Predicting Models for Plant Metabolites Based on PLSR, AdaBoost, XGBoost, and LightGBM Algorithms Using Hyperspectral Imaging of Brassica juncea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Training Data Acquisition
2.2. Data Processing and Prediction Models
3. Results and Discussion
3.1. Development of a Prediction Model Based on Hyperspectral Imaging with the PLSR, AdaBoost, XGboost, and LightGBM Algorithms
3.2. Application of the Functional Component Prediction Model with Visualization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Szőllősi, R. Indian Mustard (Brassica juncea L.) Seeds in Health. In Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2020; pp. 357–364. [Google Scholar]
- Tian, Y.; Deng, F. Phytochemistry and Biological Activity of Mustard (Brassica juncea): A Review. CyTA—J. Food 2020, 18, 704–718. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar Thakur, A.; Dev Barothia, N.; Chatterjee, S.S. Therapeutic Potentials of Brassica juncea: An Overview. CellMed 2011, 1, e2. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Park, Y.E.; Yeo, H.J.; Kim, J.K.; Park, S.U. Effects of Light-Emitting Diodes on the Accumulation of Phenolic Compounds and Glucosinolates in Brassica juncea Sprouts. Horticulturae 2020, 6, 77. [Google Scholar] [CrossRef]
- Sarić, R.; Nguyen, V.D.; Burge, T.; Berkowitz, O.; Trtílek, M.; Whelan, J.; Lewsey, M.G.; Čustović, E. Applications of Hyperspectral Imaging in Plant Phenotyping. Trends Plant Sci. 2022, 27, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Beć, K.B.; Grabska, J.; Bonn, G.K.; Popp, M.; Huck, C.W. Principles and Applications of Vibrational Spectroscopic Imaging in Plant Science: A Review. Front. Plant Sci. 2020, 11, 1226. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Liu, F.; He, Y.; Xiao, Y. Rapid and Non-Destructive Measurement of Spinach Pigments Content during Storage Using Hyperspectral Imaging with Chemometrics. Measurement 2017, 97, 149–155. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fowler, M.S.; Fisk, I.D. Hyperspectral Imaging for Non-Destructive Prediction of Fermentation Index, Polyphenol Content and Antioxidant Activity in Single Cocoa Beans. Food Chem. 2018, 258, 343–351. [Google Scholar] [CrossRef]
- Choi, J.-H.; Park, S.H.; Jung, D.-H.; Park, Y.J.; Yang, J.-S.; Park, J.-E.; Lee, H.; Kim, S.M. Hyperspectral Imaging-Based Multiple Predicting Models for Functional Component Contents in Brassica juncea. Agriculture 2022, 12, 1515. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine Learning Techniques for Analysis of Hyperspectral Images to Determine Quality of Food Products: A Review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Gasbarrone, R.; Serranti, S. Contaminant Detection in Pistachio Nuts by Different Classification Methods Applied to Short-Wave Infrared Hyperspectral Images. Food Control 2021, 130, 108202. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Gill, E.; Mohammadimanesh, F.; Homayouni, S. Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation. Remote Sens. 2021, 13, 4405. [Google Scholar] [CrossRef]
- Weksler, S.; Rozenstein, O.; Haish, N.; Moshelion, M.; Wallach, R.; Ben-Dor, E. Detection of Potassium Deficiency and Momentary Transpiration Rate Estimation at Early Growth Stages Using Proximal Hyperspectral Imaging and Extreme Gradient Boosting. Sensors 2021, 21, 958. [Google Scholar] [CrossRef]
- Sha, W.; Guo, Y.; Yuan, Q.; Tang, S.; Zhang, X.; Lu, S.; Guo, X.; Cao, Y.-C.; Cheng, S. Artificial Intelligence to Power the Future of Materials Science and Engineering. Adv. Intell. Syst. 2020, 2, 1900143. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.J.; Park, J.-E.; Truong, T.Q.; Koo, S.Y.; Choi, J.-H.; Kim, S.M. Effect of Chlorella Vulgaris on the Growth and Phytochemical Contents of “Red Russian” Kale (Brassica napus Var. Pabularia). Agronomy 2022, 12, 2138. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Thomas, M.; Badr, A.; Desjardins, Y.; Gosselin, A.; Angers, P. Characterization of Industrial Broccoli Discards (Brassica oleracea Var. Italica) for Their Glucosinolate, Polyphenol and Flavonoid Contents Using UPLC MS/MS and Spectrophotometric Methods. Food Chem. 2018, 245, 1204–1211. [Google Scholar] [CrossRef]
- Dewanto, V.; Xianzhong, W.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Mawlong, I.; Sujith Kumar, M.S.; Gurung, B.; Singh, K.H.; Singh, D. A Simple Spectrophotometric Method for Estimating Total Glucosinolates in Mustard De-Oiled Cake. Int. J. Food Prop. 2017, 20, 3274–3281. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-C.; Sun, D.-W.; Pu, H.; Wang, N.-N.; Zhu, Z. Rapid Detection of Anthocyanin Content in Lychee Pericarp during Storage Using Hyperspectral Imaging Coupled with Model Fusion. Postharvest Biol. Technol. 2015, 103, 55–65. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Short Introduction to Boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 771–780. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process Syst. 2017, 30, 3146–3154. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Lohumi, S.; Khan, H.A.; Nordon, A. Close-Range Hyperspectral Imaging of Whole Plants for Digital Phenotyping: Recent Applications and Illumination Correction Approaches. Comput. Electron. Agric. 2020, 178, 105780. [Google Scholar] [CrossRef]
- Hasanzadeh, B.; Abbaspour-Gilandeh, Y.; Soltani-Nazarloo, A.; Hernández-Hernández, M.; Gallardo-Bernal, I.; Hernández-Hernández, J.L. Non-Destructive Detection of Fruit Quality Parameters Using Hyperspectral Imaging, Multiple Regression Analysis and Artificial Intelligence. Horticulturae 2022, 8, 598. [Google Scholar] [CrossRef]
- Jayapal, P.K.; Joshi, R.; Sathasivam, R.; Van Nguyen, B.; Faqeerzada, M.A.; Park, S.U.; Sandanam, D.; Cho, B.-K. Non-Destructive Measurement of Total Phenolic Compounds in Arabidopsis under Various Stress Conditions. Front. Plant Sci. 2022, 13, 982247. [Google Scholar] [CrossRef]
- Burnett, A.C.; Serbin, S.P.; Davidson, K.J.; Ely, K.S.; Rogers, A. Detection of the Metabolic Response to Drought Stress Using Hyperspectral Reflectance. J. Exp. Bot. 2021, 72, 6474–6489. [Google Scholar] [CrossRef]
- Yuan, Z.; Ye, Y.; Wei, L.; Yang, X.; Huang, C. Study on the Optimization of Hyperspectral Characteristic Bands Combined with Monitoring and Visualization of Pepper Leaf SPAD Value. Sensors 2021, 22, 183. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Y.; Xie, Y.; Zhou, L.; Qiao, J.; Qiu, S.; Sun, Y. Combination of Feature Selection and CatBoost for Prediction: The First Application to the Estimation of Aboveground Biomass. Forests 2021, 12, 216. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical Review of Chemometric Indicators Commonly Used for Assessing the Quality of the Prediction of Soil Attributes by NIR Spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. An Evaluation of Different NIR-Spectral Pre-Treatments to Derive the Soil Parameters C and N of a Humus-Clay-Rich Soil. Sensors 2021, 21, 1423. [Google Scholar] [CrossRef]
Metabolites | Min | Max | Mean | Standard Deviation |
---|---|---|---|---|
Chlorophyll (mg g−1 DW) | 2.54 | 12.17 | 7.24 | 2.28 |
Phenolics (mg g−1 DW) | 2.13 | 11.28 | 6.22 | 2.33 |
Flavonoids (mg g−1 DW) | 3.00 | 13.59 | 7.52 | 2.51 |
Glucosinolates (µmol g−1 DW) | 11.88 | 55.08 | 31.36 | 11.25 |
Anthocyanins (mg g−1 DW) | 0.00 | 33.80 | 3.23 | 5.35 |
Metabolites | Preprocessing Method | Optimal LVs | Calibration | Cross-Validation | Prediction | |||
---|---|---|---|---|---|---|---|---|
R2C | RMSEC | R2CV | RMSECV | R2P | RMSEP | |||
Chlorophyll | Log (1/R) + 1st Der + MSC | 5 | 0.667 | 1.332 | 0.407 | 1.777 | 0.567 | 1.349 |
Log (1/R) + 1st Der + SNV | 5 | 0.667 | 1.332 | 0.405 | 1.779 | 0.553 | 1.371 | |
Raw reflectance | 8 | 0.619 | 1.425 | 0.393 | 1.798 | 0.530 | 1.405 | |
SG filter | 2 | 0.431 | 1.740 | 0.388 | 1.806 | 0.526 | 1.411 | |
1st Der | 5 | 0.659 | 1.347 | 0.384 | 1.811 | 0.575 | 1.337 | |
Phenolics | SG filter | 11 | 0.731 | 1.206 | 0.433 | 1.751 | 0.558 | 1.487 |
Norm + SNV | 6 | 0.566 | 1.532 | 0.425 | 1.761 | 0.458 | 1.648 | |
SNV | 6 | 0.566 | 1.532 | 0.425 | 1.761 | 0.458 | 1.648 | |
Norm + SG filter + SNV | 6 | 0.554 | 1.552 | 0.424 | 1.763 | 0.440 | 1.675 | |
SG filter + SNV | 6 | 0.554 | 1.552 | 0.424 | 1.763 | 0.440 | 1.675 | |
Flavonoids | 1st Der | 1 | 0.452 | 1.814 | 0.406 | 1.888 | 0.507 | 1.845 |
SG filter | 1 | 0.442 | 1.830 | 0.404 | 1.892 | 0.477 | 1.902 | |
Raw reflectance | 2 | 0.448 | 1.820 | 0.398 | 1.901 | 0.531 | 1.802 | |
2nd Der | 1 | 0.450 | 1.818 | 0.382 | 1.926 | 0.412 | 2.016 | |
Log (1/R) + 1st Der + MSC | 3 | 0.509 | 1.716 | 0.365 | 1.953 | 0.233 | 2.303 | |
Glucosinolates | Raw reflectance | 8 | 0.783 | 5.229 | 0.647 | 6.667 | 0.725 | 5.804 |
Norm + SG filter | 7 | 0.746 | 5.651 | 0.647 | 6.668 | 0.662 | 6.435 | |
SG filter | 11 | 0.807 | 4.922 | 0.646 | 6.679 | 0.759 | 5.436 | |
Norm + SG filter + MSC | 8 | 0.753 | 5.581 | 0.633 | 6.794 | 0.646 | 6.591 | |
SG filter + MSC | 8 | 0.753 | 5.581 | 0.633 | 6.799 | 0.645 | 6.592 | |
Anthocyanins | Log (1/R) + SNV | 8 | 0.854 | 2.109 | 0.746 | 2.780 | 0.836 | 1.808 |
Log (1/R) + SG filter + SNV | 9 | 0.855 | 2.104 | 0.745 | 2.786 | 0.849 | 1.737 | |
Log (1/R) | 11 | 0.868 | 2.002 | 0.745 | 2.787 | 0.837 | 1.801 | |
Log (1/R) + MSC | 9 | 0.853 | 2.115 | 0.744 | 2.791 | 0.861 | 1.664 | |
Log (1/R) + SG filter + MSC | 9 | 0.850 | 2.137 | 0.743 | 2.794 | 0.850 | 1.728 |
Prediction Model | Preprocessing Method | Feature Selection | Calibration | Cross-Validation | Prediction | ||||
---|---|---|---|---|---|---|---|---|---|
Method | Feature No. | R2C | RMSEC | R2CV | RMSECV | R2P | RMSEP | ||
Total Chlorophyll | |||||||||
AdaBoost | Log (1/R) + 2nd Der + MSC | Full band | 150 | 0.878 | 0.807 | 0.448 | 1.714 | 0.594 | 1.307 |
AdaBoost | 28 | 0.926 | 0.628 | 0.573 | 1.507 | 0.476 | 1.483 | ||
XGboost | 13 | 0.868 | 0.838 | 0.463 | 1.690 | 0.348 | 1.656 | ||
LightGBM | 35 | 0.929 | 0.616 | 0.541 | 1.563 | 0.502 | 1.447 | ||
XGboost | Log (1/R) + 2nd Der + MSC | Full band | 150 | 0.996 | 0.137 | 0.519 | 1.600 | 0.476 | 1.484 |
AdaBoost | 28 | 0.997 | 0.120 | 0.594 | 1.471 | 0.545 | 1.382 | ||
XGboost | 13 | 0.891 | 0.763 | 0.488 | 1.651 | 0.455 | 1.514 | ||
LightGBM | 35 | 1.000 | 0.033 | 0.628 | 1.407 | 0.576 | 1.334 | ||
LightGBM | 1st Der | Full band | 150 | 0.945 | 0.543 | 0.414 | 1.766 | 0.695 | 1.133 |
AdaBoost | 31 | 0.829 | 0.954 | 0.463 | 1.691 | 0.648 | 1.217 | ||
XGboost | 17 | 0.743 | 1.170 | 0.388 | 1.805 | 0.737 | 1.052 | ||
LightGBM | 35 | 0.960 | 0.462 | 0.551 | 1.547 | 0.657 | 1.201 | ||
Total Phenolics | |||||||||
AdaBoost | Norm | Full band | 150 | 0.924 | 0.642 | 0.581 | 1.505 | 0.521 | 1.549 |
AdaBoost | 37 | 0.931 | 0.611 | 0.641 | 1.393 | 0.517 | 1.554 | ||
XGboost | 16 | 0.921 | 0.652 | 0.646 | 1.382 | 0.512 | 1.562 | ||
LightGBM | 28 | 0.925 | 0.637 | 0.618 | 1.437 | 0.594 | 1.426 | ||
XGboost | Norm + SG filter | Full band | 150 | 1.000 | 0.027 | 0.627 | 1.419 | 0.390 | 1.748 |
AdaBoost | 34 | 0.974 | 0.372 | 0.573 | 1.518 | 0.354 | 1.798 | ||
XGboost | 15 | 0.969 | 0.406 | 0.605 | 1.461 | 0.406 | 1.724 | ||
LightGBM | 30 | 0.933 | 0.601 | 0.557 | 1.546 | 0.378 | 1.765 | ||
LightGBM | 1st Der | Full band | 150 | 0.882 | 0.798 | 0.538 | 1.580 | 0.559 | 1.486 |
AdaBoost | 36 | 0.862 | 0.864 | 0.572 | 1.520 | 0.517 | 1.556 | ||
XGboost | 10 | 0.770 | 1.115 | 0.565 | 1.532 | 0.386 | 1.753 | ||
LightGBM | 38 | 0.942 | 0.558 | 0.602 | 1.467 | 0.499 | 1.583 | ||
Total Flavonoids | |||||||||
AdaBoost | 2nd Der | Full band | 150 | 0.872 | 0.878 | 0.512 | 1.712 | 0.704 | 1.429 |
AdaBoost | 33 | 0.827 | 1.018 | 0.551 | 1.642 | 0.709 | 1.417 | ||
XGboost | 12 | 0.913 | 0.724 | 0.572 | 1.602 | 0.575 | 1.714 | ||
LightGBM | 34 | 0.847 | 0.958 | 0.538 | 1.666 | 0.623 | 1.615 | ||
XGboost | 1st Der | Full band | 150 | 0.972 | 0.409 | 0.516 | 1.705 | 0.586 | 1.692 |
AdaBoost | 36 | 0.986 | 0.286 | 0.586 | 1.577 | 0.564 | 1.736 | ||
XGboost | 7 | 0.932 | 0.640 | 0.545 | 1.653 | 0.644 | 1.569 | ||
LightGBM | 46 | 0.997 | 0.138 | 0.580 | 1.588 | 0.568 | 1.728 | ||
LightGBM | 1st Der | Full band | 150 | 0.874 | 0.868 | 0.483 | 1.761 | 0.585 | 1.693 |
AdaBoost | 36 | 0.905 | 0.754 | 0.543 | 1.657 | 0.519 | 1.823 | ||
XGboost | 7 | 0.651 | 1.448 | 0.531 | 1.678 | 0.594 | 1.676 | ||
LightGBM | 46 | 0.955 | 0.518 | 0.548 | 1.648 | 0.503 | 1.854 | ||
Total Glucosinolates | |||||||||
AdaBoost | SNV | Full band | 150 | 0.935 | 2.868 | 0.666 | 6.481 | 0.768 | 5.333 |
AdaBoost | 28 | 0.907 | 3.417 | 0.674 | 6.401 | 0.816 | 4.744 | ||
XGboost | 14 | 0.913 | 3.301 | 0.699 | 6.157 | 0.782 | 5.169 | ||
LightGBM | 34 | 0.935 | 2.852 | 0.677 | 6.372 | 0.730 | 5.748 | ||
XGboost | SG filter + SNV | Full band | 150 | 0.997 | 0.644 | 0.670 | 6.445 | 0.751 | 5.521 |
AdaBoost | 29 | 0.996 | 0.670 | 0.676 | 6.382 | 0.763 | 5.389 | ||
XGboost | 12 | 0.993 | 0.928 | 0.715 | 5.987 | 0.778 | 5.211 | ||
LightGBM | 41 | 1.000 | 0.233 | 0.707 | 6.071 | 0.776 | 5.238 | ||
LightGBM | Log (1/R) + 1st Der + SNV | Full band | 150 | 0.875 | 3.959 | 0.702 | 6.122 | 0.675 | 6.308 |
AdaBoost | 30 | 0.962 | 2.183 | 0.741 | 5.709 | 0.662 | 6.435 | ||
XGboost | 8 | 0.901 | 3.538 | 0.744 | 5.678 | 0.613 | 6.890 | ||
LightGBM | 51 | 0.985 | 1.386 | 0.739 | 5.729 | 0.665 | 6.411 | ||
Total Anthocyanins | |||||||||
AdaBoost | Log (1/R) + 1st Der | Full band | 150 | 0.975 | 0.865 | 0.834 | 2.246 | 0.714 | 2.390 |
AdaBoost | 26 | 0.968 | 0.986 | 0.819 | 2.349 | 0.639 | 2.682 | ||
XGboost | 11 | 0.969 | 0.973 | 0.735 | 2.839 | 0.519 | 3.097 | ||
LightGBM | 37 | 0.976 | 0.851 | 0.822 | 2.329 | 0.824 | 1.876 | ||
XGboost | 1st Der | Full band | 150 | 1.000 | 0.003 | 0.724 | 2.899 | 0.265 | 3.830 |
AdaBoost | 20 | 1.000 | 0.041 | 0.725 | 2.892 | 0.742 | 2.271 | ||
XGboost | 11 | 0.987 | 0.625 | 0.738 | 2.826 | 0.251 | 3.865 | ||
LightGBM | 40 | 0.997 | 0.297 | 0.664 | 3.198 | 0.389 | 3.492 | ||
LightGBM | Log (1/R) + 1st Der | Full band | 150 | 0.899 | 1.756 | 0.685 | 3.097 | 0.743 | 2.264 |
AdaBoost | 24 | 0.918 | 1.575 | 0.699 | 3.028 | 0.485 | 3.204 | ||
XGboost | 9 | 0.826 | 2.303 | 0.687 | 3.089 | 0.314 | 3.699 | ||
LightGBM | 39 | 0.933 | 1.430 | 0.742 | 2.804 | 0.717 | 2.375 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.I.; Lee, H.; Yang, J.-S.; Choi, J.-H.; Jung, D.-H.; Park, Y.J.; Park, J.-E.; Kim, S.M.; Park, S.H. Predicting Models for Plant Metabolites Based on PLSR, AdaBoost, XGBoost, and LightGBM Algorithms Using Hyperspectral Imaging of Brassica juncea. Agriculture 2023, 13, 1477. https://doi.org/10.3390/agriculture13081477
Yoon HI, Lee H, Yang J-S, Choi J-H, Jung D-H, Park YJ, Park J-E, Kim SM, Park SH. Predicting Models for Plant Metabolites Based on PLSR, AdaBoost, XGBoost, and LightGBM Algorithms Using Hyperspectral Imaging of Brassica juncea. Agriculture. 2023; 13(8):1477. https://doi.org/10.3390/agriculture13081477
Chicago/Turabian StyleYoon, Hyo In, Hyein Lee, Jung-Seok Yang, Jae-Hyeong Choi, Dae-Hyun Jung, Yun Ji Park, Jai-Eok Park, Sang Min Kim, and Soo Hyun Park. 2023. "Predicting Models for Plant Metabolites Based on PLSR, AdaBoost, XGBoost, and LightGBM Algorithms Using Hyperspectral Imaging of Brassica juncea" Agriculture 13, no. 8: 1477. https://doi.org/10.3390/agriculture13081477
APA StyleYoon, H. I., Lee, H., Yang, J. -S., Choi, J. -H., Jung, D. -H., Park, Y. J., Park, J. -E., Kim, S. M., & Park, S. H. (2023). Predicting Models for Plant Metabolites Based on PLSR, AdaBoost, XGBoost, and LightGBM Algorithms Using Hyperspectral Imaging of Brassica juncea. Agriculture, 13(8), 1477. https://doi.org/10.3390/agriculture13081477