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Abstract: Weed control has always been one of the most important issues in agriculture. The research
based on deep learning methods for weed identification and segmentation in the field provides
necessary conditions for intelligent point-to-point spraying and intelligent weeding. However, due to
limited and difficult-to-obtain agricultural weed datasets, complex changes in field lighting intensity,
mutual occlusion between crops and weeds, and uneven size and quantity of crops and weeds, the
existing weed segmentation methods are unable to perform effectively. In order to address these
issues in weed segmentation, this study proposes a multi-scale convolutional attention network
for crop and weed segmentation. In this work, we designed a multi-scale feature convolutional
attention network for segmenting crops and weeds in the field called MSFCA-Net using various
sizes of strip convolutions. A hybrid loss designed based on the Dice loss and focal loss is used
to enhance the model’s sensitivity towards different classes and improve the model’s ability to
learn from hard samples, thereby enhancing the segmentation performance of crops and weeds.
The proposed method is trained and tested on soybean, sugar beet, carrot, and rice weed datasets.
Comparisons with popular semantic segmentation methods show that the proposed MSFCA-Net
has higher mean intersection over union (MIoU) on these datasets, with values of 92.64%, 89.58%,
79.34%, and 78.12%, respectively. The results show that under the same experimental conditions
and parameter configurations, the proposed method outperforms other methods and has strong
robustness and generalization ability.

Keywords: semantic segmentation; weed segmentation; agricultural weed dataset; convolutional
attention

1. Introduction

Agriculture is one of the fundamental human activities, which ensures the global food
security. However, the weeds in farmland can cause severe damage to the growth and yield
of crops, because weeds directly compete with crops for sunlight, water, and nutrients.
In addition, they also become a source for spreading diseases and pests in crops [1]. Weed
control helps in promoting sustainable agricultural development, thus improving the agri-
cultural production efficiency, reducing the waste of agricultural resources, and protecting
the ecological environment to achieve sustainable agricultural development [2]. Over the
years, various weed control measures, such as agricultural prevention and control, plant
quarantine, manual weeding, biological weed control, and chemical weed control have
been explored to develop agricultural technology [3]. The conventional physical weeding
operations are costly and inefficient. Currently, the chemical weed control methods are the
most widely used methods [4]. However, the traditional chemical weed control methods
involve spraying herbicides uniformly across the field. This not only leads to high costs but
also causes environmental pollution due to the excessive herbicide use [5]. The develop-
ment of information and automation technologies has opened a new era of weed control. It
is of great significance to perform precise mechanical and chemical weed control measures
to quickly and effectively eliminate weeds [6].
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With the development of digital imaging technologies and the advancements in robotic
intelligent agricultural machinery, such as field weed-removal robots, which utilize image
processing technology, great results have been achieved [7,8]. In 2015, a German robotics
company called Deepfield [9] launched the first generation of weeding robots that identify
weeds by using cameras. The precise weed removal methods, such as selective weeding,
specific point herbicide spraying, and intelligent mechanical hoeing effectively reduce
the harm of pesticides and improve the quality of agricultural products [10]. Please note
that weed identification is crucial for intelligent weed removal. The vision-based weed
identification methods mainly use digital image processing techniques to differentiate
various crops based on different features extracted from crop images [11]. Ahmed et al. [12]
used support vector machines (SVM) to identify six types of weeds by using a database
containing 224 images and achieved satisfactory accuracy under certain experimental
conditions using a combination of optimal feature extractors. Sabzi et al. [13] used a
machine vision prototype based on video processing and meta-heuristic classifiers to
identify and classify potatoes and five types of weeds. Brilhador et al. [14] used edge
detection techniques to detect weeds in ornamental lawns and sports turf, aiming to reduce
pesticide usage. Various filters were tested, and the sharpening (I) filter with the aggregation
technique and a cell size of 10 provided the best results. A threshold value of 78 yielded an
optimal performance. However, slight differences in the results were observed between
ornamental lawns and sports turf. Parra et al. [15] used UAVs with digital cameras to detect
charlock mustard weed in alfalfa crops using RGB-based indices, which proved effective
and avoided confusion with soil compared to NDVI. Combining RGB indices with NDVI
reduced overestimation in weed identification. This methodology can generate weed cover
maps for alfalfa and translate into herbicide treatment maps. However, these methods
are unable to perform effectively in complex field environments. For instance, image
acquisition in real environments may suffer from uneven exposure due to strong or weak
lighting conditions, resulting in reduced recognition accuracy. Moreover, crops and weeds
have different sizes and shapes, and the generalization ability of image processing systems
in complex backgrounds is poor, resulting in suboptimal recognition results. Moreover,
digital image processing techniques require manual feature selection, and the segmentation
performance of the models is susceptible to human experience interference.

Recently, convolutional neural networks (CNN) have greatly promoted the progress
of computer vision [16]. Contrary to the traditional machine learning algorithms, deep
learning algorithms automatically perform feature selection and have a higher accuracy
as well. These methods have been widely applied in agricultural image processing [17].
The CNNs have been used to predict and estimate the yield of mature stage rice based
on remote sensing images acquired using unmanned aerial vehicles (UAVs) [18]. A deep
learning-based robust detector for the real-time identification of tomato diseases and pests
was proposed in [19]. Hall et al. [20] constructed a CNN for carrot and weed classification
during the seedling stage. The authors used the texture information and shape features,
significantly improving the accuracy of plant classification. Olsen et al. [21] constructed a
large, public, multi-class deep-sea weed dataset and used ResNet50 for weed classification.
Since the proposal of FCN [22], the image semantic segmentation models, such as UNet [23],
DeepLabV3 [24], and DeepLabV3Plus [25], have emerged and widely applied in the agri-
cultural weed segmentation field [26]. The semantic segmentation models quickly extract
features from the crops and weeds, without requiring complex background segmentation
and data model establishment during the extraction process. You et al. [27] proposed a
segmentation network for segmenting the sugar beet crop. Yu et al. [28] proposed sev-
eral networks for accurately detecting weeds in dogtooth grass plants. Sun et al. [29]
fused near-infrared and RGB images into a four-channel image by analysing the feature
distribution of a sugar beet dataset, and proposed a multi-channel depth-wise separable
convolution-based segmentation and recognition method for sugar beet and weed images.
The authors achieved real-time segmentation by using the MobileNet. Zou et al. [30]
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proposed a simplified UNet-based semantic segmentation algorithm to separate weeds
from soil and crops in images.

Please note that the aforementioned weed segmentation algorithms are typically
based on popular semantic segmentation models, which use fine-tuning and conventional
channel or spatial attention mechanisms to improve the performance of the networks.
These attention mechanisms usually involve concatenating residuals or using 1 × 1 or
3 × 3 convolutions to implement channel- or spatial-wise attention in the network. How-
ever, these improvement methods neglect the role of multi-scale feature aggregation in
network design. The previous literature shows that multi-scale feature aggregation is
crucial for segmentation tasks [31,32]. Consequently, these approaches fail to effectively
connect features in the spatial and channel dimensions of the upper and lower layers,
and suffer from various problems, such as image illumination interference, differences
in the size between crops and weeds, and mutual occlusion between crops and weeds.
These problems severely affect the performance of field weed segmentation. Moreover,
the existing deep learning-based weed segmentation models often require large amounts
of data for training but the data for agricultural weed segmentation is scarce and difficult
to obtain. It is noteworthy that the performance of these models is not efficient for small
training sets.

In response to the shortcomings of previous research and existing problems, we design
a weed segmentation algorithm that can be applied to various complex environments and
crops, providing algorithmic support for intelligent weed control. This work proposes a
field weed segmentation model based on convolutional attention mechanism. The proposed
method uses large asymmetric strip convolution kernels to extract features. The proposed
method achieves faster and more accurate field weed segmentation, as well as addresses
multi-scale and complex background weed segmentation tasks.

The rest of the manuscript is organized as follows. In Section 2, we present the data
used in this work and the proposed network. In Section 3, we present the experimental
results and analysis. Section 4 discusses the research. Finally, this work is concluded in
Section 5.

2. Materials and Methods
2.1. Dataset Collection
2.1.1. Soybean Dataset

The soybean dataset is acquired from a soybean field in the National High-Tech Agri-
cultural Park of Anhui Agricultural University located in Luyang District, Hefei City, Anhui
Province. We select soybean seedlings aged 15–30 days for data collection. The equipment
used for image acquisition includes a DJI handheld gimbal, model Pocket 2. The acqui-
sition device is positioned about 50 cm above the ground. The video resolution is set
at 1920 × 1080 with a frame rate of 24 frames per second (fps). Afterwards, we extract
frames from the video to obtain 553 images to construct the soybean dataset. In order
to ensure faster training and convenient manual annotation, we resized the images to
1024 × 768. This resolution strikes a balance between computational efficiency and pre-
serving sufficient visual details for accurate image analysis, making it a commonly used
resolution in many computer vision applications and datasets. We randomly assign them
to training, validation, and test sets in a ratio of 7:2:1. This allocation ratio allows for a
reasonable balance between the training, validation, and testing requirements within the
limited dataset. Selecting 70% of the data for the training set provides an adequate number
of samples for model training. The validation set, comprising 30% of the data, is used
to adjust the model’s hyperparameters and fine-tuning. We reserved 10% of the data as
the test set, providing a sufficient number of samples to accurately evaluate the model’s
performance. We manually annotated the images using the open-source tool Labelme. Each
annotated image corresponds to an original image, with different colours representing
different categories. The soybean seedlings are annotated in green, weeds are annotated in
red, and the soil is annotated in black, as shown in Figure 1.
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Figure 1. The original images and corresponding annotations (green: crop, red: weed) in the
soybean dataset.

2.1.2. Sugar Beet Dataset

The sugar beet dataset is sourced from BoniRob [33]. The images in this dataset are
captured at a sugar beet farm near Bonn, Germany. In 2016, a pre-existing agricultural robot
was used to record the dataset, which focused on sugar beet plants and weeds. The robot
was equipped with a JAI AD-130GE camera, with an image resolution of 1296 × 966 pixels.
The camera is positioned underneath the robot’s chassis, with a mounting height of approx-
imately 85 cm above the ground. The data collection spanned over three months, with data
being recorded approximately three times a week. The robot captured multiple stages
of sugar beet plant during its growth. The official dataset contains tens of thousands of
images. In this work, the labels are divided into three categories: sugar beet crops, all
weeds, and background. For convenience, we use 2677 randomly selected images to create
the sugar beet dataset. We randomly split the dataset into 70% training, 20% validation,
and 10% test sets. As shown in Figure 2, green annotations represent sugar beet crop, red
annotations represent weeds, and black annotations represent soil.

Figure 2. The original images and the corresponding annotations (green: crop, red: weed) in the
sugar beet dataset.

2.1.3. Carrot Dataset

The carrot dataset is sourced from the CWFID dataset [34]. The images in this dataset
are collected at a commercial organic carrot farm in northern Germany. The images are
captured during the early true leaf growth stage of carrot seedlings using a JAI AD130GE
multispectral camera, which can capture both visible and near-infrared light. The images
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have a resolution of 1296 × 966 pixels. During the acquisition process, the camera is
positioned vertically above the ground at a height of approximately 450 mm, with a focal
length of 15 mm. In order to mitigate the effects of uneven lighting, artificial illumination
is used in the shaded area beneath the robot to maintain consistent illumination intensity
across the images. The dataset consists of 60 images, and we randomly split 70% of the
samples for training, 20% for validation, and 10% for testing. As shown in Figure 3, green
annotations denote the carrot seedlings, red annotations represent the weeds, and black
annotations represent the soil and background.

Figure 3. The original images and the corresponding annotations (green: crop, red: weed) in the
carrot dataset.

2.1.4. Rice Dataset

The rice dataset is sourced from the rice seedling and weed dataset [35]. The images
in this dataset have a resolution of 912 × 1024 pixels and captured using an IXUS 1000
HS camera with f-s 36–360 mm f/3.4–5.6 IS STM lens. The camera was 80–120 cm above
the water surface of the fields during image capture. The dataset contains 224 images
with corresponding annotations in 8-bit greyscale format. We convert the original anno-
tations into 24-bit RGB format, and randomly split the dataset into training, validation,
and test sets in a ratio of 7:2:1. As shown in Figure 4, green annotations represent the rice
seedlings, red annotations represent the weeds, and black annotations represent the water
or other backgrounds.

2.2. Segmentation Models
2.2.1. Model

The encoder–decoder architecture is commonly used in weed segmentation tasks.
The encoder is responsible for rough classification of an image. It transfers the extracted
semantic information to the decoder and maps the low-resolution features learned in the
encoding stage to the high-resolution pixel space through skip connections by integrating
the local and global context. The decoder gradually upsamples the feature maps to restore
the resolution equalling the size of the input image, and outputs the predicted classifications
for each pixel.

The attention mechanism is an adaptive selection process widely used in deep learning.
It allows the network to focus on important regions of an image, thereby improving the
performance and generalization ability of the model. In semantic segmentation, attention
mechanisms can be categorized into channel attention and spatial attention [36]. Different
types of attention serve different purposes. For instance, spatial attention focuses on impor-
tant spatial regions [37–39], and channel attention aims to selectively attend to important
channels or feature maps [40,41]. However, the existing weed semantic segmentation mod-
els often overlook the adaptability of channel dimension. Inspired by the visual attention
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network [42], SegNext [43] re-examines the features considered by successful segmentation
models and identified several key components for improving the performance of the model.
SegNext proposes to use a large kernel attention mechanism to construct channel and
spatial attention. The authors show that the convolutional attention is a more effective way
to encode the contextual information as compared to self-attention mechanisms used in the
Swin transformer [44].

Figure 4. The original images and corresponding annotations (green: crop, red: weed) in the
rice dataset.

Therefore, we use a convolutional attention mechanism to construct the proposed weed
segmentation network. The convolutional attention mechanism consists of multiple sets of
different convolutional kernels and deep convolutions, as shown in Figure 5. The 3 × 3 deep
convolutional layer aggregates local information, while multiple sets of different depth-
wise strip convolutions are used to capture multi-scale contextual information. The 1 × 1
convolutions establish the connections between different channels. In the proposed multi-
scale convolutional attention (MCA), larger kernel sizes are used to capture global features.
The MCA consists of three sets of strip convolutional kernels with different sizes. Each
set is composed of two large convolutional kernels with relative sizes of 1 × 5 and 5 × 1,
1 × 11 and 11 × 1, and 1 × 17 and 17 × 1, combined in parallel to form multi-scale kernels.
The proposed MCA can be mathematically expressed as follows:

Fout = Fin ⊗ Conv1×1

(
n

∑
i=0

MSKi(Conv3×3(Fin))

)
(1)

where Fin represents the feature after passing through a 1 × 1 convolution and GELU
activation. Fout is the output of the attention map. ⊗ denotes element-wise matrix multipli-
cation. Conv1×1 represents a 1 × 1 convolution operation, and Conv3×3 represents a 3 × 3
convolution operation. MSKi, i ∈ {0, 1, 2, 3} denotes the i-th branch in Figure 5, where
MSK0 represents the direct connection used to preserve the residual information. In each
branch, two depth-wise strip convolutions are used to approximate standard depth-wise
convolutions with larger kernels, as the strip convolution is lightweight and serves as a
complement to grid convolutions assisting in the extraction of strip-like features [45,46].

We used the convolutional attention mechanism MCA mentioned above to construct
an MSFCABlock consisting of an MCA and an FFN network, as shown in Figure 6. MS-
FCABlock strengthens the feature association between the encoder and decoder. In the
MSFCABlock, first, the contact feature is passed through a 3 × 3 convolution and batch
normalization (BN). Then, it is connected with the output of the MCA module by using a
residual connection. Subsequently, the feature is processed by the feed-forward network
(FFN) with a residual connection. The FFN structure in the MSFCABlock maps the input
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feature vectors to a high-dimensional space and then applies a non-linear transformation
by using an activation function resulting in a new feature vector. This new feature vector
contains more information compared to the original feature vector. The global contextual
modelling multi-layer perceptron (MLP) and large convolution capture the global con-
textual features from long-range modelling, thus allowing the proposed MSFCABlock to
effectively extract the features.

Figure 5. The architecture of the proposed MCA.

Figure 6. The architecture of the proposed multi-scale feature convolutional-attention block (MSFCA-
Block).

The overall architecture of the proposed MSFCANet is shown in Figure 7. The pro-
posed network consists of an encoder and a decoder. The encoder uses a VGG16 network
as the backbone, where the blue blocks represent the convolutional layers. Since we use a
VGG16-based encoder, the convolutional layers are fully convolutional. The pink blocks
represent the max-pooling layers, and the green blocks represent the upsampling layers.
We use the transpose convolution method for upsampling, which can learn different pa-
rameters for different tasks, thus making it more flexible compared to other methods, such
as bilinear interpolation. The yellow blocks represent concatenation, and the brown blocks
represent the proposed MSFCABlock. The proposed MSFCABlock combines features
from different layers of the encoder during the decoding process, resulting in excellent
and dense contextual information integration for weed segmentation, as well as richer
scene understanding. It enhances the role of multi-scale feature aggregation in network
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design. The large convolution with small parameter size also reduces the number of
network parameters.

Figure 7. The architecture of the proposed MSFCA-Net.

2.2.2. Loss

In order to achieve more accurate segmentation of crops and weeds, we designed
multiple losses for training the model, including plant loss, crop loss, weed loss, and crop–
weed loss.

In this work, plant loss in the loss function considers crops and weeds as the same
class to calculate the loss. This helps in balancing the crops and weeds in the proposed
model. The cross-entropy loss, which is commonly used for semantic segmentation based
on CNNs considers the high-frequency distribution of images as an important feature of
the CNN. However, when the number of foreground (crops and weeds) pixels is much
smaller than the number of background pixels, the background loss dominates, resulting in
poor network performance. Therefore, in this experiment, cross-entropy loss is not used
to calculate the plant loss. Instead, Dice loss [47] is employed, originating from the Dice
coefficient, which is a measure of set similarity often used for comparing the similarity
between two samples. Please note that the Dice loss is a region-based loss, i.e., the loss and
gradient for a certain pixel not only depends on its label and predicted value, but also on
the labels and predicted values of other pixels. The Dice loss can be used in cases of class
imbalance. Considering the characteristics of Dice loss and the practical situation of this
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work, plant loss in this research adopts Dice loss in order to effectively calculate the overall
loss of crops and weeds. The plant loss is computed as follows:

Plantloss(y, ŷ) = 1−
2∑B×H×W

i=0 (y(i)ŷ(i))

∑B×H×W
i=0 (y(i) + ŷ(i))

(2)

where y and ŷ represent the ground truth and predicted values of the pixels, respectively.
B, H, and W denote the channel size, height, and width of the image, respectively. In this
work, crop and weed loss are calculated separately for crops and weeds. Considering that
the loss calculation for crops and weeds also lacks high-frequency components, the use of
cross-entropy loss may result in inaccurate region detection. Therefore, Dice loss is used to
calculate these losses.

For crop–weed loss, in order to efficiently optimize the severe class imbalance between
the crop and weed categories, we use focal loss. The focal loss [48] addresses the issues of
imbalanced training samples and different learning difficulties of samples. It is a variant
of the cross-entropy loss, as shown in (3), with the addition of parameters α and β. These
parameters are used to address the problems of difficult samples and imbalanced quantities.

CrossEntropyLoss =
B×H×W

∑
i=0

−(piln qi) (3)

Cropweedloss = Focal(p, q) =
B×H×W

∑
i=0

−α(1− qi)
γ(piln qi) (4)

In (4), the role of α is to weight the loss of different classes of samples, where a higher
weight is assigned to the class with fewer samples. On the other hand, the role of β is to
handle the imbalance between easy and hard samples during the training process, where
the number of easy samples is much larger than the number of hard samples. By adding a
weight β, the loss of easy samples is significantly reduced, thus allowing the model to focus
more on optimizing the loss of hard samples. Therefore, the total loss used for training is
expressed as follows:

Totalloss = Plantloss + Croploss + Weedloss + Cropweedloss (5)

where the total loss is a dimensionless metric, representing a measure of dissimilarity be-
tween the predicted and truth segmentation, with a value of 0 indicating perfect agreement
and a value of 1 indicating complete dissimilarity.

2.2.3. Parameter Evaluation

In this work, we focus on semantic segmentation, which is a pixel-level prediction.
Therefore, we adopt MIoU, Crop IoU, Weed IoU, Background IoU, F1-score, precision,
and recall as the evaluation metrics. Please note that IoU is an important metric for
measuring the accuracy of image segmentation. It is defined as the ratio of the intersection
of the predicted and ground truth sets to their union and is mathematically expressed
as follows:

IoU =
TP

TP + FN + FP
× 100% (6)

where TP (true positive) represents the intersection of the ground truth and predicted
values and FN (false negative) + FP (false positive) represents the union of the ground truth
and predicted values. MIoU is the average of Crop IoU, Weed IoU, and Background IoU,
which is the intersection over union values for these three classes. It is calculated by taking
the average of the IoU values for each class, which represents the ratio of intersection to
union for each class.

The pixel precision refers to the ratio between the number of correctly classified pixels
and the total number of pixels correctly predicted in the image. The average precision is
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the mean precision calculated for each class. The pixel precision reflects the accuracy of
positive predictions among the predicted positive samples, i.e., the accuracy of predictions
for positive samples. It is calculated as follows:

Precision =
TP

TP + FP
× 100% (7)

The recall, also known as sensitivity or recall rate, reflects the probability of correctly
identifying positive samples among the actual positive samples. It is calculated by using
the following expression:

Recall =
TP

TP + FN
× 100% (8)

The F1-score is the harmonic mean of precision and recall. It is calculated by using the
following mathematical expression:

F1-score = 2× Precision× Recall
Precision + Recall

× 100% (9)

3. Results
3.1. Model Training

In this work, we used an Intel Core i9-13600KF CPU (Intel, Santa Clara, CA, USA), 32
GB RAM, and an NVIDIA GeForce RTX 3090 GPU (NVIDIA, San Jose, CA, USA) to perform
the experiments. The software environment included Windows 11 (Microsoft, Redmond,
WA, USA), CUDA 11.3 (NVIDIA, CA, USA), Python 3.9 (Python Software Foundation,
Fredericksburg, VA, USA), and TensorFlow 2.6 (Google Brain, Mountain View, CA, USA).
The learning rate was set to 1×10−7 and Adam optimizer was used to update the weights.
The batch size was set to 8 and the training was continued for 200 epochs. In order to
increase the diversity of the training samples, data augmentation techniques, such as
random flipping, cropping, and other operations were applied before training the model.
The experiments were conducted on soybean, sugar beet, carrot, and rice weed datasets
separately. For each dataset, MSFCA-Net was compared with FCN, FastFcn, OcrNet, UNet,
Segformer, DeeplabV3, and DeeplabV3Plus based on experimental results. Finally, ablation
experiments were conducted on the soybean dataset to validate the effectiveness of different
components of the model. Six groups of ablation experiments were performed, including
experiments with large convolutional kernels and hybrid losses.

3.2. Testing on the Soybean Dataset

In order to validate the performance of the proposed MSFCA-Net, experiments were con-
ducted on the soybean weed dataset and the results were compared with other state-of-the-art
methods, including FCN, FastFcn, OcrNet, UNet, Segformer, DeeplabV3, and DeeplabV3Plus.
Table 1 shows the performance metrics, including MIoU, Crop IoU, Weed IoU, Bg IoU
(Background IoU), recall, precision, and F1-score for the proposed MSFCA-Net and the
aforementioned models based on the soybean weed test set. The quantitative analysis of
results shows that the proposed MSFCA-Net performs efficiently on the soybean dataset
and outperforms the other models. The proposed model achieves MIoU, Crop IoU, Weed
IoU, Bg IoU, recall, precision, and F1-score of 92.64, 92.64, 95.34, 82.97, 99.62, 99.57, 99.54,
and 99.55%, respectively, superior to the other models. In particular, the MIoU and Weed
IoU of the proposed method are 2.6 and 6% higher compared to the second ranked OcrNet,
respectively. This is due to the fact that the proposed MSFCA-Net utilizes skip connections
to map the low-resolution features learned during the encoding stage to high-resolution
pixel space semantically, exhibiting high performance in the presence of sample imbalance
and hard-to-learn classes. Therefore, the proposed model has a strong advantage over
current popular models in terms of dealing with sample imbalance and learning ability on
hard-to-learn samples.
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Table 1. A comparison of the proposed method with the other state-of-the-art methods based on the
soybean dataset.

Model MIoU (%) Crop IoU
(%)

Weed IoU
(%) Bg IoU * (%) Recall (%) Precision

(%) F1-Score (%)

FCN 86.12 90.68 68.62 99.05 92.27 91.75 92.01
FastFcn 88.12 92.79 72.35 99.22 93.61 92.94 93.28
OcrNet 89.90 93.23 77.09 99.37 94.28 94.55 94.42
UNet 87.34 9012 72.54 99.67 92.94 92.89 92.91

Segformer 86.56 89.05 71.31 99.22 92.75 92.01 92.37
DeeplabV3 88.25 92.92 72.59 99.23 93.68 93.04 93.35

DeeplabV3Plus 89.66 92.96 76.67 99.36 94.56 93.99 94.27
MSFCA-Net 92.64 95.34 82.97 99.62 99.57 99.54 99.55

* Bg IoU is the background IoU.

Figure 8 shows partial segmentation results of our method, MSFCA-Net, and other
methods on the test dataset, where green represents soybean, red represents weeds, black
represents background, and the labels denote manually annotated images. Analysis of
the prediction results of the eight network models shows that MSFCA-Net produces more
refined segmentation results and exhibits excellent noise resistance capabilities. This is
because MSFCA-Net integrates multi-scale features using the multi-scale convolutional
attention mechanism, effectively incorporating local information and global contextual
information. The OcrNet, UNet, and Segformer tend to misclassify classes in the image and
cannot accurately segment soybean seedlings and weeds. The FCN, FastFcn, DeeplabV3,
and DeeplabV3Plus produced segmentation results that reflect the basic morphology of
the predicted classes, but with blurred edges and lower accuracy. Our proposed method
had the best segmentation results, with clear contours, complete details, smooth images,
and segmentation results closest to manual annotation, indicating that the MSFCA-Net
network model can effectively and accurately segment weeds, soybean, and background in
the images.

Figure 8. The segmentation results obtained using different methods based on the soybean dataset.

3.3. Testing on the Sugar Beet Dataset

Next, we conduct experiments on the sugar beet dataset, comprising a total of 2677
images, with 1874 images in the training set. As compared to other datasets used in this
work, the sugar beet dataset is relatively large and used for training eight different models.
The results obtained using the test set are shown in Table 2. The results show that the
performance of all other models on the sugar beet dataset is significantly lower compared
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to their performance on the soybean dataset. Although the sugar beet dataset has more
training images, the background is more complex and the quality of data collection is
relatively poor compared to the soybean dataset. As a result, training other networks
becomes more challenging. This indicates that other models have higher requirements for
the quality of training data and lack robustness in learning complex samples. On the other
hand, the proposed MSFCA-Net still shows good performance in this challenging scenario.
MSFCA-Net performs well in terms of various metrics as compared to the other models.
The proposed model achieves MIoU, Crop IoU, and Weed IoU of 89.58, 9562, and 73.32%,
respectively, ahead of the second ranked OcrNet by 3.5, 3.4, and 6.8%, respectively.

Table 2. A comparison of the proposed method with the other state-of-the-art methods based on the
sugar beet dataset.

Model MIoU (%) Crop IoU
(%)

Weed IoU
(%) Bg IoU * (%) Recall (%) Precision

(%) F1-Score (%)

FCN 81.42 90.66 54.40 99.19 86.69 90.49 88.39
FastFcn 81.38 99.12 54.68 81.38 86.32 91.14 88.40
OcrNet 86.01 92.20 66.49 99.35 90.59 93.19 91.83
UNet 82.48 90.29 55.78 99.31 87.13 90.82 88.94

Segformer 75.01 86.09 39.73 99.21 80.98 86.38 83.01
DeeplabV3 81.45 89.81 55.46 99.01 87.94 89.16 88.51

DeeplabV3Plus 84.72 91.20 63.68 99.29 90.00 91.99 90.95
MSFCA-Net 89.58 95.62 73.32 99.79 99.69 99.69 99.69

* Bg IoU is the background IoU.

Figure 9 shows the partial segmentation results of various networks on the test set,
where red represents the weeds, green represents the soybean plants, and black represents
the background. The “Image” refers to the original sugar beet image, and “Label” refers
to the original annotated image. As presented in Figure 9, although other networks are
able to recognize the categories, they show an inferior performance in terms of details
and edge contours as compared to the proposed MSFCA-Net. By comparing the pink
boxes in these images, it can be observed that other networks exhibit segmentation errors
to varying extents, which is attributed to their poor performance in handling complex
backgrounds. On the other hand, the segmentation results of the proposed MSFCA-Net are
better, with more accurate classification of sugar beet, weeds, and the background.

Figure 9. The segmentation results obtained using different methods based on the sugar beet dataset.
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3.4. Testing on the Carrot Dataset

In the carrot dataset, there are 60 images. Based on the 70% random split, only
42 images were used to train the network. The prediction results of the eight different
networks based on the test set are shown in Table 3. The results show that with few samples
and high prediction density per pixel, training the model with limited samples is prone
to overfitting and poor segmentation performance. Furthermore, the results show that
the performance of other models is relatively low, indicating that the existing models
are not effective in crop and weed segmentation for small datasets with severe sample
scarcity. However, the proposed model performs significantly better compared to the
existing models. The proposed model obtains MIoU, Crop IoU, and Weed IoU of 79.34,
59.84, and 79.57%, respectively, higher compared to the second ranked OcrNet by 4.2, 1.1,
and 10.4%, respectively. This proves that the proposed model has a strong learning ability
on small sample datasets.

Table 3. A comparison of the proposed method with other state-of-the-art methods based on the
carrot dataset.

Model MIoU (%) Crop IoU
(%)

Weed IoU
(%) Bg IoU * (%) Recall (%) Precision

(%) F1-Score (%)

FCN 70.40 50.83 63.49 96.89 83.85 78.81 81.16
FastFcn 70.59 50.52 64.40 96.86 82.84 80.39 81.29
OcrNet 75.19 58.73 69.12 97.64 85.38 85.42 85.38
UNet 73.89 53.46 70.02 98.18 83.84 82.64 85.08

Segformer 64.05 33.70 60.85 97.60 75.00 76.71 74.95
DeeplabV3 71.22 53.31 63.45 96.91 84.28 79.90 81.87

DeeplabV3Plus 74.79 56.29 70.44 97.63 87.10 82.24 84.50
MSFCA-Net 79.34 59.84 79.57 98.62 98.25 98.56 98.41

* Bg IoU is the background IoU.

Figure 10 shows the partial segmentation results of various networks obtained using
the test set, where green represents the carrot seedlings, red represents the weeds, and black
represents the background. ‘Image’ is the original image and ‘Label’ is the corresponding
manually annotated image. The results show that FCN, FastFcn, and DeeplabV3 not only
have inaccurate classification results on the test set, but also have blurry segmentation of
weed and carrot crop contours. Although OcrNet, UNet, Segformer, and DeeplabV3Plus
show some improvements in the contours of carrot seedlings and weeds compared to
FCN, FastFcn, and DeeplabV3, they still have significant errors in class-wise segmentation
prediction. This is because these network lack the ability to learn from small sample
datasets. In contrast, the proposed network’s segmentation results on the test set are
almost identical to the original annotated images. This further demonstrates the strong
segmentation capability of the proposed MSFCA-Net on complex and intertwined crop
and weed small datasets.

3.5. Testing on the Rice Dataset

The rice dataset contains 224 images. Based on the 70% split, 157 images were used
to train the model. Figure 4 shows that rice seedlings have numerous and dense leaves,
and the weeds in the water often overlap with each other, thus making it difficult for the
segmentation network to distinguish between rice and weeds. Moreover, the rice seedlings
grow in water, and water produces reflections, thus increasing the difficulty of weed seg-
mentation. Such data demands high feature extraction capabilities from the segmentation
network due to the relatively coarse annotation provided by the official dataset.

The results presented in Table 4 show that the performances of many networks are
significantly impacted. The proposed model’s performance in terms of Weed IoU is only
68.70%, while FastFcn, DeeplabV3, and DeeplabV3Plus achieve 69.54, 69.96, and 70.19%,
respectively. These models outperform the proposed model in terms of Weed IoU because
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the proposed MSFCA-Net enhances the learning of difficult samples in the presence of class
imbalance, resulting in a more balanced learning effect. Therefore, although the proposed
model’s performance in terms of Weed IoU is not as good as these models, it performs
significantly better in terms of Crop IoU and Bg IoU, with an MIoU of 78.12%, which is
3.2% higher than the second best model.

Figure 10. The segmentation results obtained using different methods based on the carrot dataset.

Table 4. A comparison of the proposed method with other state-of-the-art methods based on the
rice dataset.

Model MIoU (%) Crop IoU
(%)

Weed IoU
(%) Bg IoU * (%) Recall/(%) Precision

(%) F1-Score (%)

FCN 72.86 58.19 68.62 91.78 83.81 83.64 83.56
FastFcn 74.23 60.73 69.54 92.40 84.59 84.84 84.55
OcrNet 74.16 61.16 68.63 92.69 84.34 84.92 84.50
UNet 74.14 63.64 65.56 97.79 84.56 84.65 84.61

Segformer 72.51 58.59 66.92 92.04 82.93 83.93 83.31
DeeplabV3 74.07 60.01 69.96 92.24 84.83 84.30 84.43

DeeplabV3Plus 74.87 61.89 70.19 92.53 86.01 84.29 85.02
MSFCA-Net 78.12 67.56 68.70 98.12 96.41 95.47 95.93

* Bg IoU is the background IoU.

Figure 11 shows that FCN, FastFcn, and Segformer perform poorly as they fail to
accurately predict the categories of rice and weeds, and many small weeds are not seg-
mented. OcrNet, UNet, DeeplabV3, and DeeplabV3Plus are able to predict the categories
of rice and weeds, but their contours are relatively rough. On the contrary, the proposed
MSFCA-Net uses the multi-scale convolutional attention mechanism to effectively fuse
multi-scale features, resulting in more refined segmentation results on the rice test set and
more accurate classification. Therefore, the proposed model demonstrates more balanced
performance when facing the complex background and class imbalance of the rice dataset,
confirming the advantages of combining the convolutional attention mechanism with the
hybrid loss training mode in the proposed model.
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Figure 11. The segmentation results obtained using different methods based on the rice dataset.

3.6. Ablation Experiments

We conduct ablation experiments by using the soybean dataset to evaluate the contribu-
tion of different components of the proposed MSFCA-Net in the segmentation performance.
We quantitatively and qualitatively compared the MSFCA-Net with existing image seman-
tic segmentation methods. The results of the ablation experiments are shown in Table 5,
where BaseNet refers to the encoder–decoder network structure based on VGG16, BABlock
refers to the block using conventional 1 × 1 and 3 × 3 convolution kernels as an attention
mechanism, which serves as a comparison with the MSFCABlock module in the MSFCA-
Net. The hybrid loss refers to the hybrid loss proposed in this work. In total, six sets of
comparative experiments were conducted: (1) BaseNet using the encoder–decoder structure
based on VGG16; (2) adding the BABlock mechanism on top of the BaseNet model; (3) using
the MSFCABlock module on top of the BaseNet model from experiment 1; (4) adding the
hybrid loss to the BaseNet model; (5) using the BABlock module and adding the hybrid
loss training mode on top of the BaseNet model; (6) using the multi-scale convolutional
attention mechanism with different kernel sizes and the hybrid loss training mode on top
of the BaseNet model.

Table 5. The results of ablation experiments obtained using the soybean dataset.

Model MIoU (%) Crop IoU (%) Weed IoU (%) Bg IoU * (%) Recall (%) Precision (%) F1-Score (%)

BaseNet 88.33 90.89 74.65 99.44 99.28 99.33 99.30
BaseNet + BABlock 89.09 91.32 76.42 99.53 99.38 99.39 99.38
BaseNet + MSFCABlock 91.72 94.29 81.28 99.60 99.48 99.53 99.50
BaseNet + hybrid loss 90.35 93.02 78.49 99.52 99.41 99.40 99.41
BaseNet + BABlock + hybrid loss 91.33 93.62 80.79 99.58 99.50 99.47 99.48
MSFCA-Net 92.64 95.34 82.97 99.62 99.57 99.54 99.55

* Bg IoU is the background IoU.

Table 5 shows the BaseNet based on the VGG16 encoder–decoding structure as a bench-
mark. In the second experiment, adding the BABlock mechanism to the BaseNet model
slightly improves the performance of the model. However, in the third experiment, when
we use the MSFCABlock with complete multi-scale convolutional kernels, the performance
of the model improves significantly, with MIoU, Crop IoU, and Weed IoU reaching 91.72,
94.29, and 81.28%, respectively. This represents an improvement of 1.37, 2.97, and 4.86%,
respectively, compared to the model used in the second experiment, indicating that the
proposed MSFCABlock has a strong capability in terms of multi-scale feature extraction.
In the fourth experiment, we observe that the combination of Dice and focal losses in
the hybrid loss training mode improves the performance of the model, showing a higher
performance when dealing with class imbalance. In the fifth experiment, even with the ad-
dition of the hybrid loss training mode on top of the model used in the second experiment,
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the performance improvement is still limited. This is because the BABlock has limited
capability in extracting multi-scale features by using simple 3 × 3 and 1 × 1 convolutions,
resulting in a lower segmentation accuracy. In the sixth experiment, we test the complete
MSFCA-Net and the results showed a significant performance improvement, with MIoU,
Crop IoU, and Weed IoU reaching 92.64, 95.34, and 82.97%, respectively. As compared to
the BaseNet + BABlock + Hybrid Loss model in the fifth experiment, the improvements
in MIoU, Crop IoU, and Weed IoU are 1.30, 1.72, and 2.18%, respectively. Compared to
the BaseNet, the proposed MSFCA-Net showed even higher improvements of 4.31, 4.45,
and 8.32% in terms of MIoU, Crop IoU, and Weed IoU, respectively. This is because the
multi-scale convolutional kernels in MSFCA-Net focus more on multi-scale features, thus
allowing better fusion of low- and high-level features, enhancing the model’s ability in
feature extraction.

The above ablation experiments demonstrate the effectiveness of the proposed multi-
scale convolutional kernels with the convolutional attention mechanism and hybrid loss
training mode for weed segmentation. It has been shown that the proposed MSFCA-Net
performs well in segmenting crops, weeds, and background in agricultural images from
four agricultural image datasets, with a strong performance and generalization ability,
demonstrating its superiority.

4. Discussion

Currently, there are many semantic segmentation methods for crop weed segmentation
based on the UNet model with simple modifications. Guo et al. [49] added a depth-wise
separable convolution residual to a UNet, assigning different weights to each channel
of the feature map obtained based on the convolutional operations, and using adaptive
backpropagation to adjust the size of the one-dimensional convolutional kernel. This
module slightly increases the number of parameters, but improves the network’s feature
extraction performance and enhances attention on the channels. However, the ability of this
network to extract deep features for weed segmentation is insufficient and it lacks spatial
attention. This method’s segmentation performance is greatly influenced by imbalanced
categories of crops and weeds and the generalization of the model is poor.

Brilhador et al. [50] proposed a modified UNet for crop and weed segmentation.
Their training approach involved using annotated patches of images to effectively identify
specific regions of crops and weeds, enabling detailed shape segmentation. The use of
patch-level analysis can lead to data augmentation effects. However, it is crucial to consider
that the presence of crops and weeds within the patches can vary based on their sizes.
Therefore, if the dataset being used has a lower ratio of crops and weeds, training the model
may pose challenges. In summary, the performance of this approach is notably influenced
by the characteristics of the dataset. Zou et al. [30] simplified the neural network by
removing some deep convolutional layers from the UNet to achieve a lightweight network.
After fine-tuning, the performance based on their data exceeded that of the original UNet.
This method reduces the computational complexity and extraction of multi-scale deep
features by the network. However, when facing issues, such as complex backgrounds
and overlapping crops and weeds, the network struggles to achieve a good segmentation
performance, resulting in a significant decrease in the segmentation accuracy.

In order to address the issues of the existing weed segmentation methods based
on semantic segmentation models, we have developed a field crop weed segmentation
model using a multi-scale convolutional kernel attention mechanism based on multi-
scale asymmetric convolutional kernel design. The proposed MSFCABlock enhances
the network’s attention in both channel and spatial dimensions by focusing on better
contextual information fusion between the encoder and decoder, thus improving the multi-
scale feature aggregation capability and achieving high performance in complex scenes. By
comparing the results across different datasets, all models performed significantly better
on the soybean and sugar beet tests compared to the carrot and rice tests. We analysed
that the superior performance on our self-collected soybean dataset can be attributed to
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more accurate labelling of the data and a rich variety of samples in the training set. In the
sugar beet dataset, the larger quantity of data helped the network in feature extraction
and learning during training. However, the carrot and rice datasets posed challenges due
to their smaller size and higher complexity, which could significantly affect the model’s
learning capacity. Additionally, variations in data collection equipment and angles further
contributed to the differences in results across different datasets. Overall, our model showed
less susceptibility to these factors compared to other models. When comparing different
models on the same dataset, the proposed model outperforms current popular models
in almost all metrics on four different datasets, demonstrating its strong performance in
handling complex scenes and imbalanced categories, as well as its strong generalization
ability. From the results and segmentation graphs, it is evident that our MSFCA-Net
achieved excellent performance compared to models such as FCN, Unet, and Deeplabv3
when dealing with small datasets, complex background masking, and class imbalance
issues. Especially on the carrot dataset, the proposed model showed high performance even
with only 42 training images, indicating its strong learning ability on small sample datasets.

Although there are many types of weeds in the field, they are usually grouped into a
single category and cannot be segmented into specific types of weeds. For field crops, all
weeds should be removed as targets. This work also focuses on the segmentation of crops,
weeds, and background as three categories. However, with the development of smart
agriculture, a single weed classification model may not meet the needs of intelligent weed
segmentation system. Accurate identification and analysis of weed types are necessary
for specific pesticide formulations based on statistical field information. Additionally, our
model is suitable for precise image segmentation and requires a certain distance between
the camera and the soil to ensure image clarity. Therefore, our weed segmentation method
may not be well suited for applications in the field of UAVs. In future research, we will
further deepen our study based on weed species segmentation and the application of weed
segmentation on UAVs.

5. Conclusions

In this work, we proposed the MSFCA-Net, a multi-scale feature convolutional atten-
tion network for crop and weed segmentation. We used asymmetric large convolutional
kernels to design an attention mechanism that aggregates multi-scale features, and em-
ployed skip connections to effectively integrate the local and global contextual information,
thus significantly improving the segmentation accuracy of the proposed model and en-
hancing its ability to handle details and edge segmentation. We also designed a hybrid loss
calculation mode combining Dice loss and focal loss. In addition, we designed separate
loss functions for crops and weeds. This hybrid loss effectively improved the performance
of the proposed model in handling class imbalance, enhancing its ability to learn from
difficult samples. The experimental results show that our model demonstrated significantly
better performance compared to other models on the soybean, sugar beet, carrot, and rice
datasets, with mIoU scores of 92.64, 89.58, 79.34, and 78.12%, respectively. This confirms its
strong generalization ability and ability to handle crop and weed segmentation in complex
backgrounds. The ablation experiments on the network confirms the proposed model’s abil-
ity to extract features using asymmetric large convolutional kernels and spatial attention.
We also captured and manually annotated a dataset of soybean seedlings and weeds in a
field, thus enriching the dataset of agricultural weed data and providing rich and effective
data for future research. This work has important implications for the development of
intelligent weed control and smart agriculture.

Our study still face challenges, such as variations in field lighting conditions, mu-
tual occlusion between crops and weeds, and uneven sizes and quantities of crops and
weeds. While research has addressed these challenges to some extent, real-world field
conditions can introduce additional complexities that were not fully considered in this
study. Therefore, our future research will focus on deploying weed segmentation networks
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in real-world physical weed control robots and conducting relevant studies on targeted
agricultural spraying.
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