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Abstract: Deep neural networks (DNNs) have recently been applied in many areas of agriculture,
including pest monitoring. The codling moth is the most damaging apple pest, and the currently
available methods for its monitoring are outdated and time-consuming. Therefore, the aim of this
study was to develop an automatic monitoring system for codling moth based on DNNs. The system
consists of a smart trap and an analytical model. The smart trap enables data processing on-site
and does not send the whole image to the user but only the detection results. Therefore, it does
not consume much energy and is suitable for rural areas. For model development, a dataset of 430
sticky pad photos of codling moth was collected in three apple orchards. The photos were labelled,
resulting in 8142 annotations of codling moths, 5458 of other insects, and 8177 of other objects. The
results were statistically evaluated using the confusion matrix, and the developed model showed an
accuracy > of 99% in detecting codling moths. This developed system contributes to automatic pest
monitoring and sustainable apple production.

Keywords: automatic monitoring system; Cydia pomonella L.; deep learning; precision agriculture;
site-specific management; smart trap

1. Introduction

The codling moth (Cydia pomonella (Linnaeus, 1758)) (Lepidoptera: Tortricidae) is
among the most important and well-studied insects. Its genetics [1–7], resistance to chemical
insecticides [8–13], monitoring and control strategies [14–18], effects of climate change on
its biology and ecology [2,19], and many other phenomena have been studied in detail. It
is the most harmful and widespread pest in apple orchards. It occurs in all apple-growing
regions and has reached an almost cosmopolitan distribution, making it one of the most
successful pest species currently known [20].

Its larvae directly damage apple fruits and make them unsuitable for the market [21].
Adult codling moths lay their eggs on apple fruit in late spring. After hatching, the larvae
begin feeding by penetrating the fruit tissue and forming tunnels to the seed chamber [22].
By the end of the growing season, a single larva can damage several fruits before reaching
full growth and development. An infested fruit can be identified by the entrance hole,
which contains larval droppings. Early damaged apple fruit ripens faster and falls off the
tree prematurely. Later, infested fruits remain on the tree, but their insides are damaged,
i.e., “wormy” [23,24]. Therefore, to prevent the spread of codling moth in warehouses and
the occurrence of total damage, targeted control measures must be implemented. Without
proper management, this pest can cause a yield reduction of 30–50%, and in certain years
even up to 80%. In intensive apple production, 1% damaged fruit is tolerated, although
growers try to reduce this number to below 0.5% [2,23].
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There are numerous Integrated Pest Management (IPM) techniques, including mating
disruption [25–28], attract-and-kill [29], or sterile insect technique [30,31], and many other
environmentally friendly strategies that can be implemented in the modern codling moth
management [32,33]. Although all these techniques are available, growers mostly resort
to chemical measures [18,34], which has led to the emergence of insecticide resistance,
making codling moth control much more difficult [2,34–37]. Codling moth control accounts
for more than 70 percent of insecticide applications in apple orchards [38], which is both
economically and environmentally challenging. The timing of insecticide use is highly
dependent on critical numbers; therefore, precise monitoring of codling moth is crucial [39].

Accurate monitoring using traps can predict several important parts of pest devel-
opment, such as adult emergence (beginning of flight) and larval emergence, but more
importantly, empirical economic thresholds for insecticide use. Due to climate change, most
insect pests, including codling moth, are susceptible to various irregularities and changes
in biology and ecology [40], resulting in a rise in the number of generations, viability, and
unanticipated insect outbreaks [2,41]. In fact, changes in codling moth biology have been
observed in the field trials [42]. The codling moth now emerges earlier in spring, the flight
duration of moths in autumn is longer, and the total number of moths captured during the
growing season has increased [19]. Pajač et al. [19] found that the codling moth in Croatia
has developed an additional third generation thanks to global warming. As a result, current
monitoring methods using classical traps are becoming increasingly unreliable and time
consuming. In order to reduce the impact of climate change on pest management, the
ecological footprint, and to improve fruit production, it is necessary to use reliable and
modern monitoring techniques [43].

In addition, the apple (Malus domestica Borkh.) (Rosales: Rosaceae) is one of the world’s
most important fruit crops and has great economic significance. It is easy to grow and
manipulate and can be used year-round for fresh consumption or for processing into a
product [44]. In 2021, the global apple production was 93 million tons, and the cultivated
area was 4.8 million hectares [45].

Considering the aspects mentioned so far, improved monitoring techniques in apple
production and management have been researched recently, which refers to automatic
pest monitoring methods. In particular, deep neural networks (DNN) and their variants
are very effective tools for object detection [46]. Therefore, DNN-based detection methods
have become increasingly important for automatic pest monitoring in agriculture [47–49].
Due of the diverse positions, sizes, and textures of the insects found on the adhesive pads,
however, it is difficult to develop these solutions [50]. Suto [50] emphasised that there is
no universally acceptable automatic method for monitoring codling moth. Considering
that codling moth control is mostly based on chemical measures, it is very important to
apply monitoring methods as accurately as possible to limit the use of chemical insecticides
to targeted, necessary, and effective applications. Therefore, it is important to develop a
generally accepted technique for the automatic monitoring of codling moth that has high
detection accuracy and is thus effective.

Recent studies have focused on developing methods based on DNNs for automated
monitoring of codling moth as well. For example, Ding and Taylor [51] were among the first
to develop an analytical model for codling moth monitoring. DNNs were used as an image
classification tool to identify and count pests in images taken in the field. They collected
approximately 200 red–green–blue (RGB) photographs. This codling moth detection model
proved to be effective, but a larger dataset was needed to make the whole system more
functional. Suto et al. [52] proposed a system-integrated trap with a deep-learning insect
identification model that can be used anywhere in the field. Given that they did not have a
sufficient set of photos for detecting codling moth, they developed a model for detecting
moths in general. Considering that the codling moth is the most economically important
apple pest, the development of such a system is also crucial for its monitoring and apple
production in general. In the same year, Preti et al. [53] developed a prototype smart
trap and model for codling moth detection based on deep learning. Due to an insufficient
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dataset, it could not provide reliable count data remotely. Training the model usually
requires a larger dataset to achieve a sufficient level of reliability. This model had a high
number of false positive (FP) detections, which affects accuracy by overestimating the true
number of codling moths. Suárez et al. [54] developed a codling moth detection model
using DNNs, with an overall detection accuracy of 94.8%. The amount of data for their
system was also insufficient. Therefore, larger datasets need to be collected to develop a
reliable and accurate model for pest detection.

In addition, the work of Albanese et al. [55] opened the potential for reliable auto-
matic monitoring of codling moth. The authors proposed a smart trap for codling moth
monitoring using various deep-learning algorithms. They collected 4400 photos for model
development and achieved 95–98% accuracy. In this work, the photo processing was done
inside the trap, and only the detection results are sent to the user. Čirjak et al. [56] proposed
a similar system for monitoring another important lepidopteran apple pest (Leucoptera
malifoliella (O. Costa, 1836)). The proposed system was also based on DNNs and achieved
high detection accuracy (>98%). This system could also be adapted for monitoring other
pests. Therefore, it is necessary to develop such a comprehensive system, with a larger
dataset and even higher accuracy, for other important pest in apple production.

Consequently, the objective of this study was to build an analytical model and a
technology for an automatic monitoring system for early identification of the codling
moth population (smart trap). The core of this system would be the EfficientDet-4 Deep
Neural Network (DNN)-based model for early detection of codling moth, which is fast,
reliable, accurate, based on a large dataset, and requires minimal data pre-processing.
Therefore, the device built with the RGB camera (smart trap) for monitoring codling moth
individuals would be economically viable and have optimised energy usage, making it
ideal for rural locations. This method would utilise images taken in the field to detect
pests. Data processing would be performed on the node, resulting in decreased energy
consumption and a longer lifespan for the entire system, requiring less human interaction.
It would be an innovative solution that can be used in rural areas for more reliable and
faster pest monitoring.

This system is designed to monitor the most important apple pest, the codling moth,
in order to prevent economically significant damage from occurring. The proposed system
contributes to the advanced monitoring of codling moth and improves its complete man-
agement and apple production in general. The hypothesis of this study is that the proposed
method might be a reliable tool for codling moth monitoring if the detection accuracy is
greater than 90 percent when compared to entomologist visual inspection.

2. Materials and Methods

The methodology for developing an automatic monitoring system for codling moth
consists of two parts: the development of a smart trap prototype and the development of
an analytical model for object detection based on DNNs.

2.1. Smart Trap Prototype

The smart trap prototype consists of a housing with a built-in red–green–blue (RGB)
camera (Figure 1), which is placed on a customised stand attached to the orchard’s stakes.
On the top of the housing are antenna and the solar panel. The housing shields the camera,
single-board computer (SBC), and pheromone lure from rain and sunlight. The rectangular-
shaped opening on opposing sides measures 16 × 10 cm, while the overall size of the
housing is 25 × 24 cm (Figure 1). The Raspberry Pi 4B SBC uses a camera for capturing
images. The camera’s resolution is 12.5 megapixels, or 4056 × 3040 pixels. The SIM
card onboard provides 4G mobile network connectivity. Three rechargeable 18,650 Li–ion
batteries power the SBC with a maximum current of 5 A. An integrated Battery Management
System (BMS) maintains long battery life by managing charge and discharge cycles. The
solar panels charge the batteries, so the system is self-sufficient and does not need to be
connected to the power grid.
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To ensure effective monitoring, the farmer must insert an adhesive pad and pheromone
lure into the smart trap and replace it as needed. One smart trap is sufficient for 1 to 3 ha of
orchard and is suitable for installation in the orchard. It is recommended to install the trap
at a height of 2 m, as well as the classic Delta trap for codling moth monitoring.
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Figure 1. The smart trap prototype installed in the orchard.

The Camera Control Server (CCS) is an important segment of smart trap functioning,
which provides the user with remote monitoring and with image processing. The camera
communicates with the CCS over the 4G cellular network (Enterprise APN). To enable
adequate communication with the cellular network, it is possible to use different types
of antennas in the camera configuration. This option was chosen due to the problem
of the distance of certain agricultural sites from the access to the mobile network. The
main purpose of the control servers is to communicate the work results and camera status
and to allow the system to update the device software. Therefore, the CCS have several
basic functions: monitoring camera status, performing software updates, and receiving
work results and analyses. Monitoring the operational status of the camera involves the
continuous transmission of basic operational parameters. Basic operating parameters
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include the correctness of UTC time; the correctness of software upgrades; the correctness
of operation according to the predicted analytical model; the temperature, the state, and
type of the cellular network to which the device is connected; the local time received from
the cellular network; etc. Every time an error occurs, or a message is not received within a
certain period, an alarm is triggered on the control server. The smart trap was installed in
the orchard in the period from August to November to test its operability.

2.2. Analytical Model

For effective automatic monitoring of codling moth, a new model (detection algorithm)
for codling moth detection is required in addition to the smart trap prototype. Therefore,
the analytical model for codling moth monitoring was developed using a deep neural
network (DNN).

The model was created using photos taken between May and September 2022 under
field conditions. To train the DNN, a large dataset was provided; 10 standard delta
traps with codling moth pheromone lures were placed in three apple orchards in Zagreb
County, Croatia (Mičevec—N 45.736278, E 16.047883, Petrovina Turopoljska—N 45.689562,
E 16.021316, and Staro Čiče—N 45.696737, E 16.108477) (Figure 2). The orchard in Staro
Čiče was managed organically, and two others (Mičevec and Petrovina Turopoljska) were
managed according to the principles of IPM. Delta traps were placed at a height of 2 m
in the rows of the orchard with a minimum spacing of 10 m and inspected weekly. The
adhesive pads containing adult codling moths were changed in the field and photographed
manually with a camera mounted in a housing, modelled after the smart trap prototype
(Figure 3) to obtain the most diverse capturing conditions. The camera was connected to
the SBC from where capture was controlled.
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Figure 3. Camera for data acquisition in the field.

To train the DNN, it was crucial to define the classes or the target objects on the images
for their detection. The first class is the most significant and represents the targeted pest
species, the codling moth. It is referred to as MOTH throughout the rest of the paper
(Figure 4). The second class, referred to as INSECTS, identifies all non-target insects cap-
tured by the adhesive pad (Figure 5). The third class, referred to as OTHER, represents all
other objects identified on the adhesive pad, such as dirt, twigs, leaves, etc. (Figure 6).
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The captured images are then processed, and target objects are identified and labelled
(annotated) with bounding boxes in the LabelImg program (Figure 7). In order to define
the ground truth, image labelling was performed by an entomologist expert.

After photos were collected and annotated, the final number of detected objects (anno-
tations) for the class MOTH (target insect codling moth) was 8142, for the class INSECTS
(other non-target insects) was 5458, and for the class OTHER (other objects) was 8177. This
exhaustive dataset was utilised for DNN training because it was deemed adequate.

After preparing the data for further development of the analytical model and con-
sidering that learning (or training) of the DNN requires a large amount of data [54], data
adjustment follows. In this instance, DNN learning begins with raw photos, extracting
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significant features, including blobs, edges, and bounding boxes of the codling moth for
the dataset. With the application of annotations and modelling techniques, they were
adapted for use in image processing. For learning the DNN, 430 photos were utilised
as training data. The photos were flipped and rotated along the vertical and horizontal
axes. Finally, twelve pictures were extracted from each source image. The original image
(4000 × 3900 pixels) was then broken into smaller images (640 × 640 pixels), and 30 images
were generated from each of these 12 photos. Hence, 154,800 photos were acquired, which
will be utilised to build DNN for monitoring the codling moth.
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An artificial intelligence algorithm accomplished the automatic detection of objects.
The labelled photos were utilised to train a deep neural network (DNN) in order to
develop the analytical model. There are three phases of model development, and each
step has its own dataset. Randomly, the photos were divided into three groups: training
set, validation set, and test set. Ninety percent of the photos were used for model training,
whereas only ten percent were used for model validation. Subsequently, 30 new and
complex images were selected for the test set; these images were not included in the
previous dataset used for training or validation. These are images that the model did not
see before, so the model was tested on that dataset. Table 1 depicts the number of images
used in each phase.

Table 1. Image dataset divided by the phases.

Phases of Creating Analytical Model Number of Images

Training 139,320 (90%)

Validation 15,480 (10%)

Test 30 (additional new images)

To obtain information about the model quality and performance, the most important
is the validation phase, where the model is checked during and after the creation process.
To validate the model, it is also important to check the accuracy of the model validation,
using the learning and validation loss in order to avoid overfitting [57]. In addition, the
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validation loss was measured after each epoch, indicating whether the model needs to be
adjusted. During the validation process, the validation is done on each epoch on 10% of
the data. As soon as validation of each epoch is done, the validation of the complete model
performance is provided on those 10% validation datasets as well.

In addition, during the validation phase, a number of statistical elements that indicate
the accuracy of the object recognition are calculated, including Average Precision (AP) and
Average Recall (AR) and statistical indicators for the model and its classes. Table 2 depicts
and explains these metrics in their entirety.

AP and AR are commonly used evaluation metrics for object detection models in
DNNs such as TensorFlow (Table 2).

AP is a measure of the model’s accuracy in terms of how well it can correctly identify
objects of interest in an image. Specifically, AP is the area under the precision–recall curve
(PR curve), where precision is the number of true positive (TP) detections divided by the
total number of detections, and recall is the number of TP detections divided by the total
number of ground truth objects (Table 3). The PR curve plots the precision values against
the corresponding recall values for various confidence thresholds. A perfect model would
have a PR curve that rises rapidly and settles at a high precision level, resulting in a high
AP score.

AR is a measure of the completeness of the model, i.e., how well it can detect all objects
of interest in an image. More specifically, AR is the average recall value across different
confidence thresholds. In other words, AR measures the percentage of objects that the
model recognises at a given confidence threshold. A perfect model would have an AR
value of 1.0, meaning that it recognises all objects of interest in the image.

Overall, AP and AR are important metrics for evaluating the performance of object
detection models and are widely used in research and the industry to compare and improve
different models [58] (Table 2).

Table 2. Explanation of model validation parameters.

Parameter Explanation *

AP AP @ IoU+ = 50% to 95% with steps of 5%

APIoU = 0.50 AP @ IoU = 50%

APIoU = 0.75 AP @ IoU = 75%

APs AP for objects with small size: area < 32 × 32

APm AP for objects with medium size: 32 × 32 < area < 96 × 96

APl AP for objects with large size: area > 96 × 96

ARmax1 AR given 1 detection per image

ARmax10 AR given 10 detections per image

ARmax100 AR given 100 detections per image

ARs AR for objects with small size: area < 32 × 32

ARm AR for objects with medium size: 32 × 32 < area < 96 × 96

ARl AR for objects with large size: area > 96 × 96

AP_MOTH AP for the class MOTH

Model validation accuracy **

Learning loss The number of errors in the training dataset indicates how well
the deep learning model fits the test dataset.

Validation loss The number of errors in the validation dataset indicates how well
the deep learning model performs on the validation dataset.

* [59] and ** [60]. IoU+ (Intersection over Union)—metric used to evaluate deep learning algorithms by calculating
the similarity between the predicted bounding box and the actual data [61].
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After the quantisation and compilation process of the model, the test phase is provided.
The test phase is an important part of model creation when various quality parameters of
the model can be calculated. The model was evaluated by comparing the automatic counts
generated by the model to the expert entomologist’s observations (ground truth).

Using the statistical method of the confusion matrix, the outcomes of the model testing
were analysed. TP stands for “true positive”, TN for “true negative”, FP for “false positive”,
and FN for “false negative” [62]. TP refers to a sample that was correctly classified as
belonging to the positive class, whereas TN refers to a sample that was correctly classified
as belonging to the negative class. FP refers to a sample that was wrongly classified as
positive when it belonged to the negative class, while FN refers to a sample that was
incorrectly classified as negative when it belonged to the positive class [63]. The confusion
matrix can be utilised to determine whether the model is “confused” in distinguishing
between the two classes. It is utilised to estimate the quantity of real and predicted values.
In this work, the confusion matrix was applied to calculate the model’s accuracy, precision,
recall, and F1 score. Table 3 depicts the equations and descriptions for each metric. The
measures were computed based on the correspondences of the full dataset and do not
represent image-specific averages.

Table 3. Description of used metrics.

Metric and Formula * Explanation **

Accuracy = TP+TN
TP+FP+TN+FN × 100

General model performance across all classes. The
proportion of accurate predictions to the total number
of predictions.

Precision = TP
TP+FP

Determines the model’s ability to correctly categorise a
sample as Positive. The ratio between the number of TP
detections and the total number of positive samples (either
correct or incorrect).

Recall = TP
TP+FN

Determines the model’s capacity to identify Positive
samples. The proportion of TP samples relative to the total
number of Positive samples. As recall increases, more
positive samples are identified.

F1 score = 2TP
2TP+FP+FN

The mean of accuracy and recall. Combining the precision
and recall measures into one metric.

* [64] and ** [65–67].

In addition to conventional techniques for object detection, powerful deep learning
models can perform exceptional object detection. These models receive an image as input
and provide the coordinates of each identified object’s bounding box [65].

This analytical model was created through a series of algorithm evaluations and
parameter adjustments to achieve optimal performance for the intended use. TensorFlow
was executed using Python 3.6 and the TensorFlow artificial intelligence framework. The
production application utilised TensorFlow Lite Model Maker, allowing the created model
to be implemented on SBC [57]. After the model has been created, it must be evaluated and
adjusted as necessary. When necessary, the analytical model is updated remotely using a
mobile network.

This work employs a novel class of object detectors called EfficientDet: Scalable and
Efficient Object Detection (ED). ED is a novel class of object detectors utilised in this work.
Tan et al. [68] created and provided a detailed explanation of ED. ED detectors are more
precise and need fewer computational resources (working memory, power consumption,
and floating-point operations per second or FLOPS) than its predecessors. In their work,
the authors presented eight models of ED, numbered ED0 through ED7. Based on the
concepts described in [68], ED4 is a compromise between FLOPS and detection accuracy.
All models numbered ED0 through ED3 are 5 to 15% less precise than model ED4 without
considerably increasing the FLOPS. Each succeeding model after ED4 doubles the required
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FLOPS, while the detection accuracy is less than 5%. Thus, the ED4 detector model has
relatively low FLOPS while maintaining a high level of accuracy, making it appropriate for
implementation on SBCs [57].

3. Results and Discussion

After completion of all phases, a DNN-based smart trap with a camera and SBC and
an associated analytical model for automatic monitoring of the codling moth are created.

3.1. Analytical Model Performance

The validation parameters describing the analytical model performance are listed
in Table 4. The Average Precision (AP) for the class MOTH was 0.79, which is a very
satisfactory AP value during model validation. The overall model had a slightly lower
value (0.66) due to other less important classes in the model (INSECT and OTHER). For the
class INSECT, the AP was 0.62, and for the class OTHER, the AP was 0.55. These values are
lower than the AP for the class MOTH but still acceptable because these classes are given
only to better distinguish the important class MOTH (Table 4).

Table 4. Validation parameters of the analytical model.

Parameter Value

AP 0.66

APIoU = 0.50 0.93

APIoU = 0.75 0.80

APs 0.42

APm 0.65

APl 0.57

ARmax1 0.30

ARmax10 0.71

ARmax100 0.75

ARs 0.59

ARm 0.74

ARl 0.63

AP_MOTH 0.79

AP_INSECT 0.62

AP_OTHER 0.55

The statistical indicators calculated during the learning and validation of the model
are shown in Figure 8. The learning and validation losses reduced and stabilised at a
specific point (Figure 8), suggesting that the model is optimally fitted and that no further
adjustments are required.

To assure the system’s dependability, it is essential to establish whether the model
works in practice. Thus, the model was tested, signifying that its quality was evaluated
following its development. Figure 8 illustrates an example of automatic counts on test
photos generated by the model.

The test results (Figure 9), which were statistically analysed using the confusion matrix,
are shown in Figure 10. This figure demonstrates that the number of recognised objects
belonging to the class OTHER was relatively high (>900) and the number of recognised
objects from the classes INSECT and MOTH was >100, indicating a large number of
correctly recognised objects and thus a fairly accurate model.
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Taking into account the number of actual values and those predicted by the model,
there were no FP detections (Figure 10), indicating that the model detected the class MOTH
completely precise (1.0) (Table 5). The recall for the class MOTH was 0.95, indicating a
high proportion of correctly predicted moths relative to all positive observations. Given
that the F1 score is a weighted average of precision and recall [69], the F1 score data
were, as expected, slightly below 1.0 (Table 5). The detection accuracy for the other two
classes (INSECT and OTHER) was also very high (>99%). In addition, all other detection
parameters (precision, recall, and F1 score) for the class INSECT were 0.97. Thanks to
the higher number of TP detections (Figure 10), the class OTHER had slightly higher
parameters, where recall was 1.0, while precision and F1 score were 0.99 (Table 5).

The multiple FN detections (Figure 10) were primarily the result of colour changes
and moth disintegration over time. Ding and Taylor [51] analysed the errors generated by
numerous causes and stressed that a significant number of errors are time related. Insects
that are decaying can reduce contrast with the background. If the adhesive pads in smart
traps are replaced every ten days or so to prevent insect disintegration and dirt collection,
and hence, false detections, time-related errors, could be substantially reduced in true
production systems. The problem is that changing the adhesive pads is time-consuming and
must be done manually, especially for large areas. Therefore, Teixeira et al. [70] proposed to
implement an automatic trap changing system. In this case, the efficiency of the monitoring
process can be improved. This proposal is one of the main challenges from the industry
point of view and can be overcome through collaboration between researchers and farmers.

The number of FN detections was negligible (9) compared to the 180 TP detections
(Figure 10). Based on these numbers, the model showed a very high accuracy of the class
MOTH (99.3%), indicating that the model is almost completely accurate (less than 1%
deviation from the ground truth) for the detection of codling moth (Table 5). Albanese
et al. [55] developed an embedded codling moth monitoring system using different deep
learning algorithms for model development. Compared to this work, in our proposed
model, all detection parameters are slightly improved.

Suárez et al. [54] developed a detection and classification algorithm for codling moth
detection. The authors also used a confusion matrix as a tool for the statistical evaluation
of model accuracy and all other parameters. The overall accuracy measures the extent to
which the model correctly predicts the entire dataset and does not distinguish classes [65].
In the work of Suárez et al. [54], the overall accuracy was 94.8% due to an insufficient



Agriculture 2023, 13, 961 14 of 20

amount of data, much lower than the overall accuracy of the model proposed in our work,
which was 98.92%.

Table 5. Final parameters of the model testing.

Class MOTH INSECT OTHER

(n) truth 189 120 983

(n) classified 180 199 993

Accuracy 99.3% 99.46% 99.07%

Precision 1.0 0.97 0.99

Recall 0.95 0.97 1.0

F1 Score 0.98 0.97 0.99

Suto et al. [52] developed a similar tool for codling moth monitoring that included
a prototype smart trap and an insect counting algorithm. In other work Suto et al. [71]
presented plug-in board for pest detection, based on Raspberry Pi. The system from both
works overcomes limitations from the systems built before, but the dataset used was not
reliable enough. Namely, because there is no freely available dataset on the codling moth,
the author used various images from the Internet and images of other moth species, which
makes qualitative monitoring difficult. In this work, the whole dataset was collected
personally and manually in the field, using an appropriate tool for capturing images to
obtain the most reliable dataset by mimicking environmental conditions and developing
an accurate and precise model. Wen and Guyer [72] trained a neural network for pest
detection on the images from the laboratory conditions, which provided significantly lower
recognition accuracy than images captured in the field conditions. Thanks to the large and
high-quality dataset, the detection accuracy and all other moth detection parameters in
this work reached high values (Table 5). Hong et al. [73] also manually collected images
from the pheromone traps to build detection models for three moth species. However, the
dataset used did not consist of real-time images from the insect trap in the field, because in
this case light interference would occur and the training dataset would be more reliable and
applicable under field conditions. In our work, this shortcoming was overcome. Namely,
our dataset was captured using a camera that mimics a smart trap. The training images
were acquired in the field under different natural lighting conditions to ensure natural and
most reliable acquisition conditions. Thanks to this kind of data acquisition, our system
works more reliably under field conditions. Sun et al. [47] performed the image acquisition
in the trap using a digital camera integrated into the pheromone trap. In this way, the
authors ensured real capture conditions and a high-quality training dataset. In addition,
Ahmad et al. [74] collected 7046 images in the field under different background and lighting
conditions to detect 23 different agricultural pests. This work also achieved excellent
results and once again confirmed that image acquisition under field conditions provides
more reliable models for pest monitoring. This was also confirmed by Xia et al. [75], who
collected datasets in the field rather than under controlled conditions to develop a model
with higher noise immunity.

In this study, EfficientDet object detectors were used as a tool for codling moth de-
tection. This object detector showed high accuracy in monitoring codling moth, which
was expected since it has already been experimentally demonstrated to be a reliable insect
detection tool. Hong et al. [76] used several deep learning-based object detection methods
to automatically monitor the forest pest Matsucoccus thunbergianae, including EfficientDet
D4. This deep learning-based object detector showed great potential for insect detection
with a detection accuracy of 95–98%. Therefore, in our work, we used the same family of
object detectors for monitoring an important agricultural pest, codling moth, which also
showed high accuracy in codling moth detection (>99%) (Table 5). In addition, Popescu
et al. [77] tested different neural networks for monitoring the invasive and very important
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agricultural pest Halyomorpha halys, where the neural network EfficientDet showed the
best results in terms of detection time. In the last three years, several smart devices for
codling moth detection have been developed [52–55,78], but in this work, the proposed
model showed the highest accuracy in codling moth detection (Table 5). Namely, Segalla
et al. [79] developed a model with 98.3% accuracy and Albanese et al. [55] with the highest
detection accuracy of 97.9%, while the detection accuracy in this work was >99% (Table 5).

In addition, the developed system consumes less energy because it uses the SBC, a very
efficient computer that consumes less power than conventional computers and therefore
requires less energy to operate. These computers are very power efficient [78] and therefore
are used in many similar research projects for automatic pest monitoring [80–82] and also
for automatic codling moth monitoring [83].

In order to use the model in rural areas on SBC devices, it is important to include the
optimization phase of the model as the final phase of model development and adaptation.
Bigger models demand more memory and more time to function, making them more
challenging to operate. By optimising the model, it is possible to minimise the model’s
capacity while reducing the loss of accuracy and performance, so achieving a balance
that was optimal. This kind of optimised model enables faster evaluation and detection.
At the same time, the developed model is constantly improved and updated. Thanks to
these comprehensive improvements, our work represents a step forward in the automatic
monitoring of codling moth.

3.2. Smart Trap Operating

The functionality of the hardware part was tested for three months in two apple
orchards and proved to be effective under field conditions. The CCS regularly reported
camera status, software updates, work results, and analysis that included basic operating
parameters such as time accuracy, temperature, system status, and the type of cellular
network to which the device is connected, as well as many other parameters. The CCS
reported regularly every day at a specific time throughout the test period. The optimal time
of day (between 9:00 a.m. and 1:00 p.m.) for CCS to report is still being researched, as this
presents a very important challenge related to lighting and branch shadows. This problem
in object detection was also pointed out by Wosner et al. [84]. Therefore, choosing the
optimal time for capturing image and reporting CCS is an important segment for quality
pest monitoring.

The developed system has a built-in mechanism for on-site detection, which allows
data processing directly in the orchard, making it suitable for rural areas. After the model
does all the work and detects the targeted objects (codling moths), the system does not
send the entire image to the end user at a given time, as is usually the case [53] but only the
detection results, which take an average of 5 min to execute. Accordingly, data processing
is performed on-site with 15 MB a storage limit. This kind of system enables faster data
transmission and reduces energy costs, which was confirmed by Albanese et al. [55].

The SBC has 5 W of power and is turned on once a day for 5 min. The total daily
energy consumption is 0.4170 Wh or 0.017 W per day. Each battery in the battery system
has a nominal voltage of 3.7 V. The capacity of the battery system is 9 Ah. The total energy
capacity is 33.3 Wh. The total available energy to power the SBC is 119.16 Wh. Thus, the
energy needed to run the SBC for 5 min daily is significantly less than the energy the battery
system and solar cell can provide. Finally, if the batteries and solar cell can be fully charged
daily, this solution can power the SBC for a long time. The SBC examined in this study has
restricted computing resources. It has a maximum memory capacity of 15 MB, a power
consumption of 5 W, and a daily power usage of 17 mW; therefore, the complete system
consumes small amount of energy, is completely autonomous, and has long lifespan.

Zhong et al. [81] and Rustia et al. [82] have developed automatic pest monitoring sys-
tems also based on SBC with Raspberry Pi as the control unit, which is an edge computing
design that can ensure lower power consumption and avoid transmission of high-resolution
insect images. These automatic systems require WIFI for communication and thus are only
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suitable for use in controlled conditions (greenhouses), while our proposed automatic sys-
tem can be deployed in rural areas at any location in orchards, even if network connectivity
is very low and controlled conditions are not required. Our proposed prototype smart trap
is weather resistant and can be deployed in the field without requiring human intervention
(only when the adhesive pad or pheromone lure needs to be replaced). In the work of
Segalla et al. [78], the alarms in the system are triggered when a codling moth is positively
detected. The peculiarity of our system is that during monitoring, appropriate alarms are
triggered when certain phenomena occur, not only when a single adult moth occurs which
serves growers as support in making decisions about timely control measures.

The camera forwards the analysis and associated images to the control server. It
receives basic data, such as the results of the performed analyses of all classes. Performing
a software update is primarily related to the programming code of the camera and the
analytical model used. The updates are placed on the control server while the camera
downloads the latest software updates and analysis models and applies them in its work.
The analytical models, especially in the development area, are subject to frequent changes
as new datasets are constantly collected and new models are developed.

The developed smart trap prototype is a portable device that does not require addi-
tional infrastructure. The trap operates mostly in sleep mode and therefore consumes less
energy, making it last longer and requiring less human intervention. Schrader et al. [85]
developed a plug-in imaging system that can be incorporated into the Delta trap for codling
moth monitoring. It is also a device with optimised power consumption that operates in
sleep mode. This device has many advantages, including low price, but the problem is that
it is not able to process captured images, which must then be collected manually.

In the cases where the entire image is sent to the user, the battery can drain extremely
quickly, making remote monitoring impossible for a period [53]. Since the model output is
comprised of a little quantity of data, it can be transmitted rapidly over a cellular network.
The detection results are transmitted to a web portal or user interface, where all subsequent
analysis and reporting is performed. The web portal is intended to be the primary place
for system configuration and management of the entire system from the reporting side
and the expert side, which monitors and customises the system for the user. It consists
of a backend, frontend, database, system for advanced analysis and data processing, and
storage of files and server systems.

This system is a comprehensive and reliable tool that has proven its great potential in
practice. It consists of a model with high detection accuracy and precision, a smart trap
prototype with an external structure that can be adapted to all weather conditions, and a
functional trap management system.

4. Conclusions

The developed model showed 99.3% accuracy in detecting codling moth. Hence, the
stated hypothesis is accepted, and the model is deemed effective for monitoring the codling
moth. In addition to the codling moth detection model, a smart trap was also developed.
Thanks to its external structure, the trap is operational in field conditions, consumes little
energy, and requires less human intervention, making it suitable for rural areas. This work
contributes to a broader application of precision pest monitoring that can significantly
improve both sustainable apple production and agricultural adaptation to climate change.
The application of less insecticides is necessitated, and by the usage of this method, targeted
and effective pest control is enabled. This strategy reduces the negative influence on the
environment and improves the quality and profitability of apple production. It is proposed
that future study improve this type of system by establishing a model for the detection of
other key agricultural pests.
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images and labelling the objects.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Franck, P.; Timm, A.E. Population genetic structure of Cydia pomonella: A review and case study comparing spatiotemporal

variation. J. Appl. Entomol. 2010, 134, 191–200. [CrossRef]
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23. Ciglar, I. Integrirana Zaštita Voćaka i Vinove Loze, 1st ed.; Zrinski: Cakovec, Croatia, 1998; pp. 82–87.
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System for Leucoptera malifoliella (O. Costa, 1836) and Its Damage Based on Artificial Neural Networks. Agriculture 2023, 13, 67.
[CrossRef]

57. Object Detection with TensorFlow Lite Model Maker. Available online: https://www.tensorflow.org/lite/models/modify/
model_maker/object_detection#run_%20ob-ject_detection_and_show_the_detection_results/ (accessed on 10 February 2023).

58. Module: Tf.keras.metrics. Available online: https://www.tensorflow.org/api_docs/python/tf/keras/metrics (accessed on 28
March 2023).

59. COCO. Common Objects in Context. Available online: https://cocodataset.org/#detection-eval (accessed on 13 February 2023).
60. Baeldung. Available online: https://www.baeldung.com/cs/training-validation-loss-deep-learning (accessed on 13 Febru-

ary 2023).
61. Hasty GmbH. Available online: https://hasty.ai/docs/mp-wiki/metrics/iou-intersection-over-union (accessed on 26 March 2023).
62. Kulkarni, A.; Chong, D.; Batarseh, F.A. Foundations of data imbalance and solutions for a data democracy. In Data Democracy, 1st

ed.; Batarseh, A., Yang, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 83–106. [CrossRef]
63. V7Labs. Available online: https://www.v7labs.com/blog/confusion-matrix-guide (accessed on 9 February 2023).
64. Aslan, M.F.; Sabanci, K.; Durdu, A. A CNN-based novel solution for determining the survival status of heart failure patients with

clinical record data: Numeric to image. Biomed. Signal Process. Control 2021, 68, 102716. [CrossRef]
65. PaperspaceBlog. Available online: https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/ (accessed on

12 February 2023).
66. Towards Data Science. Available online: https://towardsdatascience.com/the-f1-score-bec2bbc38aa6 (accessed on 12 Febru-

ary 2023).
67. Grandini, M.; Bagli, E.; Visani, G. Metrics for multi-class classification: An overview. arXiv 2020. [CrossRef]
68. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. arXiv 2019. [CrossRef]
69. Sasaki, Y. The Truth of the F-Measure; University of Manchester: Manchester, UK, 2007.
70. Teixeira, A.C.; Ribeiro, J.; Morais, R.; Sousa, J.J.; Cunha, A. A Systematic Review on Automatic Insect Detection Using Deep

Learning. Agriculture 2023, 13, 713. [CrossRef]
71. Suto, J. A Novel Plug-in Board for Remote Insect Monitoring. Agriculture 2022, 12, 1897. [CrossRef]
72. Wen, C.; Guyer, D. Image-based orchard insect automated identification and classification method. Comput. Electron. Agric. 2012,

89, 110–115. [CrossRef]
73. Hong, S.-J.; Kim, S.-Y.; Kim, E.; Lee, C.-H.; Lee, J.-S.; Lee, D.-S.; Bang, J.; Kim, G. Moth Detection from Pheromone Trap Images

Using Deep Learning Object Detectors. Agriculture 2020, 10, 170. [CrossRef]
74. Ahmad, I.; Yang, Y.; Yue, Y.; Ye, C.; Hassan, M.; Cheng, X.; Wu, Y.; Zhang, Y. Deep Learning Based Detector YOLOv5 for

Identifying Insect Pests. Appl. Sci. 2022, 12, 10167. [CrossRef]
75. Xia, D.; Chen, P.; Wang, B.; Zhang, J.; Xie, C. Insect Detection and Classification Based on an Improved Convolutional Neural

Network. Sensors 2018, 18, 4169. [CrossRef]
76. Hong, S.-J.; Nam, I.; Kim, S.-Y.; Kim, E.; Lee, C.-H.; Ahn, S.; Park, I.-K.; Kim, G. Automatic Pest Counting from Pheromone Trap

Images Using Deep Learning Object Detectors for Matsucoccus thunbergianae Monitoring. Insects 2021, 12, 342. [CrossRef]
77. Popescu, D.; Ichim, L.; Dimoiu, M.; Trufelea, R. Comparative Study of Neural Networks Used in Halyomorpha Halys Detection.

In Proceedings of the 2022 IEEE 30th Mediterranean Conference on Control and Automation (MED), Vouliagmeni, Greece, 28
June–1 July 2022; pp. 182–187. [CrossRef]

https://doi.org/10.1016/j.biosystemseng.2018.10.012
https://doi.org/10.3390/s21020343
https://www.ncbi.nlm.nih.gov/pubmed/33419136
https://doi.org/10.3390/agriculture12101721
https://doi.org/10.1016/j.compag.2016.02.003
https://doi.org/10.3390/electronics10151754
https://doi.org/10.1109/RPIC53795.2021.9648485
https://doi.org/10.1109/JETCAS.2021.3101740
https://doi.org/10.3390/agriculture13010067
https://www.tensorflow.org/lite/models/modify/model_maker/object_detection#run_%20ob-ject_detection_and_show_the_detection_results/
https://www.tensorflow.org/lite/models/modify/model_maker/object_detection#run_%20ob-ject_detection_and_show_the_detection_results/
https://www.tensorflow.org/api_docs/python/tf/keras/metrics
https://cocodataset.org/#detection-eval
https://www.baeldung.com/cs/training-validation-loss-deep-learning
https://hasty.ai/docs/mp-wiki/metrics/iou-intersection-over-union
https://doi.org/10.1016/B978-0-12-818366-3.00005-8
https://www.v7labs.com/blog/confusion-matrix-guide
https://doi.org/10.1016/j.bspc.2021.102716
https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
https://doi.org/10.48550/arXiv.2008.05756
https://doi.org/10.48550/arXiv.1911.09070
https://doi.org/10.3390/agriculture13030713
https://doi.org/10.3390/agriculture12111897
https://doi.org/10.1016/j.compag.2012.08.008
https://doi.org/10.3390/agriculture10050170
https://doi.org/10.3390/app121910167
https://doi.org/10.3390/s18124169
https://doi.org/10.3390/insects12040342
https://doi.org/10.1109/MED54222.2022.9837254


Agriculture 2023, 13, 961 20 of 20

78. RS Components Ltd. Available online: https://uk.rs-online.com/web/generalDisplay.html?id=solutions/single-board-
computers-overview (accessed on 27 March 2023).

79. Segalla, A.; Fiacco, G.; Tramarin, L.; Nardello, M.; Brunelli, D. Neural networks for pest detection in precision agriculture. In
Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy,
4–6 November 2020; pp. 7–12. [CrossRef]

80. Mendoza, Q.A.; Pordesimo, L.; Neilsen, M.; Armstrong, P.; Campbell, J.; Mendoza, P.T. Application of Machine Learning for
Insect Monitoring in Grain Facilities. AI 2023, 4, 348–360. [CrossRef]

81. Zhong, Y.; Gao, J.; Lei, Q.; Zhou, Y. A vision-based counting and recognition system for flying insects in intelligent agriculture.
Sensors 2018, 18, 1489. [CrossRef] [PubMed]

82. Rustia, D.J.A.; Lin, C.E.; Chung, J.Y.; Zhuang, Y.J.; Hsu, J.C.; Lin, T.T. Application of image and environmental sensor network for
automated greenhouse insect pest monitoring. J. Asia Pac. Etomol. 2020, 23, 17–28. [CrossRef]

83. Brunelli, D.; Albanese, A.; d’Acunto, D.; Nardello, M. Energy neutral machine learning based iot device for pest detection in
precision agriculture. IEEE Internet Things Mag. 2019, 2, 10–13. [CrossRef]

84. Wosner, O.; Farjon, G.; Bar-Hillel, A. Object detection in agricultural contexts: A multiple resolution benchmark and comparison
to human. Comput. Electron. Agric. 2021, 189, 106404. [CrossRef]

85. Schrader, M.J.; Smytheman, P.; Beers, E.H.; Khot, L.R. An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps
Aiding Remote Insect Pest Population Monitoring in Fruit Crops. Machines 2022, 10, 52. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://uk.rs-online.com/web/generalDisplay.html?id=solutions/single-board-computers-overview
https://uk.rs-online.com/web/generalDisplay.html?id=solutions/single-board-computers-overview
https://doi.org/10.1109/MetroAgriFor50201.2020.9277657
https://doi.org/10.3390/ai4010017
https://doi.org/10.3390/s18051489
https://www.ncbi.nlm.nih.gov/pubmed/29747429
https://doi.org/10.1016/j.aspen.2019.11.006
https://doi.org/10.1109/IOTM.0001.1900037
https://doi.org/10.1016/j.compag.2021.106404
https://doi.org/10.3390/machines10010052

	Introduction 
	Materials and Methods 
	Smart Trap Prototype 
	Analytical Model 

	Results and Discussion 
	Analytical Model Performance 
	Smart Trap Operating 

	Conclusions 
	References

