for training and the
remaining 20% for testing. Table 1 presents a comprehensive overview of the division of
images for every class within the training and test subsets.

Table 1. Summary of the cassava leaf disease (CLD) benchmark dataset employed in this study.

Category Training Samples Testing Samples Total Samples

HCL 10,308 2577 12,885
CBB 4348 1087 5435

CBSD 8756 2189 10,945
CMD 10,526 2632 13,158
CGM 9544 2386 11,930

Total Samples 43,482 10,871 54,353

By distributing the CLD dataset into training and test subsets, this research aims to
provide an accurate assessment of the PDD-Net architecture’s performance in addressing
the complex task of PDD.

The PlantVillage dataset contains 54,305 labeled pictures of plant leaves. It covers
fourteen different types of plants, including (i) apple, (ii) blueberry, (iii) cherry, (iv) corn,
(v) grape, (vi) orange, (vii) peach, (viii) pepper, (ix) potato, (x) raspberry, (xi) soyabean,
(xii) squash, (xiii) strawberry, and (xiv) tomato. There are 38 different types of classification
labels organized according to disease types. Some categories (i.e., cedar apple rust, peach
healthy, grape healthy, potato healthy, raspberry healthy, strawberry healthy, and tomato
mosaic virus) have very limited (i.e., less than 500) image samples. To overcome the data
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limitation, different data augmentation techniques were utilized to artificially improve the
data samples. Following data augmentation, the number of samples increased from 54,305
to 63,945. Following data augmentation, the benchmark images were randomly divided
into an 80:20 train and test set. Table 2 reveals the details of the PlantVillage benchmark
after applying various data augmentation techniques.

Table 2. The PlantVillage benchmark dataset after data augmentation.

Plant Name Leaf Label
Image

Frequency Plant Name Leaf Label
Image

Frequency
Train Test Train Test

Apple

Scab (AS) 504 126
Peeper

Bacterial spot (BS) 798 199
Black rot (ABR) 497 124 Healthy (H) 1182 296

Cedar apple rust (ACAR) 1100 275 Blueberry Healthy (BH) 1202 300
Healthy (AH) 1316 329 Orange Huanglongbing (OH) 4406 1101

Cherry
Powdery mildew (CPM) 842 210 Raspberry Healthy (RH) 1484 371

Healthy (CH) 683 171 Soybean Healthy (SH) 4072 1018

Corn/Maze

Gray leaf spot (MGLS) 410 103 Squash Powdery mildew (SPM) 1468 367
Common rust (MCR) 954 238

Strawberry
Leaf scorch (SLS) 887 222

Northern leaf blight (MNLB) 788 197 Healthy (St-H) 1824 456
Healthy (MH) 930 232

Tomato

Bacterial spot (TBS) 1702 425

Grape

Black rot (GBR) 944 236 Early blight (TEB) 800 200
Black measles (GBM) 1106 277 Late blight (TLB) 1527 382

Leaf blight (GLB) 861 215 Leaf mold (TLM) 762 190
Healthy (GH) 1716 429 Septoria leaf spot (TSLS) 1417 354

Peach
Bacterial spot (PBS) 1338 459 Spider mites (TSM) 1341 335

Healthy (PH) 1440 360 Target spot (TTS) 1123 281

Potato
Early blight (Po-EB) 800 200 Mosaic virus (TMV) 1468 367
Late blight (Po-LB) 800 200 Yellow leaf curl virus (TYLCV) 4286 1071

Healthy (Po-H) 608 152 Healthy (TH) 1273 318

Figure 4 visually represents some samples with class labels from the PlantVillage benchmark.
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3.4. Plant Disease Diagnosis Framework
3.4.1. The Principle of Baseline Model

The original baseline architecture (i.e., VGG-16) is shown in Figure 5. It consists of
thirteen convolutional, five max-pooling, and three dense layers, which sum up to twenty-
one layers. Among these 21 layers, only 16 are weight layers or learnable parameters layers
(i.e., 13 convolutional layers and 3 dense layers). The VGG-16 model requires a 224 × 224
input image with three color channels. The VGG-16 architecture applies a 3 × 3 filter in
the convolutional layers with stride and padding. Additionally, in the max-pooling layers,
the stride is 2 and the filter size is 2 × 2. The number of features on the map gradually
increases (i.e., 64, 128, 256, 512, etc.), and the dimension of the feature maps reduces (i.e.,
224 × 224, 112 × 112, 56 × 56, 28 × 28, 14 × 14, 7 × 7, etc.) in descending layers.
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3.4.2. Model Improvements

The suggested CNN model is presented in Figure 6. The designed CNN architecture
automatically extracts the semantic features, as VGG-16 does. However, VGG-16 ignores
the multilevel and multiscale features. The proposed CNN architecture utilized dense
connections and pyramid pooling for feature extraction. The first block of the designed
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CNN framework comprises five convolutional layers adjacent to max-pooling layers. The
purpose of this convolution and max-pooling block is to extract semantic features and
perform dimensional reduction. Just like VGG-16, the initially proposed model applies
convolution and max pooling to extract semantic features and reduce the dimensionality
of feature maps. After the convolution and max-pooling blocks, a dense connection block
is introduced to extract multilevel features. This dense connection block is inspired by
Dense-Net, which utilizes the features of all previous layers in its descending layers. After
multilevel feature extraction, a spatial pyramid pooling (SPP) block is introduced to extract
multiscale features. The SPP block is inspired by a spatial pyramid pooling network. This
SPP block helps identify plant infection at an early stage. After performing three different
types of feature extraction, this study concatenates all these features for prediction.
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The major components of the proposed model are as follows.

1. Multilevel features extraction

Exploring the limited capability of VGG-16 on feature extraction, we use the dense
connection block (DCB) shown in Figure 6. The DCB is inspired by DenseNet121 [37],
which enhances the baseline architecture to boost the feature extraction capability and
maximize information flow within network layers.

The CNN model forward propagating the connection among the l−1 layer and the lth
layer is described by Equation (1):

xl = f (xl−1 ∗ wl + bl ) (1)

where f(.) represents the FTS [41] as an activation function, xl−1 is the input of lth layer, wl

is the weight of convolution kernel, ‘∗’ depicts the convolution, and bl is a bias parameter.
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The feature maps in the dense connection block of layer l−1 are concatenated and used as
the input of the next lth layer described in Equation (2):

xl = f ( [x0, x1, x2, ..., xl−1 ] ∗ wl + bl ) (2)

In DCB, each convolution layer outputs the concatenated feature maps that depict ‘k’,
and the lth layer outputs the [k0 + k1 + ... + kl−1] feature maps.

2. Multiscale features extraction

To boost the stability of the classifier for plant leaf lesion scale variation, this re-
search introduces the pyramid pooling block (PPB) in the CNN architecture that utilizes
local and global multiscale features to enhance the accuracy for small-scale lesion clas-
sification. The PPB comprises three max-pooling layers that pool feature maps at differ-
ent scales using three distinct sliding windows. The sizes of the sliding windows are
dXdim/2e × dYdim/2e, dXdim/3e × dYdim/3e, and dXdim/4e × dYdim/4e, respectively.
The PPB outputs the multiscale feature maps for the next convolutional layer.

3. Activation function

In CNN training, the activation function plays an essential role because it transforms
the input signal into the output signal. The activation function introduces a nonlinearity
factor for better classification. So, it is important to choose an efficient activation function
that handles the nonlinearity of the training data with less complexity. Several traditional
activation functions have been used for classification problems, such as Sigmoid, ReLu [46],
Tanh, etc. Using the Sigmoid or Tanh activation functions, when we back-propagate through
deeper layers, the propagation value reduces, which results in gradient disappearance.
Moreover, the Sigmoid function is based on a complex power operation that slows down
the training mechanism. Although the ReLu activation function has a strong convergence
rate, it results in dead neurons and cannot squeeze the data point; thus, the scale of the
data point will continue to increase as the number of layers grows. By considering these
constraints on traditional activation functions, researchers proposed more stable and robust
activation functions such as Swish [50] and Flatten-T Swish (FTS) [41]. In this research, we
introduced the FTS activation function instead of ReLu in our proposed multilevel and
multiscale CNN architecture. The FTS activation function is expressed in Equation (3),
where Thr represents the threshold (i.e., −0.20):

FTS(x) =


x

1 + e−x + Thr, i f x ≥ 0

Thr, i f x < 0
(3)

The FTS activation function provides a high convergence rate during training and
mitigates the gradient vanishing problem during back propagation.

4. Global Average Pooling (GAP)

After extracting rich semantic features, multiple fully connected or dense connec-
tion layers are used in the baseline architecture to stretch the long feature vector before
feeding it to the SoftMax classifier. Fully connected layers use a large number of training
parameters that slow down the training procedure, which results in overfitting. To mitigate
this limitation of the baseline architecture, a GAP layer [23] is introduced to replace the
fully connected layers. The GAP layer extracts a feature point for each feature map and
constructs a feature vector to feed the SoftMax classifier. The GAP layer sums up the spatial
information of feature maps and generates a more robust feature vector compared to a fully
connected layer.
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3.4.3. Model Fine Tuning and Loss Function

Using PlantVillage training samples and their corresponding labels, the proposed
PDD-Net was fine tuned to minimize the loss function presented in Equation (4):

L(Yact, f(x)) = − 1
N

N

∑
i=0

C

∑
j=0

β
(
1− fj

)αyijlog
(
fj; θ
)

(4)

Lin et al. [51] and Zhong et al. [25] first conceived of this loss function, they used
this focal loss function to solve the category imbalance (i.e., between background and
foreground) problem for the classification of plant diseases. Yact is the actual label and f(x)
is the predicted value, β mitigates the category imbalance, and α > 0 minimizes the loss of
easily classifiable samples and increases the loss of difficult samples.

3.4.4. Model Performance Metrics

The performance of the proposed PDD-Net method and other CNN classifiers is
calculated using different metrics such as recall, precision, accuracy, and F1 score. As we
report the performance metrics for each class label, we explain the calculations obtained
from the combined confusion matrices, as follows. Let Ci,j be an element in the combined
confusion matrices at the ith row and jth column. For a given class label at the ith row,
the number of true positive samples (TP = Ci,i), the number of false positive samples
(FP = ∑j 6=i cj,i

)
, and the number of false negative samples (FN = ∑j 6=i ci,j

)
are given.

Equations (5)–(7) show the performance metrics for each class as

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

and F1 score = 2× (Recall× Precision)
(Recall + Precision)

(7)

For a given method, we also report the average performance results of all classes. The
accuracy performance measure is calculated as

Accuracy =
∑i ci,i

∑i ∑j ci,j
(8)

3.5. Model Training and Testing

The proposed deep-learning-based PDD-Net was trained on various leaf images
of different plants for plant disease classification. The model training and testing were
performed using an Intel Xenon processor, 64 GB of RAM, and an NVIDIA-TITAN-RTX-
GPU. During model training, the input image dimension was 224 × 224 with a batch size
of 32. The SGD was used as an optimizer with a weight decay of 0.0005, learning rate of
0.001, and momentum of 0.9 to train the proposed PDD-Net. The SGD was used instead of
the Adam optimizer because of its high performance [52].

We utilized fivefold cross-validation, where the test set consisted of 20% of the total
samples while the leftovers (i.e., 80% data samples) were used for training. In each run of
the fivefold cross-validation, we performed predictions to test the samples. As the confusion
matrix compares the true labels against predictions, we combined the confusion matrices in
all five runs of fivefold cross-validation and then calculated the performance results.
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4. Results
4.1. PlantVillage

Here, we report the prediction performance of PDD-Net on the PlantVillage dataset.
Figure 7 corresponds to the combined confusion matrices for all 38 classes on unseen
12,784 test images. Several other CNN-based classifiers, including DenseNet-201 [21,22],
DenseNet-121 [22,25,29,33], ResNet-50 [21,30,33], and VGG-16 [26,32,33] were also trained
on the same samples. The confusion matrix of each model was generated and combined,
and their corresponding true positive rates were compared with the proposed model; the
comparison is shown in Figure 8 for all classes of the PlantVillage dataset. The model
evaluation matrices (i.e., precision, recall, F1 score, and accuracy) are directly proportional
to true positive values. The true positive values of the proposed hybrid model were superior
to the baseline and other architectures used for plant disease classification, utilizing multi-
level and multiscale high-level features.
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We calculate the precision, recall, and F1 score of the proposed PDD-Net, as shown in
Table 3, for all 38 classes of the PlantVillage benchmark dataset.

Table 3. Classification performance of PDD-Net for each class pertaining to the PlantVillage
benchmark dataset.

Class Precision % Recall % F1 Score %

AS 97.64 98.41 98.02
ABR 96.09 99.19 97.62
ACAR 98.55 98.91 98.73
AH 96.39 97.26 96.82
CPM 97.09 95.24 96.15
CH 93.57 93.57 93.57
MGLS 71.17 76.70 73.83
MCR 87.61 83.19 85.34
MNLB 85.71 85.28 85.50
MH 86.08 87.93 86.99
GBR 91.88 91.10 91.49
GBM 92.01 95.67 93.81
GLB 92.20 93.49 92.84
GH 96.17 93.71 94.92
PBS 96.70 95.86 96.28
PH 92.78 96.39 94.55
Po-EB 89.52 94.00 91.71
Po-LB 91.79 89.50 90.63
Po-H 84.05 90.13 86.98
BS 94.27 90.95 92.58
H 92.65 97.97 95.24
BH 97.27 95.00 96.12
OH 99.18 99.46 99.32
RH 96.25 96.77 96.51
SH 98.33 98.13 98.23
SPM 97.78 96.19 96.98
SLS 94.14 94.14 94.14
St-H 98.44 96.71 97.57
TBS 96.55 92.67 94.57
TEB 83.96 89.00 86.41
TLB 91.62 91.62 91.62
TLM 84.62 86.84 85.71
TSLS 89.66 90.68 90.17
TSM 88.64 93.13 90.83
TTS 87.54 90.04 88.77
TMV 90.96 90.46 90.71
TYLCV 97.70 91.32 94.40
TH 81.60 86.48 83.97
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The overall performance was evaluated by taking the average of all classes. We
compared the overall performance of PDD-Net with several CNN-based classifiers used
for plant disease classification, including DenseNet-201 [21,22], DenseNet-121 [22,25,29,33],
ResNet-50 [21,30,33], and VGG-16 [26,32,33].

Table 4 depicts the overall average performance (excluding the accuracy that was
calculated without taking the average) of different CNN architectures. DenseNet-201
achieved an average precision of 82.82%, average recall of 85.13%, average F1 score of
83.82%, and accuracy of 85.60%. DenseNet-121 achieved an average precision of 81.30%,
average recall of 83.47%, average F1 score of 82.15%, and accuracy of 84.05%. ResNet-50
achieved an average precision of 75.00%, average recall of 76.13%, average F1 score of
75.19%, and accuracy of 78.38%. VGG-16 achieved an average precision of 60.87%, average
recall of 63.36%, average F1 score of 61.67%, and accuracy of 67.12%. Additionally, our
proposed PDD-Net achieved the highest average precision of 92.06%, highest average recall
of 92.71%, highest average F1 score of 92.36%, and highest accuracy of 93.79%. Overall,
these results show the superiority of PDD-Net compared to other models. ResNet-50 and
VGG-16 exhibited a poorer performance compared to other frameworks.

Table 4. Average performance comparison of CNN-based frameworks on PlantVillage dataset. The
model with the best performance results is shown in bold. Accuracy is calculated using Equation (8).

Framework Precision % Recall % F1 Score % Accuracy %

DenseNet-201 82.82 85.13 83.82 85.60
DenseNet-121 81.30 83.47 82.15 84.05

ResNet-50 75.00 76.13 75.19 78.38
VGG-16 60.87 63.36 61.67 67.12

PDD-Net 92.06 92.71 92.36 93.79

4.2. Cassava Leaf Disease (CLD)

This experiment was performed by using a CLD benchmark dataset. The combined
confusion matrix (depicted in Figure 9) was analyzed to assess the performance of the
proposed PDD-Net.

Based on the combined confusion matrices, the estimated precision, recall, and
F1 score of PDD-Net for each class of CLD are shown in Table 5. For HCL, the model
achieved a precision of 90%, a recall of 87.31%, and an F1 score of 88.64%. In classifying
CBB, PDD-Net attained a precision of 82.28%, a recall of 77.74%, and an F1 score of 79.94%.
The PDD-Net model exhibited similar performance results when detecting CBSD with
a precision of 84.51%, a recall of 84.51%, and an F1 score of 84.51%. For CMD, the most
common disease in the CLD dataset, PDD-Net performed exceptionally well, achieving
a precision of 86.46%, a recall of 94.60%, and an F1 score of 90.35%. Lastly, the model
demonstrated a good performance when detecting Cassava Green Mottle (CGM) with a
precision of 88.79%, a recall of 84.66%, and an F1 score of 86.68%. These results highlight
the efficiency and effectiveness of the PDD-Net architecture in addressing the complex task
of plant disease diagnosis.

Table 5. Classification performance of PDD-Net for each class of the CLD dataset.

Category Precision % Recall % F1 Score %

HCL 90.00 87.31 88.64
CBB 82.28 77.74 79.94
CBSD 84.51 84.51 84.51
CMD 86.46 94.60 90.35
CGM 88.79 84.66 86.68
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A detailed comparison of the averaged results with other state-of-the-art models
such as DenseNet-201, DenseNet-121, ResNet-50, and VGG-16 is presented in Table 6 to
demonstrate the effectiveness of PDD-Net. The analysis revealed that PDD-Net achieved
the highest average precision (86.41%) among the compared models, indicating its superior
ability to accurately distinguish between different cassava leaf diseases and healthy samples.
In contrast, DenseNet-201, DenseNet-121, ResNet-50, and VGG-16 exhibited lower average
precision values of 81.77%, 80.76%, 79.92%, and 78.93%, respectively. This highlights the
importance of PDD-Net’s design choices in achieving high-performance results.

Table 6. Average performance comparison of CNN-based frameworks on the CLD dataset. The
method with best performance results is shown in bold. Accuracy is calculated using Equation (8).

Framework Precision % Recall % F1 Score % Accuracy %

DenseNet-201 81.77 81.76 81.57 82.50
DenseNet-121 80.76 80.35 80.33 81.27
ResNet-50 79.92 79.53 79.55 80.88
VGG-16 78.93 78.54 78.54 79.89
PDD-Net 86.41 85.77 86.02 86.98

Furthermore, PDD-Net achieved the highest recall (85.77%) among the models, em-
phasizing its effectiveness at identifying true positive instances within the dataset. The
competing models, DenseNet-201, DenseNet-121, ResNet-50, and VGG-16, demonstrated
lower average recall values of 81.76%, 80.35%, 79.53%, and 78.54%, respectively. The higher
recall value for PDD-Net signifies its potential to minimize missed diseased leaf instances,
which is crucial for effective disease management.

In terms of the F1 score, a metric that considers both precision and recall, PDD-
Net outperformed the other models with an average F1 score of 86.02%. In comparison,
DenseNet-201, DenseNet-121, ResNet-50, and VGG-16 achieved lower average F1 scores of
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81.57%, 80.33%, 79.55%, and 78.54%, respectively, emphasizing the superior performance
of PDD-Net.

Lastly, PDD-Net outperformed the other models in terms of accuracy, with a value of
86.98%. This attests to the model’s high capability to correctly classify instances of cassava
leaf disease. The DenseNet-201, DenseNet-121, RsnNet-50, and VGG-16 models reported
lower accuracy values of 82.50%, 81.27%, 80.88%, and 79.89%, respectively. The superior
accuracy of PDD-Net demonstrates its potential for practical applications in agriculture.

The proposed PDD-Net exhibited superior performance on two different benchmarks
compared to VGG-16, ResNet-50, DenseNet-121, and DenseNet-201. The benefits of
PDD-Net’s design selections, including multilevel and multiscale features, FTS activa-
tion function, and focal loss function to address class imbalance, contribute to its enhanced
performance. These reported results make PDD-Net a promising solution for practical
applications in agriculture.

5. Discussion

The proposed framework, PDD-Net, is designed to efficiently diagnose plant diseases
using a CNN based on the VGG-16 architecture. This framework aims to mitigate the
limitations of existing CNN-based architectures by investigating the influence of multilevel
and multiscale features in plant disease diagnosis. For fast convergence and efficient model
training, a state-of-the-art activation function known as FTS is used to avoid the dead
neuron problem in backpropagation. To enhance data sample diversity and mitigate the
influence of overfitting, data augmentation techniques are utilized. Data augmentation
and the focal loss function employed in PDD-Net help with class imbalance problems
in benchmarks.

The PDD-Net method was evaluated against other baseline methods using two plant
disease classification benchmark datasets: PlantVillage and cassava leaf disease (CLD). The
results in Tables 4 and 6 reveal that PDD-Net outperformed VGG-16, ResNet-50, DenseNet-121,
and DenseNet-201 in terms of accuracy, precision, recall, and F1 score. The baseline architecture
utilized 138.35 million training parameters, while the proposed PDD-Net required only
16.67 million because PDD-Net used a GAP layer instead of fully connected layers.

Various software tools were used to implement and evaluate the proposed model, such
as TensorFlow and Keras, which were used to build the CNN architecture, and the Python
programming language for data processing and analysis [53]. These tools provide a robust
and flexible environment for developing and testing deep learning models. The optimizer
in DL plays a key role in updating model weights. The SGD optimizer with our framework
achieved better results than the ADAM optimizer. When training our framework, we used
a learning rate of 0.001 and momentum of 0.9.

6. Conclusions and Future Work

We present a multilevel and multiscale CNN architecture, PDD-Net, to improve the
prediction performance in leaf disease diagnosis. The PDD-Net method allowed for the
detection of fine-grained visual patterns in plant leaves at different levels of abstraction,
which resulted in high-performance results when identifying various diseases while han-
dling class variations. While the multiscale approach enhances the network’s capability
to identify small-scale variations in images, it allowed diseases to be diagnosed at an
early stage. Along with multilevel and multiscale features, using GAP in CNNs for plant
disease classification can lead to accurate and robust models that are less likely to overfit
the training data with fewer parameters. Furthermore, the use of transfer learning, where
pretrained CNN models were fine-tuned on the PlantVillage and CLD datasets, resulted
in faster convergence and better accuracy than training from scratch. Additionally, our
approach leveraged the knowledge obtained from large-scale datasets and optimized the
CNN models for plant disease diagnosis. When testing the performance on the PlantVillage
dataset, PDD-Net achieved the highest average precision of 92.06%, the highest average
recall of 92.71%, the highest average F1 score of 92.36%, and the highest accuracy of 93.79%.
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Similarly, when testing the performance on the cassava leaf disease dataset, PDD-Net
achieved the highest average precision of 86.41%, the highest average recall of 85.77%, the
highest average F1 score of 86.02%, and the highest accuracy of 86.98%. These results show
that DL can help farmers, improve crop yield, and contribute to global food security.

Some challenges must be addressed in future work developing CNN models for
plant disease diagnosis, such as (1) utilizing boosting techniques as mentioned in [54] to
improve the prediction performance, and (2) adapting the existing framework to perform
predictions and feature extraction, followed by assessing the performance when these
features are coupled with machine learning methods for problems in biology and medicine,
as described in [53].
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