Vegetation Indices for Predicting the Growth and Harvest Rate of Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Material and Place of Experiment
2.2. Acquisition and Processing of Aerial Images
2.3. Evaluation of Agronomic Data in the Field
2.4. Experimental Flowchart
2.5. Statistical Analysis
3. Results
3.1. Germplasm Evaluation
3.2. Genetic Dissimilarity
3.3. Monitoring Growth Rate
3.4. Validation of the Image Phenotyping Technique
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Maggio, A.; Scapolo, F.; Crekinge, T.V.; Serraj, R. Global drivers and megatrends in agri-food systems. In Agriculture & Food Systems to 2050—Global Trends, Challenges and Opportunities; Serraj, R., Pingali, P., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy; Cornell University: Ithaca, NY, USA, 2018; Volume 2, pp. 47–83. [Google Scholar] [CrossRef]
- Camara, G.R.; Busato, L.M.; Almeida, B.F.; Moraes, W.B. Elaboration and validation of diagrammatic scale for lettuce powdery mildew. Summa Phytopathol. 2018, 44, 116–121. [Google Scholar] [CrossRef]
- ABCSEM. Associação Brasileira do Comércio de Sementes e Mudas. Available online: http://www.abcsem.com.br/dados-do-setor (accessed on 20 November 2021).
- Carvalho-Filho, J.L.S.; Gomes, L.A.A.; Biguzzi, F.A.; Maluf, W.R.; Ferreira, S. F4 families of crispleaf lettuce with tolerance to early bolting and homozygous for resistance to Meloidogyne incognita race 1. Hortic. Bras. 2009, 27, 335–339. [Google Scholar] [CrossRef]
- Sala, F.C.; Costa, C.P. Retrospective and trends of Brazilian lettuce crop. Hortic. Bras. 2012, 30, 187–194. [Google Scholar] [CrossRef]
- Sediyama, M.A.N.; Pedrosa, M.W.; Salgado, L.T.; Pereira, P.C. Summer and winter performance of lettuce cultivars grown in a hydroponic system. Científica 2019, 37, 98–106. [Google Scholar] [CrossRef]
- Aliotte, J.T.B.; Filassi, M.; Oliveira, A.L.R. Characterization of fruit and vegetable distribution logistics of Campinas Supply Center/SP. Rev. Econ. Social. Rural 2022, 60, e252673. [Google Scholar] [CrossRef]
- Dhondt, S.; Wuyts, N.; Inzé, D. Cell to whole-plant phenotyping: The best is yet to come. Trends Plant Sci. 2013, 18, 428–439. [Google Scholar] [CrossRef]
- Sousa, C.A.F.; Cunha, B.A.D.B.; Martins, P.K.M.; Molinari, H.B.C.; Kobayashi, A.K.; Souza, M.T., Jr. New approach for plant phenotyping: Concepts, current tools and perspectives. Rev. Bras. Geogr. Fís. 2015, 8, 660–672. [Google Scholar] [CrossRef]
- Ponzoni, F.J.; Shimabukuro, Y.E.; Kuplich, T.M. Sensoriamento Remoto da Vegetação, 2nd ed.; Oficina de Textos: São Paulo, Brazil, 2012; 176p. [Google Scholar]
- Zhang, J.; Naik, H.S.; Assefa, T.; Sarkar, S.; Reddy, R.V.C.; Singh, A.; Ganapathysubramanian, B.; Singh, A.K. Computer vision and machine learning for robust phenotyping in genome-wide studies. Sci. Rep. 2017, 7, 44048. [Google Scholar] [CrossRef]
- Fernandez-Gallego, J.A.; Kefauver, S.C.; Gutiérrez, N.A.; Nietotaladriz, M.T.; Araus, J.L. Wheat ear counting in-field conditions: High throughput and low-cost approach using RGB images. Plant Methods 2018, 14, 22. [Google Scholar] [CrossRef]
- Makanza, R.; Zaman-Allah, M.; Cairns, J.E.; Magorokosho, C.; Tarekegne, A.; Olsen, M.; Prasanna, B.M. High-throughput phenotyping of canopy cover and senescence in maize field trials using aerial digital canopy imaging. Remote Sens. 2018, 10, 330. [Google Scholar] [CrossRef]
- Beloti, I.F.; Maciel, G.M.; Gallis, R.B.A.; Finzi, R.R.; Clemente, A.A.; Siquieroli, A.C.S.; Juliatti, F.C. Low-altitude, high-resolution aerial imaging for field crop phenotyping in Cucurbita pepo. Genet. Mol. Res. 2020, 19, 18598. [Google Scholar] [CrossRef]
- Silva, M.F.; Maciel, G.M.; Gallis, R.; Barbosa, R.L.; Carneiro, V.Q.; Rezende, W.S.; Siquieroli, A.C.S. High-throughput phenotyping by RGB and multispectral imaging analysis of genotypes in sweet corn. Hortic. Bras. 2022, 40, 92–98. [Google Scholar] [CrossRef]
- Elangovan, A.; Duc, N.T.; Raju, D.; Kumar, S.; Singh, B.; Vishwakarma, C.; Gopala Krishnan, S.; Ellur, R.K.; Dalal, M.; Swain, P.; et al. Imaging Sensor-Based High-Throughput Measurement of Biomass Using Machine Learning Models in Rice. Agriculture 2023, 13, 852. [Google Scholar] [CrossRef]
- Clemente, A.A.; Maciel, G.M.; Siquieroli, A.C.S.; Gallis, R.B.A.; Medeiros, L.M.; Duarte, J.G. High-throughput phenotyping to detect anthocyanins, chlorophylls, and carotenoids in red lettuce germplasm. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102533. [Google Scholar] [CrossRef]
- Maciel, G.M.; Gallis, R.B.A.; Barbosa, R.L.; Pereira, L.M.; Siquieroli, A.C.S.; Peixoto, J.V.M. Image phenotyping of inbred red lettuce lines with genetic diversity regarding carotenoid levels. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 154–160. [Google Scholar] [CrossRef]
- Maciel, G.M.; Gallis, R.B.A.; Barbosa, R.L.; Pereira, L.M.; Siquieroli, A.C.S.; Peixoto, J.V.M. Image phenotyping of lettuce germplasm with genetically diverse carotenoid levels. Bragantia 2020, 79, 224–235. [Google Scholar] [CrossRef]
- Berger, R.; Silva, J.A.A.; Ferreira, R.L.C.; Candeias, A.L.B.; Rubilar, R. Vegetation indices for the leaf area index estimation in clonal plantations of Eucalyptus saligna Smith. Ciênc. Florest. 2019, 29, 885–899. [Google Scholar] [CrossRef]
- Maciel, G.M.; Siquieroli, A.C.S.; Gallis, R.B.A.; Pereira, L.M.; Sales, V.F. Programa de computador BG α Biofort. Depositor: Federal University of Uberlândia. BR512019002403-6. Deposit: 1 February 2019. Concession: 23 October 2019. Available online: https://busca.inpi.gov.br/pePI/servlet/ProgramaServletController (accessed on 10 March 2023).
- Filgueira, F.A.R. Novo Manual de Olericultura: Agrotecnologia Moderna na Produção e Comercialização de Hortaliças, 3rd ed.; Editora UFV: Viçosa, Brazil, 2013; 421p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 20 January 2023).
- Matias, F.I.; Caraza-Harter, M.V.; Endelman, J.B. FIELDimageR: An R package to analyze orthomosaic images from agricultural field trials. Plant Phenome J. 2020, 3, e20005. [Google Scholar] [CrossRef]
- Escadafal, R.; Belghith, A.; Bem, M.H. Indices spectraux pour la télédétection de la dégradation des milieux naturels en Tunisie aride. In Proceedings of the Actes du Sixième Symposium International. Mesures Physiques et Signatures Spectrales en Télédétection, Val d’Isèr, France, 17–24 January 1994. [Google Scholar]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Tucker, C. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Cruz, C.D. Genes: A software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- Fontes, P.C.R.; Nick, C. Olericultura Teoria e Prática, 2nd ed.; Editora UFV: Viçosa, Brazil, 2019; 632p. [Google Scholar]
- Queiroz, J.P.S.; Costa, A.J.M.; Neves, L.G.N.; Seabra Junior, S.; Barelli, M.A.A. Phenotypic stability of the lettuce in different periods and cropping environments. Rev. Ciênc. Agron. 2014, 45, 276–283. [Google Scholar] [CrossRef]
- Oliveira, A.C.B.; Sediyama, M.A.N.; Pedrosa, M.W.; Garcia, N.C.P.; Garcia, S.L.R. Genetic divergence and discard of variables in lettuce cultivated under hydroponic system. Acta Sci. Agron. 2003, 26, 211–217. [Google Scholar]
- Diamante, M.S.; Seabra, S., Jr.; Inagaki, A.M.; Silva, M.B.; Dallacort, R. Production and resistance to bolting of loose-leaf lettuce grown in different environments. Rev. Ciênc. Agron. 2013, 44, 133–140. [Google Scholar] [CrossRef]
- Medeiros, D.C.; Freitas, K.C.S.; Veras, F.S.; Anjos, R.S.B.; Borges, R.D.; Cavalcante, N.J.G.; Nunes, G.H.S.; Ferreira, H.A. Quality of lettuce seedlings depending on substrates with and without biofertilizer addition. Hortic. Bras. 2008, 26, 186–189. [Google Scholar] [CrossRef]
- Ferreira, L.L.; Aniceto, R.R.; Montenegro, I.N.A.; Ribeiro, T.S.; Almeida, D.G.; Porto, V.C.N. Adaptability and development of cultivars of lettuce in the Brejo microregion, Paraiba. Sci. Plena 2013, 9, 040202-1. [Google Scholar]
- Mendes, F.T.C.; Freitas, A.S.; Alcantra, E.; Marques, R.F.P.V.; Oliveira, A.S.; Barbosa, R.A.; Padua, M.C.; Junqueira, R.R. Agronomic performance of lettuce cultivars in aquaponics. Res. Soc. Dev. 2021, 10, 2525–3409. [Google Scholar] [CrossRef]
- Pandit, S.; Tsuyuki, S.; Dube, T. Estimating above-ground biomass in sub-tropical buffer zone community Forests, Nepal, using Sentinel 2 data. Remote Sens. 2018, 10, 601. [Google Scholar] [CrossRef]
- Araujo, J.C.; Telhado, S.F.P.; Sakai, R.H.; Ledo, C.A.S.; Melo, P.C.T. Univariate and multivariate procedures for agronomic evaluation of organically grown tomato cultivars. Hortic. Bras. 2016, 34, 374–380. [Google Scholar] [CrossRef]
- Cruz, C.D.; Regazzi, A.J.; Carneiro, P.C.S. Modelos Biométricos Aplicados ao Melhoramento Genético, 3rd ed; Editora UFV: Viçosa, Brazil, 2014; 668p. [Google Scholar]
- Hunt, E.R.; Hively, W.D.; McCarty, G.W.; Daughtry, C.S.T.; Forrestal, P.J.; Kratochvil, R.J.; Carr, J.L.; Allen, N.F.; Fox-Rabinovitz, J.R.; Miller, C.D. NIR-Green-Blue high-resolution digital images for assessment of winter cover crop biomass. GIsci. Remote Sens. 2011, 48, 86–98. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Campo, A.D.; Moreno, M.A. Combined use of agro-climatic and very high-resolution remote sensing information for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 66–75. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; McMurtrey, J.E., III; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Poley, L.G.; Mcdermid, G.J. A systematic review of the factors influencing the estimation of vegetation aboveground biomass using unmanned aerial systems. Remote Sens. 2020, 12, 1052. [Google Scholar] [CrossRef]
- Beniaich, A.; Silva, M.L.N.; Avalos, F.A.P.; Menezes, M.D.; Cândido, B.M. Determination of vegetation cover index under different soil management systems of cover plants by using an unmanned aerial vehicle with an onboard digital photographic camera. Semin. Ciênc. Agrár. 2019, 40, 49–66. [Google Scholar] [CrossRef]
- Reznick, J.P.K.; Pauletti, V.; Barth, G. Field estimate with NDVI of grain yield and quality of wheat flour. Rev. Bras. Eng. Agríc. Ambient. 2021, 25, 801–806. [Google Scholar] [CrossRef]
- Rissini, A.L.L.; Kawakami, J.; Genu, A.M. Normalized difference vegetation index and yield of wheat cultivars under different application rates of nitrogen. Rev. Bras. Ciênc. Solo 2015, 39, 1703–1713. [Google Scholar] [CrossRef]
- Makanza, R.; Zaman-allah, M.; Cairns, J.E.; Eyre, J.; Burgueno, J.; Pacheco, A.; Diepenbrock, C.; Magorokossho, C.; Terekegne, A.; Olsen, M.; et al. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. Plant Methods 2018, 14, 49. [Google Scholar] [CrossRef]
- Walter, A.; Liebisch, F.; Hund, A. Plant phenotyping: From bean weighing to image analysis. Plant Methods 2015, 11, 14. [Google Scholar] [CrossRef]
- Alvarenga, C.B.; Mundim, G.S.M.; Santos, E.A.; Gallis, R.B.A.; Zampiroli, R.; Rinaldi, P.C.N.; Prado, J.R. Normalized difference vegetation index for desiccation evaluation with glyphosate + 2,4-D in magnetized spray solution. Braz. J. Biol. 2023, 83, e246579. [Google Scholar] [CrossRef]
- Zuffo, A.M.; Juffo Júnior, J.M.; Silva, L.M.A.; Silva, R.L.; Menezes, K.O. Growth analysis in lettuce cultivars in southern Piauí. Rev. Ceres 2016, 63, 145–153. [Google Scholar] [CrossRef]
Vegetation Indices | Equation | Reference |
---|---|---|
SI—Spectral Slope Saturation Index | [25] | |
HUE—Overall Hue Index | [25] | |
GLI—Green Leaf Index | [26] | |
NGRDI—Normalized Green Red Difference Index | [27] |
Genotype | MV (g) | DP (cm) | DH (cm) | NF | |||
---|---|---|---|---|---|---|---|
ơ | Ơ | ơ | |||||
UFU-206#1#6#1 | 178.8 | ±84.0 | 25.3 | ±3.11 | 1.84 | ±0.22 | 23.3 b |
UFU BIOFORT189E8 | 163.9 | ±31.8 | 24.5 | ±1.02 | 2.12 | ±0.18 | 26.5 a |
UFU-197#3#1#1 | 197.1 | ±22.3 | 26.3 | ±0.86 | 1.96 | ±0.11 | 22.2 b |
UFU-125#1#1#1 | 195.8 | ±8.17 | 28.3 | ±0.71 | 2.12 | ±0.08 | 27.7 a |
UFU-7#1#2#1 | 154.3 | ±34.8 | 25.5 | ±1.42 | 2.12 | ±0.11 | 29.3 a |
UFU BIOFORT155E12 | 154.3 | ±38.1 | 24.5 | ±2.14 | 2.00 | ±0.16 | 28.6 a |
UFU BIOFORT120E21 | 157.5 | ±60.3 | 24.8 | ±4.60 | 1.86 | ±0.51 | 17.8 b |
UFU BIOFORT189E22 | 181.8 | ±86.8 | 27.6 | ±3.33 | 2.00 | ±0.20 | 33.3 a |
UFU-197#2#1#1 | 168.6 | ±32.2 | 25.1 | ±2.35 | 1.63 | ±0.34 | 29.5 a |
UFU-199#3#1#1 | 132.2 | ±45.0 | 25.4 | ±1.68 | 1.94 | ±0.40 | 28.5 a |
UFU-206#1#1#1 | 180.8 | ±76.4 | 24.6 | ±1.72 | 1.65 | ±0.27 | 27.7 a |
UFU BIOFORT206E32 | 114.9 | ±51.5 | 24.5 | ±2.62 | 1.97 | ±0.38 | 29.4 a |
UFU BIOFORT197E34 | 120.8 | ±53.8 | 25.3 | ±1.79 | 2.09 | ±0.25 | 32.6 a |
UFU-197#2#2#1 | 167.3 | ±57.2 | 25.0 | ±3.80 | 1.99 | ±0.49 | 25.5 b |
UFU BIOFORT155E39 | 141.2 | ±66.9 | 24.0 | ±3.68 | 1.50 | ±0.08 | 25.5 b |
UFU BIOFORT189E43 | 140.5 | ±36.5 | 25.4 | ±1.96 | 1.87 | ±0.24 | 33.2 a |
UFU-206#1#4#1 | 180.2 | ±60.0 | 27.0 | ±2.54 | 2.16 | ±0.22 | 23.0 b |
UFU-125#2#2#1 | 191.1 | ±67.2 | 26.9 | ±3.43 | 2.09 | ±0.18 | 28.0 a |
UFU-206#1#2#1 | 134.3 | ±45.5 | 25.3 | ±1.36 | 1.78 | ±0.08 | 22.0 b |
UFU BIOFORT189E48 | 161.3 | ±57.2 | 28.7 | ±2.45 | 2.30 | ±0.39 | 27.2 a |
UFU-206#1#5#1 | 160.9 | ±64.4 | 25.1 | ±3.70 | 1.78 | ±0.27 | 23.5 b |
UFU-040#5#5#1 | 139.3 | ±41.1 | 26.4 | ±0.49 | 1.91 | ±0.12 | 27.0 a |
UFU MC BIOFORT1 | 105.8 | ±32.8 | 22.7 | ±2.03 | 1.77 | ±0.32 | 20.0 b |
Grand Rapids | 189.7 | ±7.14 | 26.9 | ±1.16 | 1.95 | ±0.12 | 22.9 b |
Uberlândia 10000 | 140.8 | ±59.8 | 25.1 | ±2.12 | 2.14 | ±0.04 | 29.6 a |
Overall Average | 160.9 | 25.3 | 1.967 | 27.25 |
Genotype | DPS (cm) | AFS (cm2) | SI | GLI | NGRDI | ||
---|---|---|---|---|---|---|---|
ơ | ơ | ||||||
UFU-206#1#6#1 | 22.93 | ±2.70 | 476.2 | ±63.52 | 147.9 a | 0.262 b | 0.162 b |
UFU BIOFORT189E8 | 20.31 | ±2.73 | 433.2 | ±49.73 | 135.2 b | 0.286 a | 0.183 b |
UFU-197#3#1#1 | 20.78 | ±0.31 | 432.9 | ±71.69 | 132.8 b | 0.279 a | 0.183 b |
UFU-125#1#1#1 | 18.46 | ±4.55 | 487.3 | ±17.16 | 151.2 a | 0.254 b | 0.172 b |
UFU-7#1#2#1 | 18.58 | ±5.83 | 462.1 | ±60.48 | 122.7 b | 0.325 a | 0.212 a |
UFU BIOFORT155E12 | 22.81 | ±1.41 | 477.6 | ±88.73 | 138.5 b | 0.286 a | 0.175 b |
UFU BIOFORT120E21 | 20.23 | ±4.12 | 391.1 | ±150.2 | 155.2 a | 0.206 b | 0.118 b |
UFU BIOFORT189E22 | 20.10 | ±4.08 | 453.1 | ±131.6 | 134.2 b | 0.307 a | 0.194 a |
UFU-197#2#1#1 | 20.53 | ±5.53 | 445.0 | ±58.51 | 146.7 a | 0.243 b | 0.181 b |
UFU-199#3#1#1 | 20.97 | ±5.06 | 448.5 | ±136.2 | 132.9 b | 0.302 a | 0.204 a |
UFU-206#1#1#1 | 20.47 | ±4.56 | 424.1 | ±100.3 | 134.9 b | 0.270 b | 0.169 b |
UFU BIOFORT206E32 | 20.24 | ±4.88 | 485.3 | ±93.04 | 123.5 b | 0.309 a | 0.231 a |
UFU BIOFORT197E34 | 20.91 | ±7.13 | 492.4 | ±62.31 | 135.5 b | 0.319 a | 0.218 a |
UFU-197#2#2#1 | 20.47 | ±1.88 | 443.3 | ±90.66 | 138.6 b | 0.272 b | 0.189 a |
UFU BIOFORT155E39 | 20.63 | ±2.99 | 431.9 | ±137.4 | 148.4 a | 0.235 b | 0.156 b |
UFU BIOFORT189E43 | 22.33 | ±2.44 | 482.1 | ±69.73 | 131.3 b | 0.317 a | 0.219 a |
UFU-206#1#4#1 | 20.35 | ±4.10 | 435.6 | ±108.9 | 138.7 b | 0.263 b | 0.156 b |
UFU-125#2#2#1 | 18.88 | ±6.25 | 459.9 | ±98.53 | 139.5 b | 0.272 b | 0.177 b |
UFU-206#1#2#1 | 18.49 | ±4.75 | 427.8 | ±78.82 | 132.4 b | 0.257 b | 0.180 b |
UFU BIOFORT189E48 | 21.67 | ±4.26 | 439.0 | ±130.5 | 144.5 a | 0.263 b | 0.161 b |
UFU-206#1#5#1 | 22.37 | ±3.10 | 458.5 | ±154.6 | 148.5 a | 0.255 b | 0.158 b |
UFU-040#5#5#1 | 23.98 | ±1.73 | 510.8 | ±140.2 | 168.2 a | 0.196 b | 0.128 b |
UFU MC BIOFORT1 | 20.90 | ±1.40 | 442.2 | ±77.55 | 136.2 b | 0.245 b | 0.215 a |
Grand Rapids | 24.61 | ±1.08 | 531.8 | ±39.36 | 145.0 a | 0.267 b | 0.170 b |
Uberlândia 10000 | 23.41 | ±3.10 | 456.1 | ±118.0 | 144.4 a | 0.256 b | 0.162 b |
Overall Average | 21.82 | 477.56 | 0.267 | 0.177 |
GM | PD | SD | NL | ||
---|---|---|---|---|---|
SI | 0.88 ** | 0.90 ** | 0.89 ** | 0.84 ** | |
GLI | 0.64 * | 0.60 * | 0.62 * | 0.69 * | |
UFU BIOFORT155E12 | NGRDI | 0.77 ** | 0.74 ** | 0.75 ** | 0.81 ** |
PDS | 0.48 * | 0.52 * | 0.50 * | 0.42 * | |
LAS | 0.88 ** | 0.90 ** | 0.89 ** | 0.85 ** | |
SI | 0.89 ** | 1.00 * | 0.67 * | 0.93 ** | |
GLI | 1.00 * | 0.88 ** | 0.96 ** | 0.98 ** | |
UFU BIOFORT120E21 | NGRDI | 0.99 ** | 0.87 ** | 0.97 ** | 0.98 ** |
PDS | 0.68 * | 0.92 ** | 0.37 * | 0.75 ** | |
LAS | 0.68 * | 0.92 ** | 0.37 * | 0.75 ** | |
SI | −0.35 ns | −0.43 ns | 0.00 ns | −0.94 ns | |
GLI | 0.99 ** | 0.98 ** | 0.97 ** | 0.55 * | |
UFU BIOFORT189E22 | NGRDI | 1.00 * | 0.99 ** | 0.95 ** | 0.61 * |
PDS | 1.00 * | 1.00 * | 0.93 ** | 0.66 * | |
LAS | 1.00 * | 1.00 * | 0.90 ** | 0.71 ** | |
SI | −0.94 ns | −0.93 ns | −0.74 ns | −0.92 ns | |
GLI | −0.72 ns | −0.07 ns | −0.93 ns | −0.75 ns | |
UFU—197#2#1#1 | NGRDI | −0.70 ns | −0.04 ns | −0.92 ns | −0.74 ns |
PDS | 0.71 ** | 0.04 * | 0.92 ** | 0.74 ** | |
LAS | 0.59 * | −0.11 ns | 0.85 ** | 0.63 * | |
SI | −0.56 ns | −0.64 ns | 0.46 * | −0.56 ns | |
GLI | 0.99 ** | 0.97 ** | 0.60 * | 0.99 ** | |
UFU BIOFORT155E39 | NGRDI | 0.97 ** | 0.94 ** | 0.69 * | 0.97 ** |
PDS | 0.99 ** | 1.00 * | 0.39 * | 0.99 ** | |
LAS | 0.88 ** | 0.92 ** | 0.00 ns | 0.88 ** | |
SI | −0.54 ns | −0.71 ns | 0.82 ** | 0.53 * | |
GLI | 0.99 ** | 1.00 * | −0.97 ns | −0.99 ns | |
UFU BIOFORT189E43 | NGRDI | 0.98 ** | 0.91 ** | −0.83 ns | −0.98 ns |
PDS | 0.91 ** | 0.98 ** | −1.00 ns | −0.90 ns | |
LAS | 0.82 ** | 0.92 ** | −0.98 ns | −0.81 ns | |
SI | 0.98 ** | 1.00 * | 1.00 * | 0.89 ** | |
GLI | −0.22 ns | −0.09 ns | 0.07 * | −0.45 ns | |
UFU BIOFORT189E48 | NGRDI | −0.13 ns | −0.01 ns | 0.16 * | −0.37 ns |
PDS | 0.76 ** | 0.83 ** | 0.91 ** | 0.57 * | |
LAS | 0.81 ** | 0.87 ** | 0.94 ** | 0.64 * | |
SI | 0.87 ** | 0.89 ** | 0.76 ** | 0.83 ** | |
GLI | 0.59 * | 0.55 * | 0.74 ** | 0.65 * | |
UFU—206#1#5#1 | NGRDI | 0.79 ** | 0.76 ** | 0.90 ** | 0.84 ** |
PDS | 0.88 ** | 0.85 ** | 0.95 ** | 0.91 ** | |
LAS | 0.99 ** | 0.99 ** | 1.00 * | 1.00 * | |
SI | −0.33 ns | −0.37 ns | −0.79 ns | 0.24 * | |
GLI | −0.11 ns | 0.73 ** | 0.98 ** | −0.64 ns | |
GRAND RAPIDS | NGRDI | 0.03 * | 0.63 * | 0.94 ** | −0.53 ns |
PDS | 0.97 ** | −0.89 ns | −0.53 ns | 0.94 ** | |
LAS | 0.78 ** | −1.00 ns | −0.84 ns | 1.00 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.L.A.; Maciel, G.M.; Siquieroli, A.C.S.; Luz, J.M.Q.; Gallis, R.B.d.A.; Assis, P.H.d.S.; Catão, H.C.R.M.; Yada, R.Y. Vegetation Indices for Predicting the Growth and Harvest Rate of Lettuce. Agriculture 2023, 13, 1091. https://doi.org/10.3390/agriculture13051091
Ribeiro ALA, Maciel GM, Siquieroli ACS, Luz JMQ, Gallis RBdA, Assis PHdS, Catão HCRM, Yada RY. Vegetation Indices for Predicting the Growth and Harvest Rate of Lettuce. Agriculture. 2023; 13(5):1091. https://doi.org/10.3390/agriculture13051091
Chicago/Turabian StyleRibeiro, Ana Luisa Alves, Gabriel Mascarenhas Maciel, Ana Carolina Silva Siquieroli, José Magno Queiroz Luz, Rodrigo Bezerra de Araujo Gallis, Pablo Henrique de Souza Assis, Hugo César Rodrigues Moreira Catão, and Rickey Yoshio Yada. 2023. "Vegetation Indices for Predicting the Growth and Harvest Rate of Lettuce" Agriculture 13, no. 5: 1091. https://doi.org/10.3390/agriculture13051091
APA StyleRibeiro, A. L. A., Maciel, G. M., Siquieroli, A. C. S., Luz, J. M. Q., Gallis, R. B. d. A., Assis, P. H. d. S., Catão, H. C. R. M., & Yada, R. Y. (2023). Vegetation Indices for Predicting the Growth and Harvest Rate of Lettuce. Agriculture, 13(5), 1091. https://doi.org/10.3390/agriculture13051091