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Abstract: Estimation of reference evapotranspiration (ETo) is a key element in water resources
management and crop water requirement which, in turn, affects irrigation scheduling. ETo is subject
to the influence of various climatic parameters including minimum temperature (Tmin), maximum
temperature (Tmax), relative humidity (RH), windspeed (WS), and sunshine hours (SH). Usually, the
influence of the climatic parameters and a dominating climatic factor influencing ETo is estimated on
yearly basis. However, in diverse climatic regions, ETo varies with the varying climate. Therefore,
this study aims to estimate the spatiotemporal variation in the influence of the climatic parameters
on ETo in Punjab, Pakistan, for the period 1950–2021, specifically focusing on decennial, annual, and
monthly patterns. The study area was divided into five agroclimatic zones. The Penman–Monteith
model was used to estimate ETo. The influence was assessed using geographic weighted regression
(GWR) and multiscale geographic weighted regression (MGWR) as the primary methods. As per
results from MGWR, ETo in Punjab was highly influenced by the Tmin, Tmax, and WS. Additionally,
annual ETo exhibited a higher value in southern Punjab in comparison to northern Punjab, with a
range of 2975 mm/year in the cotton–wheat zone to 1596 mm/year in the rain-fed zone. Over the
course of the past seventy years, Punjab experienced an average increasing slope of 5.18 mm/year in
ETo. Tmin was the highest monthly dominant factor throughout the year, whereas WS and SH were
recorded to be the dominant factor in the winters, specifically. All in all, accurate estimation of ETo,
which serves as an essential component for crop water requirement, could potentially help improve
the irrigation scheduling of crops in the agroclimatic zones.

Keywords: reference evapotranspiration; geographic weighted regression; multiscale geographic
weighted regression; Pakistan

1. Introduction

The determination of reference evapotranspiration (ETo) holds significant importance
in the realm of remote sensing applications and the regulation of agricultural water usage.
In crop water management, it is customary to employ a theoretical grass reference crop
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possessing specific attributes as a benchmark surface for the purpose of approximating
ETo [1]. The estimation of ETo holds significant value in the management of hydrological
and agricultural water systems. Nonetheless, it is imperative to conduct a thorough evalu-
ation of the quantity of water necessary for the growth of any given crop [1]. Accurately
determining ETo across different land use regions is crucial for efficient management of wa-
ter resources [2]. Methods for transferring water vapor, such as soil water balance [3,4] and
remote sensing techniques [5], have been employed to quantify ETo. In addition, several
hybrid techniques have been used for forecasting ETo [6,7].The accurate computation of
ETo is a complicated undertaking that entails the consideration of multiple meteorological
variables. Several regions around the world have reported the spatiotemporal variation in
the climatic parameters, mainly including temperature [8], which ultimately impacts ETo.
Consequently, the development of a precise empirical model that can effectively account
for the complexities of the process is a challenging task, as noted in reference [9]. Addition-
ally, climate change plays a significant role in disturbing the surrounding environment in
different ways [10], including depleting water levels [11,12], a disturbed hydrological cycle
which includes ETo [13,14] as an important component, and ultimately economic loss [15].

A variety of interpolation techniques are employed in GIS software, each distinguished
by the models utilized to forecast unknown values on the basis of sample points. The
inverse distance weighted (IDW) and Kriging techniques are among the most frequently
employed methods. The inverse distance weighting (IDW) method is a deterministic in-
terpolation technique that relies on nearby reference point measurements or established
mathematical formulae to evaluate the texture of the resulting interpolation area [16].
Kriging is a geostatistical method that incorporates the spatial configuration of sample
points by assigning weights that differ according to their respective locations. Kriging
methodology not only generates an interpolated or predicted surface but also provides
a level of precision or confidence in the estimates, which is in contrast to the IDW inter-
polation technique. The spatiotemporal estimation of ETo across 41 stations in Pakistan
was investigated by Shah et al. [17] during the period of 2006 to 2015. The research discov-
ered that ETo demonstrated variability and manifested both positive and negative trends
across various seasons in multiple regions of Pakistan. Geographically weighted regression
(GWR) could potentially serve as a more appropriate technique for addressing this issue
with greater precision. The authors Fotheringham et al. (2017) [18] presented a method
called multiscale geographically weighted regression (MGWR) to tackle the issues arising
from nonstationary connections and heterogeneity. This particular model has the ability to
precisely replicate the effects of different independent variables on a dependent variable
with regards to spatial variability.

The MGWR method has garnered considerable interest from diverse fields owing to its
efficacy in modeling the spatial associations among multiple dependent and independent
variables [18]. The effectiveness of ETo estimation models is inherently connected to the
specific meteorological conditions of a given location, as stated in reference [19]. Therefore,
it is crucial to ascertain appropriate models that are contingent on the accessibility of
meteorological data. The significance of ETo on hydrological processes and water resources
is particularly noteworthy in predominantly arid regions of Pakistan, surpassing its impact
in other climatic zones. The exacerbation of droughts and aridity presents a formidable
challenge to the sustainable development of agriculture and water resources in Pakistan, a
nation heavily reliant on agriculture. Accurate estimation of ETo is essential for efficient
monitoring and management of droughts and aridity. The inadequacy of meteorological
information has posed a difficulty in accurately determining ETo across various regions of
Pakistan. Therefore, it is crucial to investigate suitable ETo models that can be suggested
for ETo estimation in diverse areas. The weather in Pakistan varies between different
seasons on a monthly level, which makes it difficult to understand the influence of climatic
parameters and the dominant factor influencing ETo in each month. One of the major
difficulties in water resources management is the accurate estimation and forecasting of
ETo. However, the most recent estimation of ETo and the dominant factor influencing it
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on a monthly level are missing, which negatively impacts water resources management
ultimately impacting the end-user.

According to the studied literature, it can be safely assumed that up-to-date estimations
of the reference evapotranspiration and, especially, of the monthly influence of a dominant
factor (out of minimum temperature, maximum temperature, relative humidity, windspeed,
and sunshine hours) on ETo for Punjab, Pakistan, are missing. Therefore, this study
investigates the spatiotemporal variation of reference evapotranspiration across Punjab,
Pakistan. Furthermore, spatial variation in the monthly impact of influencing parameters
on ETo and the dominant factor have been estimated.

2. Materials and Methods
2.1. Study Area

The selection of Punjab, Pakistanm for the analysis of the impact of influencing
parameters on ETo is justified by the fact that agriculture constitutes a significant proportion
of the country’s overall exports [20], with Punjab contributing to 60% of this portion [20],
as depicted in Figure 1. Moreover, Punjab has attempted to tackle the problems of food
security for many years; therefore, the assessment of the influence of climatic conditions on
crop production in such an agriculture-rich region is imperative. Furthermore, accurate
ETo estimation in this region can aid in decision making about irrigation scheduling,
water allocation for different crops, and the scheduling of other agricultural activities [21].
Moreover, this study assesses the behavior of ETo in five different agroclimatic zones of
Punjab, with 36 selected study points, i.e., districts of the province. Different approaches
can be used for the classification of Punjab districts into regions, such as dividing Punjab
into three regions, north, central, and south, or disintegrating rural Punjab into north and
south. In ref. [22], Amjad et al. used the methodology of Pinckney [23] to classify rural
areas of Punjab province into five agroclimatic or crop zones. The agroclimatic zones of the
Punjab were classified according to the published report by the International Food Policy
Research Institute.

The categorization of various zones is primarily determined by the primary kharif
season crop, as wheat dominates the rabi season in most regions. The kharif season in
Pakistan encompasses the time frame from April to September, during which monsoon
rains are prevalent. In contrast, the rabi season occurs from October to March, featuring
cooler temperatures and reduced precipitation. Agricultural activities during the rabi
season heavily rely on irrigation methods for crop cultivation. In regions where irrigation
is practiced, rice and cotton are the predominant kharif crops of utmost importance. Rice
cultivation exhibits a propensity for prevalence in regions characterized by elevated water
tables, dense soils, and copious precipitation, whereas cotton production is commonly
observed in arid locales. Therefore, a significant differentiation can be observed between
regions that are suitable for rice cultivation and those that are suitable for cotton cultivation.
Based on these two crops, i.e., cotton and rice, alternating with the dominant crop, wheat,
two zones, namely, the cotton–wheat zone and rice–wheat zone, were created. The cotton–
wheat zone, located in the southern and southwestern regions of Punjab, exhibits a climatic
pattern characterized by hot summers and cool winters. The precipitation in this region
is comparatively lower than that in the rice–wheat zone, rendering it conducive for the
cultivation of cotton during the kharif season and wheat during the rabi season. The
rice–wheat zone, predominantly situated in the central and eastern regions of Punjab,
exhibits a climate distinguished by warm summers and mild winters. The monsoon season
is characterized by a substantial precipitation pattern that occurs during the kharif season,
creating favorable conditions for the cultivation of rice. In contrast, the rabi season is
characterized by lower levels of precipitation, making it conducive for the cultivation
of wheat.
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Figure 1. Illustration of the study area and location of the 36 district stations and delineation of the 
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Figure 1. Illustration of the study area and location of the 36 district stations and delineation of the
five agroclimatic zones in Punjab, Pakistan.

A distinct geographical region, with Faisalabad at its center, exhibits favorable con-
ditions for cultivating multiple kharif crops, without any single crop exerting dominance.
This region has been categorized as the mixed-crop zone. The region exhibits a confluence
of climatic conditions observed in different zones.

The rain-fed zone or the barani region is deemed distinctive owing to its dependence
on precipitation for agricultural purposes. The rain-fed zone situated in the northern and
northwestern regions of Punjab exhibits a climate characterized by higher aridity. The
precipitation levels in this particular region are constrained.

Furthermore, the region adjacent to the left bank of the Indus River in Punjab, char-
acterized by limited irrigation infrastructure and lower levels of agricultural activity, is
recognized as a distinct area referred to as the low-intensity zone. The climate in this zone
is characterized by aridity, resulting in minimal precipitation. It is imperative to acknowl-
edge that the aforementioned descriptions offer a comprehensive outline of the climatic
conditions prevalent in the agroclimatic zones of Punjab. However, it is crucial to recognize
that there may be deviations within each zone due to localized factors, including but not
limited to elevation, proximity to water bodies, and microclimatic circumstances. The delin-
eation of the five agroclimatic zones, namely, the low-intensity zone, the rice–wheat zone,
the mixed-crop zone, the cotton–wheat zone, and the rain-fed zone, is attributed to the
variations in growing climatic conditions and agricultural practices observed from north to
south. Table 1 presents the average values of the five climatic parameters influencing ETo
for the period 1950–2021 for the five agroclimatic zones.
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Table 1. Summary of the climatic parameters (1950–2021) for the five agroclimatic zones in Punjab,
Pakistan.

Agroclimatic Zone
Maximum

Temperature
Tmax
(◦C)

Minimum
Temperature

Tmin
(◦C)

Relative
Humidity RH

(%)

Sunshine
Hours SH

(h)

Windspeed
WS

(m/s)

Reference
Evapotranspi-

ration ETo
(mm/day)

Cotton–wheat zone 32.97 18.44 40.4 11.99 2.85 6.49
Rice–wheat zone 30.47 17.35 67.49 11.99 3.47 5.47

Low-intensity zone 32.35 17.86 44.99 11.99 3.29 6.52
Mixed-crop zone 31.8 18.02 57.37 11.99 3.62 6.15

Rain-fed zone 28.89 15.45 74.17 12 4.04 5.03

The low-intensity zone includes the districts Bhakkar, Dera Ghazi Khan, Layyah,
Mianwali, Muzaffargarh, and Rajanpur, with 32.3 ◦C, 17.8 ◦C, 44.9%, 11.9 h, 3.2 m/s, and
6.5 mm/day of Tmax, Tmin, RH, SH, WS, and ETo, respectively, with an average for the
period of 1950–2021. The rice–wheat zone includes districts Gujranwala, Gujrat, Hafizabad,
Kasur, Lahore, Mandi Bahauddin, Nankana Sahib, Narowal, Sheikhupura, and Sialkot,
with 30.4 ◦C, 17.3 ◦C, 67.4%, 11.9 h, 3.4 m/s, and 5.4 mm/day of Tmax, Tmin, RH, SH, WS,
and ETo, respectively. The mixed-crop zone includes the districts Chiniot, Faisalabad,
Jhang, Khushab, Okara, Sargodha, and Toba Tek Singh, with 31.8 ◦C, 18.0 ◦C, 57.3%, 11.9 h,
3.6 m/s, and 6.1 mm/day of Tmax, Tmin, RH, SH, WS, and ETo, respectively. The cotton–
wheat zone includes the districts Bahawalnagar, Bahawalpur, Khanewal, Lodhran, Multan,
Pakpattan, Rahim Yar Khan, Sahiwal, and Vehari, with 32.9 ◦C, 18.4 ◦C, 40.4%, 11.9 h,
2.8 m/s, and 6.4 mm/day of Tmax, Tmin, RH, SH, WS, and ETo, respectively. The rain-fed
zone includes the districts Attock, Chakwal, Jhelum, and Rawalpindi, with 28.8 ◦C, 15.4 ◦C,
74.1%, 12.0 h, 4.0 m/s, and 5.0 mm/day of Tmax, Tmin, RH, SH, WS, and ETo, respectively.

2.2. Data Collection

For the estimation of ETo, satellite data were used. The data of 5 different climatic
parameters were obtained from 2 online sources (summarized details of the data sources
are presented in Table 2). For minimum temperature (Tmin) and maximum temperature
(Tmax), the satellite data were obtained from the Climatic Research Unit gridded Time
Series (CRU–TS). However, for relative humidity (RH) and windspeed (WS), the satellite
data were obtained from National Centers for Environmental Prediction (NCEP) and the
National Center for Atmospheric Research (NCAR) (NCEP–NCAR) Reanalysis 1 for Pun-
jab. For further analyses, data points were extracted for the 36 districts (categorized into
5 agroclimatic zones as per [22,23]) in the Punjab from 1950 to 2021. Figure 2 illustrates
the workflow of the presented study. The present study assessed the decadal patterns
of ETo spanning from 1950 to 2021. In order to analyze the trend of reference evapotran-
spiration, the available data were divided into seven distinct decades spanning 1950 to
2021. Additionally, the data were further categorized into five distinct zones, namely, the
cotton–wheat zone, the low-intensity zone, the rice–wheat zone, the mixed-crop zone, and
the rain-fed zone, all of which are located within the Punjab province of Pakistan.
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Table 2. Summary of the data sources used in this study.

Dataset Name Variables Temporal Extent Spatial Resolution Ref.

CRU–TS Tmin, Tmax 1901–2021
All land areas

(excluding Antarctica)
at 0.5◦ resolution

[24]

NCEP–NCAR Reanalysis 1
(Data provided by the NOAA PSL, Boulder,

Colorado, USA, from their website at
https://psl.noaa.gov (accessed on

28 January 2023))

RH and WS 1948–2021
All land areas

(excluding Antarctica)
at 2.5◦ resolution

[25]

Sunshine hours
(calculated) SH – – –
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2.2.1. ETo Estimation

In this study, the standard Penman–Monteith (PM) model was utilized to calculate
the reference evapotranspiration in mm/day. It was developed in the mid-1960s by Allen
and Tideman, and it combines both energy and mass balance principles [26]. The PM ETo
model is given as Equation (1). Details of the parameters are available in the literature [26].

ETo =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ETo is the reference evapotranspiration in mm day−1; ∆ is the slope of the vapor
pressure curve in kPa ◦C −1; Rn is the net radiation at the crop surface in MJ m2 day−1; G is
the soil heat flux density in MJm2.day−1, which is considered as 0 [1]; γ is the psychrometric
constant in kPa ◦C −1; T is the mean air temperature, which is determined from minimum
and maximum temperatures in ◦C; u2 is the wind speed at a height of 2 m height in ms−1;
es is the saturation vapor pressure in kPa; and ea is the actual vapor pressure in kPa.

2.2.2. Trend Analysis

The present investigation employed a prevalent technique for trend analysis, namely,
linear regression, due to its ability to detect and measure patterns in data across temporal
dimensions. Through the application of a linear model to the dataset, researchers are
able to approximate the pace and orientation of variation in a given variable that is of
significance. The aforementioned approach proves to be especially advantageous in the

https://psl.noaa.gov
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examination of extended patterns in climatic parameters, such as ETo. In this study, the
Mann–Kendall (MK) test was employed to identify fluctuations in the timeseries data [27].
The Sen’s slope technique has been utilized in combination with the MK test to examine
patterns in ETo data. The technique, formulated by Sen in 1968, offers a computation of the
pace of alteration in a given variable across a period [28]. This study employs linear trend
analysis to examine the Punjab region, utilizing the linear regression method for the period
spanning 1950 to 2021.

2.2.3. Data Quality and Integrity Assessment

In the current scenario, data were analyzed through basic statistical methods such as
minimum and maximum values, range, mean, standard deviation, skewness, and kurtosis.
Table 3 presents an overview of the descriptive statistics of the climatic parameters for the
estimation of ETo for Punjab, Pakistan, for the period 1950–2021. The analysis conducted
and presented in Table 3 demonstrates that the studied variables exhibited varying skew-
ness values, encompassing both positive and negative values. This suggests the presence
of asymmetry in the distributions of these variables. Moreover, the kurtosis values indicate
that the climatic variables demonstrate either a distribution with lower peak and heavier
tails (platykurtic) or a distribution with higher peak and lighter tails (leptokurtic).

Table 3. Descriptive statistics of the climatic parameters for the estimation of ETo for Punjab, Pakistan,
for the period of 1950–2021.

Variable Mean St. Dev. Minimum Maximum Range Skewness Kurtosis

Tmin (◦C) 17.631 0.516 16.426 18.774 2.348 –0.14 –0.47
Tmax (◦C) 31.496 0.499 30.168 32.412 2.243 –0.25 –0.46
RH (%) 55.747 2.529 49.407 61.944 12.537 –0.33 0.02

WS (m/s) 3.3819 0.5137 2.3519 4.3133 1.9615 –0.32 –1.19
ETo (mm/year) 2339.7 149.1 2094.1 2691.3 597.1 0.63 –0.34

2.2.4. Spatial Distribution of ETo

The utilization of spatial visualization techniques for ETo distribution analysis facil-
itates the identification of regions with elevated water demand and potential depletion
or overuse of water resources [1]. Furthermore, it has the potential to identify regions
with favorable temperature [29] and humidity conditions for cultivating various crops,
thereby facilitating crop selection and land-use management. The utilization of Inverse
Distance Weighting (IDW) for the purpose of interpolating ETo data and creating spatial
representations of ETo across various regions of Pakistan has been extensively documented
in numerous studies [30]. As a result, the ETo data underwent spatial interpolation using
the IDW interpolation technique in the ArcGIS software, as opposed to more intricate meth-
ods such as Kriging. This process yielded evapotranspiration maps for various climatic
periods spanning from 1950 to 2021, which are presented in Figure 3 for the purpose of
change analysis.
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2.2.5. Spatial Relationship between Climatic Variables and ETo

The present study employed Pearson’s correlation coefficient to establish the corre-
lation between the influencing parameters and the reference evapotranspiration. This
coefficient was preferred over other methods of evaluating linear relationships due to its
distinct advantages. The utilization of Pearson’s correlation coefficient (R) is widespread in
the assessment of models in studies related to ETo, as evidenced by several studies [31]. The
requisite quantity of data for establishing a correlation is comparatively lower than in other
techniques of data assessment, typically ranging from three to seven variable pairs [32].
Furthermore, it has the capability to conduct an analysis on a considerable number of vari-
ables without causing substantial overstatement of outcomes [32]. A sensitivity analysis
was carried out to assess the impact of ambient weather variables on the computed ETo.
Bois et al. [33] have discussed several techniques for performing sensitivity analyses, which
have been documented in the literature. In this study, a monthly analysis was performed
to establish a correlation between the influencing parameters and ETo. The mathematical
expression denoting the Pearson correlation is represented by Equation (2):

r =
∑N

i=1

(
x − −

x
)(

y − −
y
)

√
∑N

i=1

(
x − −

x)2∑N
i=1

(
y − −

y)2

(2)
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In this study, the observed climatic variable was denoted as x and the estimated ETo

was represented as y;
−
x and

−
y are their subsequent mean values. Similarly, the coefficients

were used to determine the most influential climatic variables on ETo in the study areas.

3. Results
3.1. Trend of ETo

Figure 4 depicts the results of the Mann–Kendall trend analysis applied to annual ETo
in the five agroclimatic zones of Punjab for analyzing the heterogeneity of the timeseries
ETo. In Figure 4a, a heterogeneity in the year 2000 was observed in ETo for Punjab during
the period of 1950 to 2021. The sudden fluctuation in the trend of ETo could be attributed
to the changing climate, which ultimately impacts the climatic parameters which influence
ETo. Figure 4b shows cumulative trend of ETo for the period of 1950–2021, which is
increasing through the time period. A lowest ETo of 2094.12 mm/year was observed in the
year 1963 for the Punjab, whereas the highest ETo, i.e., 2691.26 mm/year, was observed in
2021, which clearly illustrates the impact of rising temperatures. Similarly, trends of the
ETo for the five agroclimatic zones are presented in Figure 4; all of the zones show rapidly
increasing trends of ETo except in the low-intensity zone, which could be attributed to
lower precipitation in the area. The agroclimatic zones comprising the respective districts
are also presented in Figure 4.
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Figure 4. Illustration of (a) homogeneity test of ETo in Punjab, (b) overall trend of ETo in Punjab,
(c) ETo trend in the cotton–wheat zone, (d) ETo trend in the low-intensity zone, (e) ETo trend in
the rice–wheat zone, (f) ETo trend in the mixed-crop zone, and (g) ETo trend in the rain-fed zone
using the Mann–Kendall trend test for the period 1950–2021. Note: names of the districts included in
respective agroclimatic zones are presented in each graph.
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3.2. Decennial ETo

The data presented in Figure 5 indicate a decadal pattern that demonstrates a rise in
ETo throughout the duration of the study. The cartographic representation of the 1950s
(depicted in Figure 5a) revealed a diminished ETo in the rain-fed and rice–wheat zones
(i.e., 1328.03 mm/year), whereas the southwestern region exhibited relatively elevated
values (i.e., 2370.56 mm/year). Figure 5b illustrates the fluctuation of difference in ETo
during the second decade (1960–1969) throughout Punjab with respect to the ETo base year
1950s. The study noted that the highest difference in the ETo values across the northern and
southern regions were found in the cotton–wheat zone, with Rahim Yar Khan particularly
exhibiting a 10.19 mm/year elevated ETo compared to the base year. The mixed crop zone,
also known as the central region, typically exhibited a moderate-to-low level of ETo. In
majority of the cotton–wheat zone, the difference ETo was negative (up to −91.31 mm/year)
compared to the base year (illustrated in Figure 5b). The results obtained during the time
frame of 1970–1979 indicate a rise in the difference of ETo in the rice–wheat zone and rain-
fed zone (i.e., up to 116.26 mm/year) when compared to the base year. This is illustrated in
Figure 5c. During the fourth decade spanning 1980 to 1989, there was an observed increase
in the difference of ETo in comparison to the base year 1950s, as illustrated in Figure 5d.
The highest positive difference in observed ETo was 84.77 mm/year in the rice–wheat
zone, rain-fed zone, and somewhat in the mixed-crop zone compared to the base year. As
depicted in Figure 5e, the rate of difference in ETo exhibited an increasing trend from the
northern region to the southern region (i.e., from 115.74 mm/year to −79.35 mm/year,
respectively), or from the rain-fed zone to the cotton–wheat and low-intensity zone during
the period 1990–1999. Drastically elevated trends in the difference of ETo were observed in
the year 2000–2009 compared to the base year 1950s, as shown in Figure 5f. Typically, rain-
fed zone was the most affected zone (i.e., 234.73 mm/year), followed by the rice–wheat
zone (i.e., 200.8 mm/year), compared to the base year 1950s. According to Figure 5g,
the highest difference in ETo was observed in the northern region (i.e., 734.57 mm/year)
compared to the southern region (320.29 mm/year) in the year 2010–2021 relative to the
base year 1950s. Finally, Figure 5h illustrates the ETo levels in the period of 2010–2021.
i.e., 2690.85 mm/year in the southern region of the area, whereas 2042.86 mm/year was
recorded in the northern regions of the area. Over the course of the past decade, the cotton–
wheat and low-intensity zones have exhibited the highest ETo values, whereas the mixed-
crop zone has demonstrated a moderate rate (i.e., 2400 mm/year to 2500 mm/year) with
slight anomaly in the Jhang district. Conversely, the rice–wheat zone in the northeastern
region and the rain-fed zone in the northwestern region have displayed relatively low ETo
rates; however, they were the most affected zones when compared to the base year 1950s
due to climate change. The rate of reference evapotranspiration is directly proportional
to temperature, resulting in a significant fluctuation in ETo rate during the month of
September as supported by the findings of previous research [34]. As per the data presented
in Figure 5, the highest evapotranspiration rate recorded was 2690.8 mm/year in the year
2010–2021. Prior research has identified comparable patterns that align with the results of
the current investigation. Table 4 presents the decennial pattern of ETo in relation to the
five agroclimatic zones in Punjab, Pakistan, spanning from 1950 to 2021.
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Figure 5. Decadal patterns of ETo spanning from 1950 to 2021 for Punjab, Pakistan: (a) base ETo for
1950s; (b) difference in ETo for 1960s; (c) difference in ETo for 1970s; (d) difference in ETo for 1980s,
(e) difference in ETo for 1990s; (f) difference in ETo for 2000s; (g) difference in ETo for 2010–21; and
(h) ETo for 2010–21. Note: the difference in ETo is relative to the ETo of base year 1950s.
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Table 4. Decennial trend of ETo against each of the five agroclimatic zones from 1950 to 2021 in
Punjab, Pakistan.

Agroclimatic Zone
ETo (mm/year) per Decade ETo Trend (mm/year)

1950–1950 1960–1969 1970–1979 1980–1989 1990–1999 2000–2009 2010–2021 1950–2021

Low-intensity zone 2243 2230 2221 2220 2287 2227 2237
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3.3. Sensitivity Analysis
3.3.1. Geographic Weighted Regression (GWR)

In order to examine the relationship between the distribution of ETo and its influencing
factors, a correlation analysis was conducted using Geographically Weighted Regression
(GWR) at 36 district points. Subsequently, maps were generated using Inverse Distance
Weighting (IDW) gridding. Figure 6 presents the resultant maps that illustrate the correla-
tion between ETo and various climatic parameters for the time period 1950–2021. A cor-
relation ranging from 0.29 to 0.89 with standard deviation of 0.1 was observed between
ETo and Tmin reported in Figure 6a. According to Figure 6a, low correlation (i.e., 0.29) was
observed in the southern region of the area covering most of the cotton–wheat zone and
the low-intensity zone. This could be attributed to the gradual change in elevation from
north to south, which is known to impact ETo. In Figure 6b, a good correlation ranging 0.78
to 0.91 with standard deviation of 0.03 was observed between ETo and Tmax. According to
Figure 6b, the correlation trend follows a similar direction as that of ETo and Tmin; however,
the minimum value of the correlation is raised to 0.78, covering most of the cotton–wheat
zone, the low-intensity zone, and the mixed-crop zone. This could be attributed to the
changing climate and rising temperatures across the country. A correlation ranging from
0.67 to 0.89 with standard deviation of 0.05 was observed between ETo and RH reported in
Figure 6c. A minimum correlation of 0.67 was observed between ETo and RH in the central
region of the mixed-crop zone, whereas a correlation of 0.7 to 0.8 was observed between ETo
and RH in most of the cotton–wheat zone, the low-intensity zone, and the mixed-crop zone.
In the rain-fed and rice–wheat zones, a correlation of 0.8 to 0.89 was observed between
ETo and RH. This trend could be attributed to the frequent rainfall events in the northern
region of the area leading to increased RH compared to the infrequent rainfall events in
the southern region leading to drier conditions and lesser RH. According to Figure 6d,
a correlation ranging from 0.29 to 0.63, with standard deviation 0.06, was observed between
ETo and WS. Minimum correlation, i.e., 0.29, was observed in the southern region of the
cotton–wheat zone and the low-intensity zone due to lesser windspeed in these southern
regions of the area. A moderate correlation of 0.6 was observed between ETo and WS in
the central Punjab region, comprising some districts of the cotton–wheat, low-intensity,
and rice–wheat zones. This could be attributed to typically higher windspeeds in these
regions due to their geographical location and the location of the Himalayan ranges. In the
northern region of the area, namely, the rain-fed zone and the rice–wheat zone, a correlation
of 0.3 to 0.4 was observed between ETo and WS.



Agriculture 2023, 13, 1388 13 of 19

Agriculture 2023, 13, 1388 13 of 20 
 

 

higher windspeeds in these regions due to their geographical location and the location of 
the Himalayan ranges. In the northern region of the area, namely, the rain-fed zone and 
the rice–wheat zone, a correlation of 0.3 to 0.4 was observed between ETo and WS. 

 
Figure 6. Spatial variation of Pearson’s correlation coefficient between ETo and (a) Tmax, (b) Tmin, (c) 
RH, and (d) WS, using geographic weighted regression for 1950–2021 in Punjab, Pakistan. 

3.3.2. Multiscale Geographic Weighted Regression (MGWR) 
The MGWR model was utilized to estimate ETo in Punjab from 1950–2021, and Figure 

7 displays the monthly distribution of the relative contribution of minimum temperature 
(Tmin) in this estimation. The findings presented in Figure 7a demonstrate the varying lev-
els of contribution of Tmin during the month of January across different regions, ranging 

Figure 6. Spatial variation of Pearson’s correlation coefficient between ETo and (a) Tmax, (b) Tmin,
(c) RH, and (d) WS, using geographic weighted regression for 1950–2021 in Punjab, Pakistan.

3.3.2. Multiscale Geographic Weighted Regression (MGWR)

The MGWR model was utilized to estimate ETo in Punjab from 1950–2021, and Figure 7
displays the monthly distribution of the relative contribution of minimum temperature
(Tmin) in this estimation. The findings presented in Figure 7a demonstrate the varying
levels of contribution of Tmin during the month of January across different regions, ranging
from 0.17% to 0.75%. The study revealed that ETo was significantly impacted by the rain-
fed and low-intensity zones, whereas the rice–wheat and mixed-crop zones exhibited a
relatively lower level of influence. Figure 7b demonstrated a comparable pattern where
the minimum temperature (Tmin) had an impact on ETo during February. The range of this
impact was between 0.18% and 0.76%, indicating a significant level of contribution in both
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the rain-fed and cotton–wheat zones. During the month of March, the contribution of Tmin
varied between 0.15 to 0.74%. The rain-fed zone was observed to be the most affected, as
depicted in Figure 7c. The impact of Tmin during the month of April is depicted in Figure 7d,
revealing a significant influence on the rain-fed, low-intensity, and cotton–wheat zones,
with a range of 0.17% to 0.71%. The rice–wheat zone, rain-fed zone, low-intensity zone, and
mixed-crop zone experienced significant impact in May, with an overall range of 0.22% to
0.76%, as illustrated in Figure 7e. During the month of June, the Tmin had an impact on the
value, which varied between 0.31% and 0.85%. The rice–wheat zone, low-intensity zone,
and rain-fed zone were the areas that were most affected, as shown in Figure 7f. The data
presented in Figure 7g indicate that the values observed for July ranged between 0.25% and
0.80%. The rice–wheat zone and mixed-crop zones exhibited comparatively lower levels
of influence, whereas the remaining zones were subject to significant impact. According
to Figure 7h, the contribution of Tmin during the month of August varied across different
regions, with values ranging from 0.32% to 0.85%. The study revealed that the rain-fed zone
had a significant impact on ETo, whereas the remaining zones exhibited a comparatively
lower level of contribution. Figure 7i illustrates the impact of Tmin on ETo for the month
of September. The observed values exhibited a significant level of contribution within
the rain-fed zone, ranging from 0.27% to 0.86%. The rain-fed zone in October exhibited a
similar pattern, with the highest impact ranging from 0.22% to 0.72%, as shown in Figure 7j.
The influence of Tmin on ETo was observed in November, with values ranging from 0.16%
to 0.72%, as depicted in Figure 7k. The rice–wheat zone, cotton–wheat zone, low-intensity
zone, and mixed-crop zone were found to have experienced the least amount of impact.
Finally, it should be noted that the impact of Tmin on ETo in the rain-fed region remained
consistently significant throughout the month of December, exhibiting the greatest level
of influence. The observed values exhibited a range between 0.16% and 0.75%, with the
mixed-crop zone displaying the least amount of impact, as depicted in Figure 7l.

The findings derived from Figure 7 demonstrate that the impact of climatic variables
on ETo exhibits variability on a monthly basis. Figure 8 depicts the dominant factor that
exerted the highest influence on ETo on a monthly basis from 1950 to 2021 in the region of
Punjab, Pakistan.

According to Figure 8, the dominant factor varied across space and time. In terms of
monthly variation, WS was the dominant factor across most of the Punjab in January, as
shown in Figure 8a. However, in February, SH was observed to be the dominant factor
across majority of the 36 districts in Punjab, as shown in Figure 8b. Similar to January, WS
dominated the influence on ETo across Punjab in March, as shown in Figure 8c. According
to Figure 8d, the WS and SH were the most prominent dominant factors out of the five
climatic parameters influencing ETo in April across Punjab. In May, Tmin, SH, and WS were
the most dominant factors spread across Punjab (shown in Figure 8e). This could be linked
to longer solar days, higher wind speed across the plains, and temperature variation due
to start of summer months. In June, Tmin was the most dominant factor influencing ETo
across Punjab, shown in Figure 8f. Similarly, in July, Tmin and Tmax were the driving factors
influencing reference evapotranspiration across Punjab as shown in Figure 8g. In August,
Tmin and WS were the most dominant factors shown in Figure 8h. According to Figure 8i,
in September, Tmin, Tmax, and WS were the most dominant factors influencing different
agroclimatic zones of the Punjab. According to Figure 8j, in October, in the low intensity
zone, SH was the driving factor, whereas in the upper Punjab, RH was the driving factor
influencing ETo. In other zones, Tmin and SH were observed to be influencing ETo. In
November, a mix–up of Tmin, Tmax, WS, and SH influenced ETo at different stations across
Punjab, as shown in Figure 8k; however, WS and SH were the most common dominant
factors at majority of the stations. According to Figure 8l, WS and SH were the dominant
factors impacting ETo across Punjab in December.
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4. Discussion

Tmin series showed more significant trends, which is in accordance with the global
trend over the previous decades. The overall pattern assessment revealed that annual Tmin
had a considerable influence on ETo in the rain-fed zone. ETo is impacted in the heavy
rainfall [35,36] seasons due to variations in relative humidity. To address the varying influ-
ence, the GWR technique was used, which can be effective in allowing model parameters
to vary across space [18]. This approach can provide valuable insights into the complex
spatial patterns of ETo and its influencing factors, which can aid in developing more ac-
curate and localized water management strategies. The correlation of climatic factors to
ETo findings demonstrates that all parameters have a substantial influence on ETo [37].
According to the findings by Hupet et al. [38], it has been observed that radiation has a
significant influence on ETo. Since minimum temperature remains unchanged as much
during the wet season as it does during the period of dryness, it has a greater influence on
ETo during the dry season. Therefore, the impact of Tmin was observed on ETo via MGWR
and its subsequent influence from the month of January to December for the study period
1950–2021. According to Zhang et al. [39], ETo was highly influenced by Tmin and Tmax
across China on an annual basis. The study provided a detailed dominant factor analysis
throughout the study period (1970–2014) in China. However, the study failed to correlate
the impact of monthly variation of weather conditions/seasons on the influencing ability
of the climatic parameters. The present study assesses this impact on a monthly basis. Fur-
thermore, the estimated reference evapotranspiration could be correlated with measured
ETo from any of the stations for reference. Additionally, in future research directions, the
estimated spatiotemporal ETo (which serves as an essential component in the crop water
requirement estimation) could help in the estimation of zone- and crop-specific irrigation
scheduling across Punjab. Ultimately, based on the study, the estimation of the amount
of water required for irrigation purpose would help the relevant policymakers to better
allocate the water resources in the country.

5. Conclusions

Maximum Tmax, Tmin, RH, WS, and ETo (i.e., 33.9 ◦C, 18.7 ◦C, 76.5%, 4.2 m/s, and
7.6 mm/day, respectively) were observed across the study area. The highest ETo was
observed in the southern regions of the area. The range of ETo was also higher in the
southern region (i.e., up to 5.57 mm/day). As per GWR, Tmax had the highest correlation
(i.e., 0.91) with ETo in the mixed-crop zone. As per the MGWR, Tmin, Tmax, and WS had the
highest influence on ETo throughout different regions in Punjab. Throughout the study
period, ETo showed an increasing trend. In addition, a heterogeneity was observed in
the ETo trend in year 2001. Out of the five agroclimatic zones, the cotton–wheat zone
observed the highest ETo due to the higher temperatures in the region. In terms of a
monthly dominant factor, the highest overall dominant factor was Tmin, whereas WS
and SH were the highest observed dominant factors in the winters, specifically. It was
concluded that Tmin and Tmax had the highest overall influence on ETo in Punjab. In
addition to these parameters, WS was also observed to be the highest dominant factor
influencing ETo on a monthly basis. In terms of future research directions, the ultimate goal
of the proposed study was to investigate the zone- and crop-specific irrigation scheduling
which incorporates ETo as an essential component.
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