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Abstract: Rice is a staple food for over half of the global population, but it faces significant yield
losses: up to 52% due to leaf blast disease and brown spot diseases, respectively. This study aimed
at proposing a hybrid architecture, namely ResViT-Rice, by taking advantage of both CNN and
transformer for accurate detection of leaf blast and brown spot diseases. We employed ResNet as the
backbone network to establish a detection model and introduced the encoder component from the
transformer architecture. The convolutional block attention module was also integrated to ResViT-
Rice to further enhance the feature-extraction ability. We processed 1648 training and 104 testing
images for two diseases and the healthy class. To verify the effectiveness of the proposed ResViT-Rice,
we conducted comparative evaluation with popular deep learning models. The experimental result
suggested that ResViT-Rice achieved promising results in the rice disease-detection task, with the
highest accuracy reaching 0.9904. The corresponding precision, recall, and F1-score were all over 0.96,
with an AUC of up to 0.9987, and the corresponding loss rate was 0.0042. In conclusion, the proposed
ResViT-Rice can better extract features of different rice diseases, thereby providing a more accurate
and robust classification output.

Keywords: leaf blast disease; brown spot disease; hybrid architecture; transformer encoder;
convolutional neural network

1. Introduction

As one of the world’s most important food crops, rice is of great significance to global
food security and agricultural sustainability. Rice is a major food source in countries around
the world, and it also supports the livelihoods and economic development of millions
of people. Especially in many developing countries, rice as a major food crop not only
provides the food and energy needed for human life but also plays a positive role in
promoting employment and economic growth in rural areas.

However, rice diseases pose a serious threat to rice yield and quality, thereby affecting
the economic benefits and food security of farmers. Various types of rice diseases, such
as blast disease, sheath blight, brown spot, and bacterial leaf blight, have a significant
impact on rice yield and quality. Leaf blast (Magnaporthe oryzae) is a serious fungal disease
in rice caused by Pyricaria oryzae Cavara. It can infect any aboveground tissue of the rice
plant at any stage of its growth, causing lesions on leaves, leaf collars, stems, nodes, neck
nodes, and panicles [1]. Leaf blast has a negative impact on the physical properties of
rice. Rice grains infected by this disease dry out 10% [2] more than normal rice grains, and
the thickness of the rice grains decreases by 10%. The impact of leaf blast on rice yield is
enormous [3], as studies show that leaf blast can reduce rice yield by an average of 35% [4].

Brown spot (Bipolaris oryzae) is also a fungal disease, and it infects coleoptiles, leaves,
leaf sheaths, panicle branches, glumes, and spikelets. Brown spot, caused by Bipolaris
zeicola, is a major fatal disease in rice that can cause qualitative and quantitative crop
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damage [5–7]. Research indicates that bacterial brown spot in rice can reduce rice yields
by up to 52% [8]. Due to the widespread presence and serious threat of rice diseases, the
detection of rice diseases is particularly important. Early and accurate detection of rice
diseases can help farmers take timely prevention and control measures and reduce the
impact of diseases on rice yield and quality. Therefore, the development of efficient and
accurate rice disease-detection methods is urgently needed.

To date, there have been many studies on the detection of rice diseases involving
various methods applied in rice disease detection. Among them, many scholars have
utilized deep learning techniques [9,10]. Wang et al. [11] proposed the ADSNN-BO model,
which is a method based on attention neural networks and Bayesian optimization for rice
disease detection and classification, using the MobileNet structure and enhanced attention
mechanism. This model can effectively learn feature information and achieve an accuracy
of 94.65%. Daniya et al. [12] proposed the RideSpider water-wave algorithm based on deep
recurrent neural network and achieved a maximum accuracy of 90.5% in detecting rice
plant diseases. These studies extracted more distinctive features such as texture and color
for feature extraction. In addition to algorithmic recognition research, there has also been
research on rice disease detection. These methods typically use the YOLO object-detection
algorithm to achieve automation. Kim et al. [13] proposed a system for predicting and
automatically detecting the infection rate of rice bakanae disease (RBD) through drone
images, using the YOLOv3 and RestNETV2 101 models for detecting infected bundles and
classifying infected panicles, with average accuracies of 90.49% and 80.36%, respectively.
Haque et al. [14] achieved 90% accuracy in rice disease detection using the YOLOv5 deep
learning method. It is worth noting that several significant studies have begun to explore
the use of deep learning techniques for the detection of diseases in other crops, such as the
fusarium head blight in wheat [15], the Alternaria leaf blotch disease in apple trees [16], as
well as broader grain-crop phenotyping [17]. These studies demonstrated the potential and
feasibility of utilizing deep learning for the detection of diseases in rice [18]. Despite the
many applied rice disease-detection methods, the accuracy of these methods still needs
further improvement. Some methods also need to improve their applicability, especially
in dealing with complex rice diseases, and adaptability in different environments. Finally,
some detection methods such as fluorescence quantitative PCR and digital PCR are limited
by equipment and technical requirements, making it difficult to deploy them in the areas
with limited sources. Future research needs to address these issues to better support the
prevention and control of rice diseases.

In order to develop a more accurate and efficient method for detecting rice diseases,
this study proposes a deep learning model to improve the accuracy and efficiency of rice
disease detection. The model utilizes image processing and machine learning techniques
for training and optimization using similar images of different categories of rice diseases,
with stronger representation and learning capabilities. Specifically, this study proposes a
novel hybrid model called ResViT-Rice, which combines the convolutional neural network
and transformer architecture. The model is specifically designed for detecting rice diseases.
The contribution of this article can be summarized by the following three main points:

• The incorporation of the ResNet [19] model as the backbone network of our structure
enabled effective extraction of image features. The employment of residual blocks
paved the way for efficient information transfer, mitigating the gradient vanishing
issue and thereby enhancing the stability during the training phase, all the while
reducing the overall parameters;

• We incorporated the transformer architecture into our model, aiming to leverage its
powerful self-attention mechanism, which demonstrated exceptional performance
in image-processing tasks. Our approach adopted a hybrid structure that combined
CNNs and transformer encoder. The CNN component provided spatial inductive
bias and accelerated network convergence, thereby enhancing the stability of the
training process;
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• The convolutional block attention module (CBAM) attention mechanism was inte-
grated into the ResViT-Rice block, allowing the model to adjust adaptively to the
significance of different regions within the input feature map. This was especially
beneficial for rice disease-detection tasks where disease localization within the image
might be random. By deploying attention mechanisms, we ensured that the model
prioritized disease-afflicted areas, thereby boosting the model’s accuracy.

To evaluate the performance of the model, we conducted comparative experiments
with traditional rice disease-detection methods and mainstream CNN models. Meanwhile,
to further underscore the superiority of our ResViT block, we also carried out ablation
experiments. These investigations served to underline the integral role that the ResViT block
played in the overall performance of the model, thereby solidifying its place in our future
efforts in the field of rice disease detection. The workflow of this study is shown in Figure 1.
The results showed that ResViT-Rice obtained better accuracy in complex disease situations
and can provide strong support for early warning and precise control of rice diseases.
Therefore, ResViT-Rice is expected to be widely used in future rice disease detection.
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2. Materials and Methods
2.1. Data Source

The data used in this study were obtained from Kaggle (https://www.kaggle.com/
datasets/tiffanyjade/rice-disease-image-dataset, accessed on 1 March 2023), a well-known
open data science community that provides a large number of public datasets for researchers
and data scientists. We obtained a dataset from Kaggle that includes images of two types
of rice diseases, brown spot and leaf blast, as well as a category of healthy rice leaves. Each
category consists of 516 images. This dataset covers different types of rice diseases and has
a rich sample size, providing ample data resources for training and validating our deep
learning model in this study.

2.2. Data Preprocessing

Data preprocessing plays a crucial role in deep learning, as it can greatly improve the
performance and robustness of the model. In this study, we performed data preprocessing
on the rice disease images obtained from Kaggle. The preprocessing included adjusting
the contrast, brightness, and color of the images as well as applying Gaussian filtering
to remove noise. Adjusting the contrast, brightness, and color can enhance the details in
the images, while Gaussian filtering is a commonly used image-filtering method that can
effectively reduce noise and smooth the image. These processes helped improve the image
quality and make subsequent feature extraction and model training more accurate.

To ensure the stability of the model and the convergence of the training, we performed
the normalization operation over the original dataset. Normalization can scale the pixel
values of the images to a fixed range (e.g., 0 to 1), while the size of original images was
resized to 224 × 224 to better fit the input requirements of the deep learning model.
Meanwhile, the original dataset was split into training and testing sets in an 8:2 ratio. In
addition, to increase the diversity and richness of the training set, we also performed data
augmentation on the images in the dataset, including random rotation, translation, scaling,
and flipping. Data augmentation can increase the size of the training set and reduce the
risk of overfitting. Through normalization and data augmentation, we can enhance the
model’s ability to process and detect rice disease images. The final dataset size is shown
in Figure 2, with each category processed from the original 516 images into 1648 training
images and 104 test images.
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2.3. Proposal of ResViT-Rice

In this study, ResViT-Rice was proposed based on the architecture of deep convolu-
tional neural networks and vision transformers. A newly designed module, ResViT-Rice
block, was added to ResNet [19] to introduce the self-attention mechanism and global view
on the basis of CNN to improve the performance of the model. Figure 3 shows the pro-
posed model architecture, which is mainly composed of ordinary convolution, bottleneck,
ResViT-Rice block, adaptive pooling, and fully connected layers.
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For the general ResNet [19] architecture, it used residual connections to alleviate
the gradient-vanishing problem and make the network more easily trained. As the core
structure of ResNet, the bottleneck is mainly composed of three convolutional layers, which
were the 1 × 1 convolutional layer, 3 × 3 convolutional layer, and 1 × 1 convolutional
layer, respectively. The output channels of these convolutional layers were 1/4 of the
original input channel, 1/4 of the original input channel, and 4 times the original input
channel, respectively. This setting allowed the bottleneck module to reduce computational
complexity, increase network depth, and improve feature-extraction ability. The main idea
of the bottleneck module was to introduce a bottleneck structure that mapped the input
features to a low-dimensional space through a low-dimensional bottleneck layer and then
mapped the features back to the original dimension through a high-dimensional expansion
layer. This structure can reduce the number of parameters and computational complexity.
It can also improve the feature-extraction ability, thus achieving better performance. Given
the aforementioned reasons, coupled with its impressive capabilities in the visual domain,
we chose ResNet as our backbone network.

The most novel contribution, the ResViT-Rice block in ResViT-Rice, is shown in
Figure 4. It mainly consists of four components. First is the input channel transformation,
which reduces the dimension of the input channel using a 1 × 1 convolutional layer. This
can reduce computational complexity and the number of parameters and keep the feature
dimensionality consistent when inputting into the transformer encoder each time. Next are
the transformers with global views. Assuming that the feature map after the input channel
transformation is (H, W, D), the feature map can be unfolded on the surface of H and W
axis to obtain a word vector of (HW, D). After adding the positional encoding to this word
vector, it was sent to the encoder component. The formula of positional encoding can be
written in Equations (1) and (2) as follows:

PE(pos, 2i) = sin
( pos

100002i/dmodel

)
(1)

PE(pos, 2i + 1) = cos
( pos

100002i/dmodel

)
(2)

where pos represents the position in the input sequence, i represents the dimension index
in the PE vector, and dmodel represents the embedding dimension in the transformer model.
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The PE vector has a dimension of dmodel, so each position has a dmodel-dimensional
PE vector. This formula uses sine and cosine functions, which have different periods in
different dimensions. Therefore, for different dimensions, the values in the PE vector
vary according to different periods, providing unique encoding for different positions. By
adding the PE vector to the word-embedding vector, the transformer model can capture the
positional information in the input sequence. Additionally, the formula for the multi-head
attention mechanism in transformer encoder is given in Equation (3):

Multi−Head(Q, K, V) = Concat(head1, . . . , headh)W
O (3)

where Q, K, and V represent the query, key, and value vectors, respectively. h represents
the number of heads, Concat refers to concatenating the heads together, and WO is the
weight matrix for the output. The calculation for each head follows Equation (4):

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(4)

where WQ
i , WK

i , and WV
i are the weight matrices used to perform linear transformations on

the query, key, and value vectors, respectively. Attention refers to the attention function
used in the calculation. The attention function is calculated by Equation (5):

Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V (5)

where dk represents the dimensionality of the query or key vectors.
After obtaining the output, it can be transformed to the original feature map size (H,

W, D) based on the processing method used for the original input. Finally, the fusion and
output part first use a 1 × 1 convolution to transform the feature channel number to the
original size and then perform residual concatenation with the input feature map along
the channel direction. Then, a 3 × 3 convolutional kernel is used for feature fusion and
dimension reduction, and after batch normalization, the CBAM attention mechanism is
used again for global feature fusion and extraction. The CBAM attention module used here
includes a channel attention module and a spatial attention module. The channel attention
module adjusts the feature representation of different channels by learning channel weights,
thereby enhancing the model’s attention to different channel features. The spatial attention
module adjusts the feature representation of different spatial positions by learning spatial
weights, thereby enhancing the model’s attention to different spatial positions. The CBAM
attention module can adaptively adjust the weights of channel and spatial features to better
fuse and extract features. Finally, in Table 1, specific values for H, W, C, and D are provided.
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The serial number corresponds to the three ResViT-Rice blocks in Figure 3, respectively (the
three blocks marked in bright yellow from left to right).

Table 1. Pre-defined parameters of transformer encoder.

The Serial Number of ResViT-Rice Block 1 2 3

H 28 14 7
W 28 14 7
C 512 1024 2048
D 64 128 256

dim of feedforward 128 256 512
number of layers 2 4 3

As illustrated in Table 2, we aimed at reducing the training cost of the ResViT-Rice
model. To this end, we cataloged in the table the quantity of parameters contained within
each layer of the model while simultaneously tracing the evolution of image feature maps
at every stage. Through this comprehensive presentation of data, we can effectively
demonstrate the resource consumption involved during the training process of our model.

Table 2. ResViT-Rice architectural dimensions and params.

Layer Name Output Size Parameters

Input image 224 × 224 × 3 0
Conv 1 112 × 112 × 64 9408

BatchNorm 112 × 112 × 64 128
ReLu+MaxPool 112 × 112 × 64 0
Bottleneck 1-1 56 × 56 × 256 75,008
Bottleneck 1-2 56 × 56 × 256 70,400
Bottleneck 1-2 56 × 56 × 256 70,400
Bottleneck 2 28 × 28 × 512 379,392

ResViT-Rice block 1 28 × 28 × 512 4,967,906
Bottleneck 3 14 × 14 × 1024 1,512,448

ResViT-Rice block 2 14 × 14 × 1024 19,955,810
Bottleneck 4 7 × 7 × 2048 6,039,552

ResViT-Rice block3 7 × 7 × 2048 79,192,674
Conv 2 7 × 7 × 512 1,048,576

AdaptiveAvgPool+Dropout 1 × 1 × 512 0
Linear 2 1026
Total / 113,322,728

2.4. Other Mainstream Models

In this study, we also compared ResViT-Rice with other mainstream models, including
AlexNet, ResNet50, VGG19, ShuffleNet, and Swin transformer. ResNet50 uses a special
type of cross-layer connection [19], and this design allowed for smoother information flow
and avoiding the problem of gradient vanishing, making the training process more stable.
VGG19 uses small (3 × 3) convolutional kernels and a large number of convolutional
layers to extract richer features [20] and employs max pooling layers to reduce the size
of feature maps, followed by three fully connected layers for classification. ShuffleNet
employs group convolution and channel shuffling to achieve efficient feature extraction
and computation [21]. AlexNet is a deep convolutional neural network model proposed by
Alex Krizhevsky in 2012 [22]. The Swin transformer is a hierarchical transformer model that
achieves high efficiency and better performance through layered attention mechanisms [23].

These five network models all use the Adam optimizer and cosine annealing, with a
learning rate of 0.0001 and a batch size of 32. The Adam optimizer can adaptively adjust the
learning rate for each parameter, and the cosine annealing algorithm can dynamically adjust
the learning rate to improve the model’s generalization ability. The specific parameters of
the cosine annealing algorithm are T_0 = 10 and T_mul = 2.
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2.5. Model Evaluation

In this manuscript, we evaluated the deep learning models using various evalua-
tion metrics, including accuracy, precision, recall, F1-score, AUC, confusion matrix, and
ROC curve. Among them, accuracy is the most commonly used evaluation metric for
classification models; precision and recall are used to measure the prediction accuracy and
coverage of the model; and F1-score is a harmonic mean that takes both precision and
recall into consideration. The confusion matrix can be used to visualize the classification
model’s prediction results, providing more detailed performance analysis. The ROC curve
is used to evaluate the performance of binary classification models, where the larger the
area under the curve (AUC value), the better the model’s performance. Table 3 shows the
formulas and explanations of the various evaluation metrics used in this study, which can
comprehensively evaluate the model’s performance and provide strong support for model
selection and improvement.

Table 3. Formulas of evaluation metrics.

Metric Equation

Accuracy
TP + TN

TP + TN + FP + FN

Precision
TP

TP + FP

Recall
TP

TP + FN

F1-score precision × recall
precision + recall

In addition, to demonstrate the generalization capability of our model, namely its
excellent performance under changes in environmental conditions and plant diseases,
we conducted a set of experiments on a dataset [24] with a complex background and
a wider range of rice disease categories. The corresponding results were added to the
Supplementary Materials.

2.6. Ablation Experiments

Ablation experiments are a vital approach in machine learning, and they are used
to understand the contribution of individual components to the overall performance of
a model. By systematically ablating parts of the model, the effect on performance can be
observed, providing a way to evaluate the importance of these components.

In this research, we conducted three groups of comparison experiments. We applied
the ResViT-Rice model to two detection tasks, namely leaf blast and brown spot. For each
task, we performed ablation experiments on different elements of the model: block3, a
combination of block2 and block3, and the convolutional block attention module (CBAM),
respectively. These ablation experiments allowed us to measure the contribution of each
individual block and the CBAM attention mechanism to the overall performance of the
ResViT-Rice model.

3. Result
3.1. Experimental Setup

In this study, the dataset was divided into training and validation sets at an 8:2 ratio.
The experiments were conducted on a computer equipped with an NVIDIA RTX 3090 GPU
and 11th generation Intel Core i7 CPU, providing sufficient computing power to support
deep learning model training and evaluation. We used PyTorch 2.0 with CUDA 11.7 as
the deep learning framework and Python 3.9.16 as the programming language. To assist
in implementing deep learning models and model evaluation, we also utilized several
commonly used Python libraries, such as scikit-learn 1.2.2, numpy 1.23.5, and pandas 1.5.3.
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3.2. Results of Data Preprocessing

In order to enhance the diversity of the dataset and improve the generalization ability
of the model, we first preprocessed the data. As shown in Figure 5a–c, from top to bottom,
comparisons of brown spot, leaf blast, and healthy images before and after data preprocess-
ing and augmentation are presented. It can be observed that after image preprocessing, the
characteristics of each category became more distinct, while the semantic information was
preserved well, which is beneficial for the model to learn and classify effectively.
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3.3. Results of ResViT-Rice

The results suggested that ResViT-Rice achieved excellent performance. As shown
in Table 4, it achieved a recognition accuracy of 99.04% and 96.63% for the two types of
rice diseases, respectively, which were the highest among all the models evaluated, with
an average accuracy of 97.84%. Compared with AlexNet, ResNet50, VGG19, ShuffleNet,
and Swin transformer, the ResViT-Rice model outperformed the best-performing ResNet50
model by 4.81% in terms of accuracy. In addition, when evaluated with precision, recall,
F1-score, and AUC value, the ResViT-Rice model consistently outperformed the other four
classic CNN models by at least 4% across all evaluation metrics.

From another perspective, Figure 6a,b depict the confusion matrix of the five classic
models and ResViT-Rice on the brown spot and leaf blast tasks, respectively. By comparing
the confusion matrix, it was evident that the ResViT-Rice model achieved the best classifica-
tion performance, as indicated by the darkest colors on the main diagonal. As shown in
Figure 7, the ROC curves further illustrate the significant differences in performance among
the models. In Figure 7b, the ResViT-Rice curve almost entirely overlaps with the top-left
corner, indicating the largest area under the curve (AUC). The AUC values of ResViT-Rice
for both rice diseases reached 0.99, demonstrating its strong generalization ability and
superior performance in disease detection.
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Table 4. Evaluation Results of AlexNet, ResNet50, ShuffleNet, VGG19, Swin transformer, and
ResViT-Rice. Bold fonts indicate the best performance in each category.

Model Accuracy Precision Recall F1 Score AUC

Leaf Blast

AlexNet [22] 0.9087 0.9087 0.9087 0.9087 0.9735
ResNet50 [19] 0.9567 0.9578 0.9567 0.9567 0.9850
VGG19 [20] 0.8221 0.8236 0.8221 0.8219 0.9056

ShuffleNet [21] 0.7067 0.7072 0.7067 0.7066 0.8108
Swin Transformer [23] 0.9326 0.9352 0.9326 0.9325 0.9766

ResViT-Rice 0.9904 0.9904 0.9904 0.9904 0.9987

Brown Spot

AlexNet [22] 0.8990 0.9020 0.8990 0.8988 0.9449
ResNet50 [19] 0.9038 0.9044 0.9038 0.9038 0.9583
VGG19 [20] 0.9038 0.9040 0.9038 0.9038 0.9517

ShuffleNet [21] 0.7788 0.7826 0.7788 0.7781 0.8760
Swin Transformer [23] 0.8557 0.8623 0.8557 0.8557 0.9495

ResViT-Rice 0.9663 0.9674 0.9663 0.9663 0.9873

Healthy

AlexNet [22] 0.9294 0.9330 0.9294 0.9302 0.9705
ResNet50 [19] 0.9358 0.9362 0.9358 0.9360 0.9863
VGG19 [20] 0.8974 0.9015 0.8974 0.8985 0.9436

ShuffleNet [21] 0.7500 0.7500 0.7500 0.7500 0.8347
Swin Transformer [23] 0.8846 0.8963 0.8846 0.8867 0.9636

ResViT-Rice 0.9839 0.9840 0.9839 0.9839 0.9962
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As shown in Table 4, ShuffleNet performed the worst, with an accuracy of less than
0.8 in the rice disease-detection task. This may be due to the fact that lightweight networks
were limited to extracted features. ResNet50 had the best classification performance among
the all models, achieving an accuracy of over 0.9. The use of residual modules allowed
ResNet50 to better extract features, which greatly improved network performance, so
residual neural networks often performed well in various classification tasks. However,
there was still a considerable gap between ResNet50 and ResViT-Rice.

The Swin transformer demonstrated an acceptable performance, achieving 0.9326
accuracy in the leaf-blast-classification task. However, its performance in the brown-spot-
classification task was mediocre, indicating both the potential and limitations of the Swin
transformer. In this classification task, the performance of AlexNet ranked second to
ResNet50, with an average accuracy above 0.9038 in both rice disease-detection tasks.
VGG19, as the most complex and parameter-heavy model among these networks, had
accuracy of 0.8221 and 0.9038 in the two classification tasks, respectively. However, its
overall accuracy was less than 0.9.

3.4. Results of SOTA Models

Table 5 summarizes the latest research on rice disease classification and the corre-
sponding accuracy. Various methods were used to complete the rice disease classification
task. For instance, Wang et al. [11] applied both the attention mechanism and Bayesian
optimization to a depth-wise separable neural network. Kim et al. [13] and Haque et al. [14]
adopted the YOLO serious model to classify different classes of rice diseases. It is also
noted that various backbones were used, including ResNet, GoogLeNet, VGG, ShuffleNet,
and so on. Although the dataset used in each study varied in sample sizes, the disease
categories in these remained almost the same. Judging from the evaluation metrics (ac-
curacy, precision, recall, etc.), it can be concluded that ResViT-Rice achieved the optimal
performance among all.
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Table 5. Summary of different latest studies on rice disease classification with the corresponding accuracies.

Reference Method Dataset Used Accuracy Precision Recall F1-Score

[11] Neural network with
Bayesian optimization 500 images 0.9465 0.9260 0.8740 0.8960

[12] RideSpider water wave
(RSW) NA 0.9050 NA 0.7900 NA

[13] YOLOv3 28,365 images 0.9049 NA NA NA
[14] YOLOv5 1500 images 0.9000 0.9000 0.6700 0.7600
[25] VGG-16 NA 0.9246 NA NA NA
[26] Inception-ResNet-V2 984 images 0.9268 0.9370 0.9260 0.9280
[27] Residual neural network 120 images 0.9583 0.9400 0.9400 0.9400
[28] Improved ShuffleNet V2 1608 images 0.9440 0.9680 0.9670 0.9680

Our Work
(ResViT-Rice)

Hybrid architecture of
CNN and transformer 1548 images 0.9910 0.9900 0.9900 0.9900

Note: Bold values indicate the optimal performance.

3.5. Feature-Visualization Process

Deep learning models have shown remarkable performance in tasks such as image
classification and object detection. However, due to their black-box nature, explaining the
decision-making process behind their predictions remains a challenge. Visualizing the
feature maps of neural networks has been widely used to gain further insights into the
model. Grad-CAM is a gradient-based explainability technique that generates heatmaps
and highlights the areas (pixels) of a given image that the model focuses on, thereby aiding
in understanding the model’s decision-making process and inference basis. To better
understand the differences between feature maps extracted from different rice leaf disease
images and evaluate the model’s attention regions, this experiment used Grad-CAM for
visualization. The experimental results, shown in Figure 8, help further elucidate the
model’s decision-making process and feature-extraction process.
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From the results of ResViT-Rice shown in Figure 8a, it can be observed that the model
exhibited deeper colors and textures in the vicinity of the disease spots, indicating that the
model can accurately capture the features of these disease spots. In comparison, AlexNet,
ShuffleNet, and VGG also highlighted the colors and textures in the regions where the
disease spots were located to varying degrees. However, AlexNet additionally highlighted
an area that should not be focused on, mistaking it for a disease spot, while ShuffleNet
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failed to cover all the disease spots comprehensively. VGG19 almost focused on the entire
leaf, failing to better highlight the prominent features. Although ResNet50 achieved the
highest accuracy compared with other mainstream models, it can be observed from both
Figure 8a,b that the features were not related to the disease spots. For the leaf-blast-diseased
leaves shown in Figure 8b, ResViT-Rice also generated correct colors and textures in the
most densely concentrated disease spots, obtaining the best features in comparison.

3.6. Results of Ablation Experiments

The results of the ablation experiments for the ResViT-Rice model are presented in
Table 6. These outcomes offer a detailed insight into the relative significance of each
module/block in the model.

Table 6. Results of the ResViT-Rice model ablation experiment. Bold fonts indicate the best perfor-
mance in each category.

Module to be Ablated Accuracy Precision Recall F1 Score AUC

Leaf Blast

Block 3 0.8605 0.8704 0.8605 0.8596 0.9581
Block 2 and 3 0.8509 0.8512 0.8509 0.8509 0.9378

CBAM 0.8221 0.8235 0.8221 0.8219 0.9000
None (ResViT-Rice) 0.9904 0.9904 0.9904 0.9904 0.9987

Brown Spot

Block 3 0.8990 0.9035 0.8990 0.8987 0.9596
Block 2 and 3 0.8557 0.8605 0.8557 0.8552 0.9498

CBAM 0.8653 0.8675 0.8653 0.8651 0.9258
None (ResViT-Rice) 0.9663 0.9674 0.9663 0.9663 0.9873

For the leaf-blast-detection task, the removal of block 3 resulted in an accuracy, preci-
sion, recall, and F1-score of 0.8605, 0.8704, 0.8605, and 0.8596, respectively, with an AUC
of 0.9581. This reflected a decrease in performance compared to the intact ResViT-Rice
model, thereby indicating the importance of block 3 to the model’s functioning. When both
blocks 2 and 3 were ablated, the metrics showed a further slight decline. However, the most
considerable reduction in model performance was observed when the CBAM was removed,
with a drop in all metrics, signifying the CBAM’s crucial role in the model’s effectiveness.

Similarly, the ablation experiments for the brown-spot-detection task revealed the
value of each module. The removal of block 3 led to a decrease in all performance metrics,
indicating its importance. However, unlike in the leaf blast task, the ablation of blocks
2 and 3 in the brown spot task resulted in more considerable performance degradation,
signifying the potentially greater role of the ResViT block in this task. The removal of the
CBAM also led to lower performance, underscoring its essential role across tasks.

In both tasks, the highest performance across all metrics was achieved with the
full ResViT-Rice model, which suggests that each component of the model contributes
significantly to its overall performance. The results from these ablation experiments
demonstrate the model’s robustness and the importance of its individual blocks as well as
the CBAM’s attention mechanism.

4. Discussion
4.1. Advantages of ResViT-Rice

In this paper, a hybrid CNN and transformer model called ResViT-Rice is proposed
for rice disease detection. The ablation studies reinforce the fact that all parts of the ResViT-
Rice model played essential roles in its superior performance in detecting rice diseases.
They underline the significance of using a comprehensive and intact model to ensure the
most accurate detection for rice diseases. The experimental results of comparing with
mainstream models such as ResNet50 and VGG19 demonstrated that our model performed
remarkably well in the rice disease detection, achieving a highest accuracy of 99%, which
was about 5% higher than other mainstream models, indicating its precise identification of
rice diseases.
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The ResViT-Rice model achieved its excellent performance for three main reasons:

• ResViT-Rice employed the outstanding ResNet model as the backbone network to
extract image features. The use of residual structures allowed for a smoother infor-
mation transfer, avoiding the problem of gradient vanishing and making the network
more stable during training while also reducing the number of parameters [29,30];

• The transformer architecture was introduced to the proposed model. Although many
excellent transformer-based works have emerged in the visual domain, such as the
Swin transformer [31], there is still a gap in terms of model parameters and infer-
ence speed compared to lightweight models based on CNN [32]. Most importantly,
training a transformer architecture on images is difficult, as it requires more training
data, epochs, and regularization, and the transformer architecture is sensitive to data
augmentation [33]. However, we are unwilling to abandon the powerful performance
of the self-attention mechanism of the transformer architecture when applied to im-
ages. Therefore, we adopted a hybrid architecture of CNN and transformer. CNN
can provide spatial inductive bias and accelerate network convergence, making the
network training process more stable;

• The CBAM was adopted in the ResViT-Rice block, which can adaptively adjust the
importance of different regions in the input feature map [34], thereby increasing the
model’s attention to important areas. In rice disease-detection tasks, the location of
some diseases in the image may be random, so by introducing attention mechanisms,
we can make the model pay more attention to disease areas, thereby improving the
model’s accuracy [35].

4.2. Limitations of Other Mainstream Models

In our study, we found that although other mainstream models such as AlexNet
and VGG19 performed well in rice disease-detection tasks, numerous scholars have also
employed these two networks to detect rice diseases. However, their accuracy rates largely
plateaued around 92% [25,36,37]. On the other hand, several scholars utilized ResNet or
networks with residual structures for rice disease detection, generally achieving higher
accuracies, primarily in the vicinity of 95% [26,27,38,39]. These scholars’ work attested to
the superior performance of the residual structure, which is one reason we chose ResNet
as our backbone network. Despite these models’ commendable performances [39], they
still fell short when compared to our proposed ResViT-Rice. This disparity can be ascribed
to a couple of critical factors. Firstly, the differences among rice diseases were subtle,
particularly between brown spot and leaf blast, which are very similar. Although some
neural networks such as ResNet50 and VGG19 have deep layers, the feature-extraction
ability of these models is insufficient [40], particularly without the help of the attention
mechanism. Judging from Figure 8, it was noted that the decision-making mechanism
of each model varied since each model focused on different contributing areas (pixels).
The proposed ResViT-Rice can detect most of the symptoms, thereby generating more
accurate results. Secondly, the power of the traditional convolution kernel is limited [41].
This motivated us to take advantage of the transformer encoder architecture, where the
multi-head attention was integrated. The multi-head attention mechanism enabled the
model to capture various representations from subspaces at different positions.

4.3. Limitation of Our Work

Although our research achieved certain success, there are still limitations that need
to be further addressed. For instance, deploying well-trained models in edge devices
is trending. However, this requires establishing a disease-detection model with fewer
trainable parameters and low complexity. Under such a circumstance, using popular
lightweight models such as MobileNet, ShuffleNet, and EfficientNet as the backbone
would become a preferable approach [42,43]. We examined one of the lightweight neural
networks, ShuffleNet, in the comparative evaluation, and the experimental result showed
that ShuffleNet achieved the worst performance. Therefore, it is important to achieve
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a balance between the model size and its performance. Another lightweight approach
would be the use of model-compression techniques [44,45]. For example, knowledge
distilling, transfer learning, deep compression, network slimming, etc., are well-known
methods. On the one hand, guiding “small” neural networks by “large” ones can usually
accelerate the training process and avoid the overfitting issue. On the other hand, removing
the parameters that have minor contributions would not affect the overall performance.
Considering the model size of ResViT-Rice, in the future, we will attempt to narrow down
the model size and deploy it to an embedded device for practical applications in the field.
In addition, it is worth mentioning that due to the limitations of our dataset, we were
unable to recognize and detect different stages of disease progression. In the future, we
will collect more sample images to further our understanding and detection of disease-
development stages.

5. Conclusions

The aim of this study was to develop an accurate and efficient method for identifying
rice diseases. Our work can be summarized into three highlights:

• By integrating the residual module with the encoder from the transformer architecture
and introducing attention mechanisms, we proposed an improved deep learning
model, ResViT-Rice, and compared it with other mainstream models. The results
showed that our model performed the best in all evaluation metrics, with an accuracy
of up to 99%;

• Based on the results of our ablation experiments, we had made the significant finding
that our ResViT block was essentially an attention mechanism module. It was not only
compatible with the ResNet50 network model but can also be combined with various
other network models. This suggests that our ResViT block has wide applicability and
can be broadly applied in various scenarios. By incorporating the ResViT block into
other network models, we can further enhance their performance, thereby boosting
their expressiveness. Therefore, our research is not limited to ResNet50 and can
be extended to other network structures, providing more competitive solutions for
different fields and tasks;

• Finally, our method is not only limited to rice disease detection but is also applicable
to the detection and identification of diseases in other crops. In the future, this method
is expected to be widely used in agriculture, contributing to the improvement of
agricultural production and economic benefits.
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Blast, (c) Bacterial Blight, and (d) Tungro; Figure S2. The number of data after pre-processing;
Table S1: Additional experimental Evaluation Results of AlexNet, ResNet50, ShuffleNet, VGG19,
Swin-Transformer, and ResViT-Rice.

Author Contributions: Data curation, Y.Z.; formal analysis, Y.Z. and Y.D.; funding acquisition,
Z.Z.; methodology, Y.Z.; project administration, Z.Z.; resources, H.Y.; software, Y.Z.; supervi-
sion, Z.Z.; validation, Y.Z. and L.Z.; visualization, Y.D.; writing—original draft, Y.Z. and Z.Z.;
writing—review and editing, H.Y. and Z.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: The research leading to the presented results has been undertaken within the Startup
Foundation of New Professor at Nanjing Agricultural University (Grant No. 106-804005).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data used in this study are available from the corresponding author
upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/agriculture13061264/s1
https://www.mdpi.com/article/10.3390/agriculture13061264/s1


Agriculture 2023, 13, 1264 16 of 17

References
1. Asibi, A.E.; Chai, Q.; Coulter, J.A. Rice Blast: A Disease with Implications for Global Food Security. Agronomy 2019, 9, 451.

[CrossRef]
2. Candole, B.L.; Siebenmorgen, T.J.; Lee, F.N.; Cartwright, R.D. Effect of Rice Blast and Sheath Blight on Physical Properties of

Selected Rice Cultivars. Cereal Chem. J. 2000, 77, 535–540. [CrossRef]
3. Ng, L.C.; Sariah, M.; Sariam, O.; Radziah, O.; Zainal Abidin, M.A. Bio-efficacy of microbial-fortified rice straw compost on rice

blast disease severity, growth and yield of aerobic rice. Australas. Plant Pathol. 2012, 41, 541–549. [CrossRef]
4. Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Hasan, M.M.; Oladosu, Y.A.; Magaji, U.G.; Akos, I.; Olalekan, K.K. Bacterial

leaf blight resistance in rice: A review of conventional breeding to molecular approach. Mol. Biol. Rep. 2019, 46, 1519–1532.
[CrossRef]

5. Chhabra, R.; Sharma, R.; Hunjan, M.S.; Sharma, V.K.; Sharma, P.; Chauhan, S.K. Microstructural and metabolic variations induced
by Bipolaris oryzae inciting brown spot disease of rice. Cereal Res. Commun. 2023. [CrossRef]

6. Aslam, H.M.U.; Naveed, K.; Hussain, S.I.; Shakeel, Q.; Ashraf, W.; Anwaar, H.A.; Raza, M.M.; Sarfraz, S.; Tariq, I. First Report of
Brown Leaf Spot of Rice Caused by Bipolaris zeicola in Pakistan. Plant Dis. 2021, 105, 212. [CrossRef]

7. Nur Ain Izzati, M.Z.; Madihah, M.Z.A.; Nor Azizah, K.; Najihah, A.; Muskhazli, M. First Report of Bipolaris cactivora Causing
Brown Leaf Spot in Rice in Malaysia. Plant Dis. 2019, 103, 1021. [CrossRef]

8. Barnwal, M.K.; Kotasthane, A.S.; Magculia, N.; Mukherjee, P.K.; Savary, S.; Sharma, A.K.; Singh, H.B.; Singh, U.; Sparks, A.H.;
Variar, M.; et al. A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities
and knowledge gaps. Eur. J. Plant Pathol. 2013, 136, 443–457. [CrossRef]

9. Mamat, N.; Othman, M.F.; Abdulghafor, R.; Alwan, A.A.; Gulzar, Y. Enhancing Image Annotation Technique of Fruit Classification
Using a Deep Learning Approach. Sustainability 2023, 15, 901. [CrossRef]

10. Gulzar, Y. Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique. Sustainability 2023,
15, 1906.

11. Wang, Y.; Wang, H.; Peng, Z. Rice diseases detection and classification using attention based neural network and bayesian
optimization. Expert Syst. Appl. 2021, 178, 114770. [CrossRef]

12. Daniya, T.; Vigneshwari, S. Deep Neural Network for Disease Detection in Rice Plant Using the Texture and Deep Features.
Comput. J. 2021, 65, 1812–1825. [CrossRef]

13. Kim, D.; Jeong, S.; Kim, B.; Kim, S.-j.; Kim, H.; Jeong, S.; Yun, G.-y.; Kim, K.-Y.; Park, K. Automated Detection of Rice Bakanae
Disease via Drone Imagery. Sensors 2023, 23, 32. [CrossRef]

14. Haque, M.E.; Rahman, A.; Junaeid, I.; Hoque, S.U.; Paul, M. Rice Leaf Disease Classification and Detection Using YOLOv5. arXiv
2022, arXiv:2209.01579.

15. Gao, Y.; Wang, H.; Li, M.; Su, W.-H. Automatic Tandem Dual BlendMask Networks for Severity Assessment of Wheat Fusarium
Head Blight. Agriculture 2022, 12, 1493. [CrossRef]

16. Liu, B.-Y.; Fan, K.-J.; Su, W.-H.; Peng, Y. Two-Stage Convolutional Neural Networks for Diagnosing the Severity of Alternaria
Leaf Blotch Disease of the Apple Tree. Remote Sens. 2022, 14, 2519. [CrossRef]

17. Wang, Y.-H.; Su, W.-H. Convolutional Neural Networks in Computer Vision for Grain Crop Phenotyping: A Review. Agronomy
2022, 12, 2659. [CrossRef]

18. Su, W.-H.; Zhang, J.; Yang, C.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Automatic Evaluation of Wheat Resistance to
Fusarium Head Blight Using Dual Mask-RCNN Deep Learning Frameworks in Computer Vision. Remote Sens. 2021, 13, 26.
[CrossRef]

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

20. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
21. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 6848–6856.

22. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2012,
60, 84–90. [CrossRef]

23. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC,
Canada, 10–17 October 2021; pp. 9992–10002.

24. Sethy, P.K.; Barpanda, N.K.; Rath, A.K.; Behera, S.K. Deep feature based rice leaf disease identification using support vector
machine. Comput. Electron. Agric. 2020, 175, 105527. [CrossRef]

25. Ghosal, S.; Sarkar, K. Rice Leaf Diseases Classification Using CNN With Transfer Learning. In Proceedings of the 2020 IEEE
Calcutta Conference (CALCON), Salt Lake City, UT, USA, 28–29 February 2020; pp. 230–236.

26. Islam, M.A.; Shuvo, M.N.R.; Shamsojjaman, M.; Hasan, S.; Shahadat, M.A.; Khatun, T. An Automated Convolutional Neural
Network Based Approach for Paddy Leaf Disease Detection. Int. J. Adv. Comput. Sci. Appl. 2021, 12. [CrossRef]

27. Patidar, S.; Pandey, A.; Shirish, B.A.; Sriram, A. Rice Plant Disease Detection and Classification Using Deep Residual Learning. In
Proceedings of the International Conference on Machine Learning, Vienna, Austria, 12–18 July 2020.

https://doi.org/10.3390/agronomy9080451
https://doi.org/10.1094/CCHEM.2000.77.5.535
https://doi.org/10.1007/s13313-012-0145-3
https://doi.org/10.1007/s11033-019-04584-2
https://doi.org/10.1007/s42976-023-00351-z
https://doi.org/10.1094/PDIS-04-20-0838-PDN
https://doi.org/10.1094/PDIS-08-18-1384-PDN
https://doi.org/10.1007/s10658-013-0195-6
https://doi.org/10.3390/su15020901
https://doi.org/10.1016/j.eswa.2021.114770
https://doi.org/10.1093/comjnl/bxab022
https://doi.org/10.3390/s23010032
https://doi.org/10.3390/agriculture12091493
https://doi.org/10.3390/rs14112519
https://doi.org/10.3390/agronomy12112659
https://doi.org/10.3390/rs13010026
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.compag.2020.105527
https://doi.org/10.14569/IJACSA.2021.0120134


Agriculture 2023, 13, 1264 17 of 17

28. Zhou, Y.; Fu, C.; Zhai, Y.; Li, J.; Jin, Z.; Xu, Y. Identification of Rice Leaf Disease Using Improved ShuffleNet V2. Comput. Mater.
Contin. 2023, 75, 4501–4517. [CrossRef]

29. He, F.X.; Liu, T.L.; Tao, D.C. Why ResNet Works? Residuals Generalize. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 5349–5362.
[CrossRef] [PubMed]

30. Allen-Zhu, Z.; Li, Y. What can ResNet learn efficiently, going beyond kernels? In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates Inc.: Red Hook, NY,
USA, 2019; p. 809.

31. Liu, Z.; Hu, H.; Lin, Y.; Yao, Z.; Xie, Z.; Wei, Y.; Ning, J.; Cao, Y.; Zhang, Z.; Dong, L.; et al. Swin Transformer V2: Scaling Up
Capacity and Resolution. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, 18–24 June 2022; pp. 11999–12009.

32. Touvron, H.; Cord, M.; Sablayrolles, A.; Synnaeve, G.; J’egou, H.e. Going deeper with Image Transformers. In Proceedings of the
2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 10–17 October 2021; pp. 32–42.

33. Graham, B.; El-Nouby, A.; Touvron, H.; Stock, P.; Joulin, A.; Jégou, H.; Douze, M. LeViT: A Vision Transformer in ConvNet’s
Clothing for Faster Inference. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
Montreal, BC, Canada, 10–17 October 2021; pp. 12239–12249.

34. Yang, X. An Overview of the Attention Mechanisms in Computer Vision. J. Phys. Conf. Ser. 2020, 1693, 012173. [CrossRef]
35. Peng, J.; Wang, Y.; Jiang, P.; Zhang, R.; Chen, H. RiceDRA-Net: Precise Identification of Rice Leaf Diseases with Complex

Backgrounds Using a Res-Attention Mechanism. Appl. Sci. 2023, 13, 4928. [CrossRef]
36. Yakkundimath, R.; Saunshi, G.; Anami, B.; Palaiah, S. Classification of Rice Diseases using Convolutional Neural Network Models.

J. Inst. Eng. (India) Ser. B 2022, 103, 1047–1059. [CrossRef]
37. Prasetyo, H.D.; Triatmoko, H.; Nurdiansyah; Isnainiyah, I.N. The Implementation of CNN on Website-based Rice Plant Disease

Detection. In Proceedings of the 2020 International Conference on Informatics, Multimedia, Cyber and Information System
(ICIMCIS), Jakarta, Indonesia, 19–20 November 2020; pp. 75–80.

38. Ajra, H.; Nahar, M.K.; Sarkar, L.; Islam, M.S. Disease Detection of Plant Leaf using Image Processing and CNN with Preventive
Measures. In Proceedings of the 2020 Emerging Technology in Computing, Communication and Electronics (ETCCE), Dhaka,
Bangladesh, 21–22 December 2020; pp. 1–6.

39. Acharya, A.; Muvvala, A.; Gawali, S.; Dhopavkar, R.; Kadam, R.; Harsola, A. Plant Disease detection for paddy crop using
Ensemble of CNNs. In Proceedings of the 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangaluru,
India, 6–8 November 2020; pp. 1–6.

40. Zhao, X.; Huang, P.; Shu, X. Wavelet-Attention CNN for image classification. Multimed. Syst. 2022, 28, 915–924. [CrossRef]
41. Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. CvT: Introducing Convolutions to Vision Transformers. In

Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 10–17 October
2021; pp. 22–31.

42. Kumar, P.R.; Kiran, R.; Singh, U.P.; Rathore, Y.; Janghel, R.R. Rice Leaf Disease Detection using Mobile Net and Inception V.3. In
Proceedings of the 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT),
Indore, India, 23–24 April 2022; pp. 282–286.

43. Masykur, F.; Adi, K.; Nurhayati, O.D. Classification of Paddy Leaf Disease Using MobileNet Model. In Proceedings of the 2022
IEEE 8th International Conference on Computing, Engineering and Design (ICCED), Virtual, 28–29 July 2022; pp. 1–4.

44. Chavan, A.; Shen, Z.; Liu, Z.; Liu, Z.; Cheng, K.T.; Xing, E. Vision Transformer Slimming: Multi-Dimension Searching in
Continuous Optimization Space. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 4921–4931.

45. He, J.; Ding, Y.; Zhang, M.; Li, D. Towards efficient network compression via Few-Shot Slimming. Neural Netw. 2022, 147, 113–125.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.32604/cmc.2023.038446
https://doi.org/10.1109/TNNLS.2020.2966319
https://www.ncbi.nlm.nih.gov/pubmed/32031953
https://doi.org/10.1088/1742-6596/1693/1/012173
https://doi.org/10.3390/app13084928
https://doi.org/10.1007/s40031-021-00704-4
https://doi.org/10.1007/s00530-022-00889-8
https://doi.org/10.1016/j.neunet.2021.12.011

	Introduction 
	Materials and Methods 
	Data Source 
	Data Preprocessing 
	Proposal of ResViT-Rice 
	Other Mainstream Models 
	Model Evaluation 
	Ablation Experiments 

	Result 
	Experimental Setup 
	Results of Data Preprocessing 
	Results of ResViT-Rice 
	Results of SOTA Models 
	Feature-Visualization Process 
	Results of Ablation Experiments 

	Discussion 
	Advantages of ResViT-Rice 
	Limitations of Other Mainstream Models 
	Limitation of Our Work 

	Conclusions 
	References

