Design and Experiment of Row Cleaner with Staggered Disc Teeth for No-Till Planter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Structure and Working Principle
2.2. Design and Analysis of Straw Cleaner
2.2.1. Analysis of Kinematic Parameter
2.2.2. Number of Claw Teeth
2.2.3. Shape of Claw Teeth
2.2.4. Blade Shape of Claw Teeth
2.3. Experiment Method
2.4. EDEM Simulation Test
2.4.1. Setting of Simulation Test Conditions
2.4.2. Construction of the Simulation Model
2.4.3. Simulation Test Process
2.4.4. Simulation Testing Methods
- Working resistance
- 2.
- Straw cleaning rate
3. Results and Analysis
3.1. Discrete Element Simulation Test Results and Optimization
3.2. Field Test Verification
3.2.1. Test Methods
- Straw cleaning rate of seedbed
- 2.
- Working width
- 3.
- Passability
3.2.2. Test Results and Analysis
4. Discussion
5. Conclusions
- Complete the overall structural design of the straw cleaning and anti-blocking device of the disc teeth staggered seeder, which is mainly composed of two circular straw cleaning disks installed alternately by disc teeth through appropriate installation angle adjustment. Through kinematics analysis, establish its collaborative parameter model, verify the feasibility of the device through discrete element model establishment and simulation tests, and find out the best operating parameter combination of the combinations available. It can greatly improve the congestion situation during the corn no-tillage sowing process;
- The key collaborative operation parameters of the device were optimized through regression analysis. When α = 70°, β = 30°, and v0 = 8 km/h, the device has the highest straw cleaning rate (95.87%);
- In order to verify the reliability, scientificity, and feasibility of the straw cleaning and blocking prevention device of the disc tooth staggered seeder, a soil groove test was conducted. Compared with the traditional double disc opposed non-staggered straw cleaning device, when the straw coverage is 0.9375 kg/m2, the disc tooth staggered device does not block, and the average cleaning rate is 90.59%. The operating effect is significantly better than the traditional double disc opposed non-staggered straw cleaning device, verifying the feasibility of the disc tooth staggered device. It is basically consistent with the results of the discrete element simulation test, which verifies the scientificity, feasibility, and accuracy of the quadratic polynomial regression model.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.P.; Wang, Z.W.; Diao, P.S.; Du, R.C.; Li, H.W.; Yao, W.Y. Short-term effects of mechanical and ecological tillage pattern on physical and chemical characteristics of soil in arid area. Trans. Chin. Trans. Chin. Soc. Agric. Mach. 2018, 49, 45–55. [Google Scholar]
- Malasli, M.C.; Ahmet, C. Disc angle and tilt angle effects on forces acting on a single-disc type no-till seeder opener. Soil Tillage Res. 2019, 194, 104304. [Google Scholar] [CrossRef]
- He, D.; Li, H.W.; Chen, H.T.; Lu, C.Y.; Wang, Q.J. Research progress of conservation tillage technology and machine. Trans. Chin. Soc. Agric. Mach. 2018, 49, 1–19. [Google Scholar]
- Hu, H.N.; Li, H.W.; Li, Q.J.; Wang, J.; He, C.Y.; Lu, Y.B.; Liu, W.P. Anti-blocking performance of ultrahigh-pressure waterjet assisted furrow opener for no-till seeder. Int. J. Agric. Biol. Eng. 2020, 13, 64–70. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Du, R.C.; Diao, P.S.; Yang, S.D. Experiment of no-tillage and drought direct sowing rice and feasibility analysis in Shandong Province. Trans. Chin. Soc. Agric. Eng. 2016, 32, 24–30. [Google Scholar]
- Shinoto, Y.; Otani, R.; Matsunami, T.; Maruyama, S. Analysis of the shallow root system of maize grown by plowing upland fields converted from paddy fields: Effects of soil hardness and fertilization. Plant Prod. Sci. 2021, 24, 297–305. [Google Scholar] [CrossRef]
- Mairghany, M.; Yahya, A.; Adam, N.M.; Su, A.S.; Aimrun, W.; Elsoragaby, S. Rotary tillage effects on some selected physical properties of fine textured soil in wetland rice cultivation in Malaysia. Soil Tillage Res. 2019, 194, 104318. [Google Scholar] [CrossRef]
- Zhang, X.R.; Guo, L.; Li, H.W.; He, J.; Zhang, L.R. Experiment on the anti-blocking technology in no-tillage wheat seeding. Adv. Mater. Res. 2012, 1671, 472–475. [Google Scholar] [CrossRef]
- Latifmanesh, H.; Deng, A.; Nawaz, M.M.; Li, L.; Chen, Z.; Zheng, Y.; Wang, P.; Song, Z.; Zhang, J.; Zheng, C.; et al. Integrative impacts of rotational tillage on wheat yield and dry matter accumulation under corn-wheat cropping system. Soil Tillage Res. 2018, 184, 100–108. [Google Scholar] [CrossRef]
- Hozayn, M.; Elaoud, A.; Attia, A.A.; Ben, S.N. Effect of magnetic field on growth and yield of barley treated with different salinity levels. Arab. J. Geosci. 2021, 14, 701. [Google Scholar] [CrossRef]
- Jalel, R.; Elaoud, A.; Ben, S.N.; Chehaibi, S.; Ben, H.H. Modeling of soil tillage techniques using Fruchterman–Reingold Algorithm. Int. J. Environ. Sci. Technol. 2021, 18, 2987–2996. [Google Scholar] [CrossRef]
- Ben, H.H.; Elaoud, A.; Masmoudi, K. Modeling of agricultural soil compaction using discrete Bayesian networks. Int. J. Environ. Sci. Technol. 2020, 17, 2571–2582. [Google Scholar]
- Jia, H.L.; Liu, X.; Yu, H.B.; Lu, Y.; Guo, C.J.; Qi, J.T. Simulation and experiment on stubble clearance mechanism with concave claw-type for no-tillage planter. Trans. Chin. Soc. Agric. Mach. 2018, 49, 68–77. [Google Scholar]
- Liu, Z.P.; Tian, M.; Yang, S.X.; He, R.Y. Design of a grass separation equipment with driven rotating tooth disk. J. South China Agric. Univ. 2018, 39, 120–124. [Google Scholar]
- Wang, Q.; Jia, H.L.; Zhu, L.T.; Li, M.W.; Zhao, J.L. Design and experiment of star-toothed concave disk row cleaners for no-till planter. Trans. Chin. Soc. Agric. Mach. 2019, 50, 68–77. [Google Scholar]
- Wang, Q.; Tang, H.; Zhou, W.Q.; Wang, J.W. Design and experiment of automatic width control row cleaners. Trans. Chin. Soc. Agric. Mach. 2021, 52, 25–35. [Google Scholar]
- Zhang, Y.P.; Du, R.C.; Diao, P.S.; Yang, S.D.; Wang, Z.W. Design and experiment of wide band seeding rice seeder with reversed stubble cleaning and anti-blocking. Trans. Chin. Soc. Agric. Eng. 2017, 33, 7–13. [Google Scholar]
- Wang, Q.J.; Li, H.W.; He, J.; Li, W.Y.; Liu, A.D. Effects of wide-ridge and narrow-row no-till cultivation on soil water and maize yield. Trans. Chin. Soc. Agric. Eng. 2010, 26, 39–43. [Google Scholar]
- Galibjon, M.; Dimitris, S.; Alim, S.; Hans, W. Dynamic performance of a no-till seeding assembly. Biosyst. Eng. 2017, 158, 64–75. [Google Scholar]
- Zhang, B.P. Sowing Machinery Design Principle; China Machine Press: Beijing, China, 1982; pp. 389–403. [Google Scholar]
- Matin, M.A.; Fielke, J.M.; Desbiolles, J.M. Torque and energy characteristics for strip-tillage cultivation when cutting furrows using three designs of rotary blade. Biosyst. Eng. 2015, 129, 329–340. [Google Scholar] [CrossRef]
- Lin, J.; Liu, A.D.; Li, B.F.; Li, B.; Zhao, D.F.; Lu, C.Y. 2BG-2 type corn ridge planting no-till planter. Trans. Chin. Soc. Agric. Mach. 2011, 42, 43–46. [Google Scholar]
- Bao, W.Y. Study on Key Parts and Holistic Device of the No-till Planter of the Ridge Cropping System in Northeast Area of China. Ph.D. Thesis, Shenyang Agricultural University, Shenyang, China, 2009. [Google Scholar]
- Wang, W.W.; Zhu, C.X.; Chen, L.Q.; Li, Z.D.; Huang, X.; Li, J.C. Design and experiment of active straw-removing anti-blocking device for maize no-tillage planter. Trans. Chin. Soc. Agric. Eng. 2017, 33, 10–17. [Google Scholar]
- Chinese Academy of Agricultural Mechanization Sciences. Agricultural Machinery Design Manual; China Agricultural Science and Technology Press: Beijing, China, 2007; pp. 288–299. [Google Scholar]
- Cao, X.P.; Wang, Q.J.; Li, H.W.; He, J.; Lu, C.Y. Combined row cleaners research with side cutter and stubble clean disk of corn no-till seeder. Trans. Chin. Soc. Agric. Mach. 2021, 52, 36–44. [Google Scholar]
- Tagar, A.A.; Ji, C.Y.; Adamowski, J.; Malard, J.; Qi, C.S.; Ding, Q.S.; Abbasi, N.A. Finite element simulation of soil failure patterns under soil bin and field testing conditions. Soil Tillage Res. 2015, 145, 157–170. [Google Scholar] [CrossRef]
- Wang, Q.; He, J.; Li, H.; Lu, C.; Rabi, G.R.; Su, Y. Design and experiment on furrowing and anti-blocking unit for no-till planter. Trans. Chin. Soc. Agric. Eng. 2012, 28, 27–31. [Google Scholar]
- Jiang, J.L.; Gong, L.N.; Wang, D.W.; Wang, G.P. Design and experiment for driving double coulters anti-blockage device of no-till planter. Trans. Chin. Soc. Agric. Eng. 2012, 28, 17–22. [Google Scholar]
- Fan, X.H.; Jia, H.L.; Zhang, W.H.; Yang, H.T.; Gu, Y.Q.; Li, H.G. Parametric analysis of finger-type anti-blocking residue-cleaner for no-till planting. Trans. Chin. Soc. Agric. Mach. 2011, 42, 56–60. [Google Scholar]
- Hou, S.Y.; Chen, H.T.; Zou, Z.; Wei, Z.P.; Zhang, Y.L. Design and test of lateral stubble cleaning blade for corn stubble field. Trans. Chin. Soc. Agric. Eng. 2020, 36, 59–69. [Google Scholar]
- Cao, X.P.; Wang, Q.J.; Li, H.W.; He, J.; Lu, C.Y.; Yu, X.X. Design and experiment of active rotating collective straw-cleaner. Trans. Chin. Soc. Agric. Eng. 2021, 37, 26–34. [Google Scholar]
- Jia, H.L.; Zhao, J.L.; Jiang, X.M.; Jiang, T.J.; Wang, Y.; Guo, H. Design and experiment of anti-blocking mechanism for inter-row no-tillage seeder. Trans. Chin. Soc. Agric. Eng. 2013, 29, 16–25. [Google Scholar]
- Zeng, Z.W.; Chen, Y. Simulation of straw movement by discrete element modelling of straw-sweep-soil interaction. Biosyst. Eng. 2019, 180, 25–35. [Google Scholar] [CrossRef]
- Niu, M.M.; Fang, H.M.; Chandio, F.A.; Shi, S.; Xue, Y.F.; Liu, H. Design and experiment of separating-guiding anti-blocking mechanism for no-tillage maize planter. Trans. Chin. Soc. Agric. Mach. 2019, 50, 52–58. [Google Scholar]
- Yao, W.Y.; Zhao, D.B.; Xu, G.F.; Chen, M.Z.; Miao, H.Q.; Diao, P.S. Design and experiment of anti-blocking device for strip to row active corn no-tillage seeding. Trans. Chin. Soc. Agric. Mach. 2020, 51, 55–62. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Technical Specifications of Quality Evaluation for No-tillage Drilling Machinery; Standards Press of China: Beijing, China, 2009; Available online: https://www.chinesestandard.net/PDF/English.aspx/NYT1768-2009 (accessed on 12 June 2022).
- Chen, H.T.; Wei, Z.P.; Su, W.H.; Hou, S.Y.; Ji, W.Y.; Shi, N.Y. Design and experiment of cleaning and anti-blocking of front-mounted seed bed preparation device for grand ridge with raw stubble. Trans. Chin. Soc. Agric. Mach. 2021, 52, 51–60. [Google Scholar]
Code Value | The Test Factors | ||
---|---|---|---|
α/(°) | β/(°) | v0/(km/h) | |
−1 | 50 | 30 | 6 |
0 | 60 | 37.5 | 8 |
1 | 70 | 45 | 10 |
Parameter | Rolling Friction Coefficient | Static Friction Coefficient | Coefficient of Restitution |
---|---|---|---|
part-soil | 0.05 | 0.6 | 0.6 |
part-straw | 0.01 | 0.3 | 0.6 |
soil-straw | 0.05 | 0.3 | 0.5 |
soil-soil | 0.4 | 0.6 | 0.6 |
straw-straw | 0.3 | 0.3 | 0.5 |
Test Serial Number | Test Factors | Test Index | |||
---|---|---|---|---|---|
Forward Inclination α/° | Horizontal Declination β/° | Forward Speed v0/m·s−1 | Straw Cleaning Rate Y1/% | Working Resistance Y2/N | |
1 | 0 | 0 | 0 | 90.50 | 184.0 |
2 | 1 | 0 | 1 | 91.94 | 259.8 |
3 | −1 | 0 | −1 | 89.49 | 220.7 |
4 | −1 | −1 | 0 | 88.91 | 152.7 |
5 | −1 | 1 | 0 | 89.34 | 167.5 |
6 | 0 | 0 | 0 | 91.10 | 186.2 |
7 | 1 | −1 | 0 | 90.79 | 138.4 |
8 | 0 | −1 | −1 | 85.87 | 112.2 |
9 | 0 | 0 | 0 | 90.70 | 180.5 |
10 | 0 | −1 | 1 | 92.52 | 166.7 |
11 | 0 | 1 | 1 | 91.80 | 193.2 |
12 | −1 | 0 | 1 | 91.22 | 231.6 |
13 | 1 | 1 | 0 | 92.52 | 226.9 |
14 | 0 | 1 | −1 | 90.64 | 198.8 |
15 | 1 | 0 | −1 | 90.50 | 181.1 |
16 | 0 | 0 | 0 | 90.90 | 179.7 |
17 | 0 | 0 | 0 | 90.20 | 181.8 |
Source of Variance | Sum of Square | Degrees of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
model | 33.19 | 4 | 8.30 | 15.74 | 0.0001 |
α | 5.76 | 1 | 5.76 | 10.93 | 0.0063 |
β | 4.82 | 1 | 4.82 | 9.14 | 0.0106 |
v0 | 15.07 | 1 | 15.07 | 28.58 | 0.0002 |
βv0 | 7.54 | 1 | 7.54 | 14.29 | 0.0026 |
residual | 6.33 | 12 | 0.53 | ||
lack of fit | 5.84 | 8 | 0.73 | 5.98 | 0.0508 |
sum | 39.52 | 16 |
Source of Variance | Sum of Square | Degrees of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
Model | 19,623.49 | 9 | 2180.39 | 23.61 | 0.0002 |
α | 141.96 | 1 | 141.96 | 1.54 | 0.2549 |
β | 5853.62 | 1 | 5853.62 | 63.40 | <0.0001 |
v0 | 2397.78 | 1 | 2397.78 | 25.97 | 0.0014 |
αβ | 1357.92 | 1 | 1357.92 | 14.71 | 0.0064 |
αv0 | 1149.21 | 1 | 1149.21 | 12.45 | 0.0096 |
βv0 | 903.00 | 1 | 903.00 | 9.78 | 0.0167 |
α2 | 2085.41 | 1 | 2085.41 | 22.59 | 0.0021 |
β2 | 4674.62 | 1 | 4674.62 | 50.63 | 0.0002 |
v02 | 1457.46 | 1 | 1457.46 | 15.78 | 0.0054 |
residual | 646.35 | 7 | 92.34 | ||
lack of fit | 618.10 | 3 | 206.03 | 29.17 | 0.0035 |
sum | 20,269.84 | 16 |
Parameter | Numerical Value | |
---|---|---|
0~100 mm soil layer | compaction/MPa | 0.658 |
moisture content/% | 50.03 | |
test weight/(g·cm−3) | 1.52 | |
temperature/℃ | 27.78 | |
surface straw | length/mm | 50~200 |
Cover thickness/mm | 30~80 | |
moisture content/% | 26.73 | |
unit coverage/(kg·m−2) | 0.9375 |
Device Type | Straw Cleaning Rate/% | Working Width/mm | Passability | ||
---|---|---|---|---|---|
Measurements | Average Value | Measurements | Average Value | ||
disc teeth staggered row cleaner | 91.33 | 90.59 | 156 | 169.6 | No blockage |
89.57 | 188 | No blockage | |||
92.31 | 169 | No blockage | |||
88.94 | 162 | 1 minor blockage | |||
90.80 | 173 | No blockage | |||
flat disc separated row cleaner | 64.53 | 65.65 | 93 | 90.8 | 1 minor blockage |
73.06 | 90 | No blockage | |||
70.27 | 85 | 1 moderate blockage | |||
60.90 | 88 | 1 minor blockage | |||
61.49 | 98 | No blockage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, Y.; He, H.; Wang, B.; Zhou, H.; Geng, D.; Zhang, Y. Design and Experiment of Row Cleaner with Staggered Disc Teeth for No-Till Planter. Agriculture 2023, 13, 1373. https://doi.org/10.3390/agriculture13071373
Li X, Zhang Y, He H, Wang B, Zhou H, Geng D, Zhang Y. Design and Experiment of Row Cleaner with Staggered Disc Teeth for No-Till Planter. Agriculture. 2023; 13(7):1373. https://doi.org/10.3390/agriculture13071373
Chicago/Turabian StyleLi, Xin, Yinping Zhang, Haojie He, Bin Wang, Hua Zhou, Duanyang Geng, and Yuzi Zhang. 2023. "Design and Experiment of Row Cleaner with Staggered Disc Teeth for No-Till Planter" Agriculture 13, no. 7: 1373. https://doi.org/10.3390/agriculture13071373
APA StyleLi, X., Zhang, Y., He, H., Wang, B., Zhou, H., Geng, D., & Zhang, Y. (2023). Design and Experiment of Row Cleaner with Staggered Disc Teeth for No-Till Planter. Agriculture, 13(7), 1373. https://doi.org/10.3390/agriculture13071373