
Citation: Wang, F.; Liu, Y.; Li, Y.; Ji, K.

Research and Experiment on

Variable-Diameter Threshing Drum

with Movable Radial Plates for

Combine Harvester. Agriculture 2023,

13, 1487. https://doi.org/10.3390/

agriculture13081487

Academic Editor: John M. Fielke

Received: 29 June 2023

Revised: 17 July 2023

Accepted: 21 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Research and Experiment on Variable-Diameter Threshing
Drum with Movable Radial Plates for Combine Harvester
Fazheng Wang 1,2 , Yanbin Liu 1,2,*, Yaoming Li 1,2 and Kuizhou Ji 1,2

1 School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;
2212116017@stmail.ujs.edu.cn (F.W.); ymli@ujs.edu.cn (Y.L.)

2 Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University),
Ministry of Education, Zhenjiang 212013, China

* Correspondence: 2111916005@stmail.ujs.edu.cn

Abstract: In order to solve the problem of the threshing performance of a large combine harvester
being reduced due to the non-adjustable diameter of the threshing drum, a variable-diameter thresh-
ing drum with movable radial plates based on the principle of concentric regulation was studied.
It was mainly composed of a mechanism for adjusting the diameter by moving the radial plates,
six fixed threshing tooth rods, six retractable threshing tooth rods and the single piston rod hollow
hydraulic cylinder. The threshing gap can be adjusted by a stepless change of the drum diameter.
By using RecurDyn simulation and field performance tests, the adjustable ranges of diameter and
gap of the movable variable-diameter threshing drum were 670~710 mm and 10~30 mm. Based on
the feed amount of the combine, the rotation speed of the threshing drum and the threshing gap
(the diameter of the drum) as the influencing parameters, and the grain entrainment loss rate, grain
un-threshed rate and grain breakage rate as the evaluation indexes, the three-factor and three-level
response surface tests were carried out, and the result data were analyzed using Design-Expert
13.0. The optimal threshing gap and rotation speed of the threshing drum were determined under
different feeding quantities. A comparative test was carried out to adjust and fix the threshing gap
and rotation speed of the threshing drum in real time according to the change in feeding amount.
The results showed that when the working parameter combination under different feeding amounts
was adjusted in real time, the entrainment loss rate was 0.65%, the un-threshed rate was 0.063%
and the breakage rate was 0.47%. Compared with the threshing gap and the rotation speed of the
threshing drum being fixed, the entrainment loss rate, the un-threshed rate and the breakage rate
were reduced by 44.9%, 27.6% and 34.1%, respectively. A threshing drum with variable diameter was
provided for a large multi-crop harvesting combine to realize the concentric stepless adjustment of
the threshing gap.

Keywords: variable-diameter threshing drum; movable radial plates; threshing gap; rotation speed
of the threshing drum; feed quantity; response surface test

1. Introduction

Harvesting machinery, as the main operational tool for grain crop pellets to be returned
to the warehouse, is of great significance to maintain national food security. The threshing
device is an important working part of the combine harvester [1–4], which changes the
intensity of threshing action and improves the threshing performance by adjusting working
parameters such as the rotation speed of the threshing drum and threshing gap in order to
adapt to various types, varieties, maturity and humidity of grains.

Studies have shown that by changing the diameter of the threshing drum and concen-
trically adjusting the threshing gap, there was better transport separation capacity, more
uniform distribution of the threshing material and less breakage of the grain straw [5]. For
this reason, researchers have investigated variable-diameter threshing drums. Conven-
tional threshing drums [6,7] adjust the drum diameter by manually replacing the threshing
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element or changing the installation position of the threshing tooth bar, which is time-
consuming and laborious to adjust. The structure of mechanically driven variable-diameter
threshing drums was complex and it was not easy to achieve stepless adjustment and adap-
tive control [8–11]. Yanbin Liu et al. [12] invented a hydraulically driven variable-diameter
threshing drum, in which the diameter of the drum was changed by the radial movement
of the threshing gear rod driven by the telescopic control linkage of the hydraulic cylinder,
thus realizing the adjustment of the threshing gap. Su Zhan [13] designed an electronically
controlled self-locking variable-diameter grain roller. By rotating the Archimedean constant
speed spiral disk, the six grippers are driven to expand and expand, and then the tooth
rod is driven by the connecting rod to change the diameter of the drum. Chen Lipeng [14]
used gear drive to change the diameter of threshing drum. However, the current research
on variable-diameter threshing drums was only for small feeding-capacity combine har-
vesters, and there were no intermediate support radial plates or the threshing tooth bar
was not fixed with the intermediate support radial plates needed in order to achieve the
change in drum diameter. With the development of grain combine harvesters at large,
the torque and load on the threshing drum are increasing, which can easily deform the
threshing tooth bar and even lead to damage of the threshing separation device, affecting
the operational efficiency.

Many researchers have now conducted a large number of multi-factor interaction
tests based on orthogonal test methods to determine the operating parameters of combine
harvester threshing and separating devices [15–22]. However, the current parameter treat-
ments after field trials are obtained under the specified operating conditions corresponding
to an optimal combination of parameters [19–22], while there are large differences in the
physical properties and biomass of grains in different areas of the same plot [23], and
a single parameter leads to the problem of poor harvesting adaptation of the combine
harvester with reduced threshing performance.

Therefore, in this paper, based on the principle of concentric adjustment and the
advantages and disadvantages of the existing adjustment structures, a variable-diameter
threshing drum with movable radial plates was designed. A three-factor, three-level
response surface test [19–22,24] was conducted based on the combination harvester feed
rate, rotation speed of the threshing drum and threshing gap (drum diameter) as the
influencing parameters, and the grain entrainment loss rate, grain un-threshed rate and
breakage rate as the evaluation indexes, to provide a grain combination harvester operation
parameter adjustment scheme for the feed rate fluctuation in different areas of the same plot.

2. Materials and Methods
2.1. Design and Development

The design was based on the threshing drum of the Super Rui Long combine harvester
produced by Jiangsu WROLD Agricultural Machinery Co. (Danyang, China). The specific
parameters are shown in Table 1.

Table 1. Technical parameters of Super Rui Long 4LZ-8.0G(Q) combine harvester.

Model 4LZ-8.0G (Q)
Structure Type Crawler Self-Propelled Full Feed Type

Overall size
Length (mm) 6200/6200
Width (mm) 3170/3170
Height (mm) 3080/2900

Whole machine quality 4500/4300

Motor
Model YC4DK140-T301

Power (kW) 103
Rated rotation speed

(r/min) 2600
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Table 1. Cont.

Model 4LZ-8.0G (Q)
Structure Type Crawler Self-Propelled Full Feed Type

Harvesting part
Width of cutting platform

(mm) 2.36/2.56/2.8

Feeding amount (kg/s) 8
Minimum Ground gap (mm) 320

Operational efficiency 3.3–16.5 Acresper hour

Harvest wheel
Type Eccentric pivot tooth (pop-up) type

Diameter (mm) ϕ900
Number of paddle wheel

plates (pieces) 5

Threshing drum Threshing method Longitudinal axial rod-tooth type
Threshing drum size (mm) ϕ700 × 2520

2.1.1. Variable-Diameter Threshing Drum with Movable Radial Plates

The design of the variable-diameter threshing drum with movable radial plates was
based on the principle of the hydraulic-driven variable-diameter threshing drum struc-
ture [12] using the Solid Works software, and the structure of the whole machine is shown
in Figure 1. The designed threshing drum is mainly composed of the mechanism for adjust-
ing the diameter by moving the radial plates, side disc adjustment mechanism, six fixed
threshing gear rods, six retractable threshing gear rods, single piston rod hollow hydraulic
cylinder, main shaft, displacement sensor, feeding wheel and hydraulic rotary joint.
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Figure 1. Schematic diagram of the structure of the variable-diameter threshing drum with mov-
able radial plates: 1. feeding wheel, 2. side width plate adjustment mechanism, 3. sleeve, 4. support
width plate mobile type adjustment mechanism, 5. fixed gear rod, 6. telescopic gear rod, 7. single
piston rod hollow hydraulic cylinder, 8. rear side width plate, 9. spindle, 10. hydraulic rotary joint,
11. width plate, 12. adjustment slide, 13. slider type linkage.

When the diameter of the threshing drum needs to be adjusted, the hydraulic oil will
enter the rod or rodless cavity of the single piston rod hollow hydraulic cylinder through
the hydraulic swivel joint, pushing the piston rod to expand and contract, thus driving
the axial movement of the axial sleeve, and then pushing the guide rail to push the disc
along the axial movement, driving the hinge pin to slide along the bevel of the guide rail,
driving the connecting rod to move radially along the slide groove; the axial movement
of the axial sleeve also drives the movable adjustment structure of the width disc and the
diameter adjustment slide on the width disc to move axially together; under the action
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of the connecting rod and the slider connecting rod, the fixed gear rod moves radially
to realize the drum diameter adjustment. The diameter adjustment slide in the movable
adjusting structure of the support disk also drives the disk and the diameter adjustment
slide on the disk to move axially together, thus pushing the slide linkage to slide along the
slide; under the action of the linkage and slide linkage, the fixed gear rod moves radially to
realize the drum diameter adjustment. When the diameter of the threshing drum does not
need to be moved, the hydraulic oil does not flow so that the piston cylinder of the hollow
hydraulic cylinder is at rest, resulting in each adjustment mechanism at rest, ensuring that
the position of the threshing tooth rod remains unchanged to achieve a constant diameter.
The threshing tines between the two discs near the end (debris removal area) are designed
as retractable tines, following the retraction of the hollow hydraulic cylinder.

2.1.2. Hydraulic System

The principle of the hydraulic system scheme is shown in Figure 2. A three-way
four-way solenoid proportional reversing valve is used to switch the piston rod of the
hollow hydraulic cylinder between telescopic and stationary states. The hydraulic lock is
used to ensure that the hydraulic cylinder is self-locking after the diameter adjustment of
the threshing drum by preventing the flow of hydraulic oil.
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Figure 2. Hydraulic system schematic: 1. hollow hydraulic cylinder, 2. hydraulic lock, 3. three-way
four-way solenoid proportional reversing valve.

2.1.3. Diameter Adjustment Performance Verification

At present, when applying the grain combine harvester to a multi-crop harvesting
direction, different crops need different threshing gaps, and the threshing gap is also
different for different varieties and different operating environments. According to a large
number of experimental studies, the optimum threshing gap for wheat and rice is between
18 mm and 25 mm [11,25,26], for soybean between 24 and 30 mm [27,28], and for Oilseed
rape between 11 and 23 mm [29,30]. Therefore, the maximum difference of threshing gap
between various crops is 19 mm, and the diameter range of the designed mobile variable-
diameter threshing drum was 670~710 mm, i.e., the adjustable range of threshing gap was
30~10 mm.
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The angle of the guide rail is shown in Figure 3, and the relational expression between
the angle of the adjustment slide and the amount of radius adjustment and horizontal
travel is as follows:

tan θ =
dr

ds
(1)

where dr is the length of the variable-diameter threshing drum radius adjustment; ds is the
horizontal stroke of the diameter adjustment mechanism.
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Figure 3. Diagram of adjusting the angle of the slide rail.

The angle was determined to be 30◦ according to the preliminary study [12].

RecurDyn Simulation

The 3D model of variable-diameter threshing drum with movable radial plates de-
signed by Solidworks was imported into RecurDyn in blocks as required, and the con-
straints were added to the imported model according to the assembly relationship to
simulate its diameter adjustment performance. A total of 1 Revolute constraint, 38 Translate
constraints and 88 Fixed constraints were set on the model, and the constraints were added
as shown in Figure 4. The gravitational acceleration was applied in the −Y direction, and
the material of the model was set to steel. A drive control was added to Trajoint 8, which
was the sliding constraint between the piston rod of the hydraulic cylinder and the spindle
(simulation time was 8 s), with the expression STEP (time, 0, 0, 4, STEP (time, 4, −34.64, 8,
0)), and a marker point Marker 6 was added to the tip of the peg tooth of any fixed rod to
monitor its trajectory.
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Performance Verification

The variable-diameter threshing drum with movable radial plates and hydraulic
system were assembled in Jiangsu WORLD and integrated into the WORLD Super Rui
Long 4LZ-8.0G(Q). The drum diameter adjustment performance was verified by control-
ling the hydraulic cylinder in the cab through the switch of the proportional valve and
reversing valve.

2.2. Field Trials

In order to obtain a scheme for the variable-diameter threshing drum with movable
radial plates combine harvester to adjust the rotation speed of the threshing drum and
threshing gap according to different feeds, a rice field trial [31] was conducted in December
2022 at Happy Farm, Danyang, Jiangsu, China.As shown in Figure 5. The rice variety
is Zhendao32. Before the trial, tarpaulins were bundled to the discharge opening of the
combine harvester to collect the threshing material, and a 20 m long test area was marked
using a marker. After the test, the entrained loss seeds and un-threshed seeds in the detritus
were screened to calculate the entrained loss rate and un-threshed rate, and the seeds from
the grain bin were unloaded and weighed and randomly sampled to measure the seed
breakage rate. Each group of tests was repeated three times, and the performance indexes
were averaged.
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2.2.1. Test Protocol
Box–Behnken Center Combination Test

In order to investigate the pattern of influence of combine harvester operating pa-
rameters on threshing performance indexes, field experiments were conducted using the
combine harvester feed rate, rotation speed of the threshing drum, and threshing gap as
influencing factors [32,33]. The adjustment of the feed rate was achieved by changing the
forward speed of the combine harvester [34]. The speed of the threshing drum is regulated
by the drum gearbox. According to the pre-harvest experiments of rice, the feed rate,
rotation speed of the threshing drum and threshing gap were set to 6 kg/s~9 kg/s, 700
r/min~900 r/min and 15 mm~25 mm, respectively, and a three-factor, three-level response
surface test was conducted using Design Expert software according to the Box–Behnken
central combination test design theory [35,36]. The factor level codes are shown in Table 2.

In order to obtain the optimal combination of operating parameters for different
feeding rates of variable-diameter detachment drums, the Optimization function of Design-
Expert 13.0 was used to set the constraints for each test factor and evaluation index in
Numerical, and the threshing drum speed and threshing gap were set at 700 r/min to
900 r/min. The rotation speed of the threshing drum and threshing gap were set between
700 r/min~900 r/min and 15 mm~25 mm, respectively. The entrained loss rate, un-threshed
rate and breakage rate were all taken as the minimum values, while the specific gravity was
“3:3:4”. The feed rate was entered in the range of 6 kg/s to 9 kg/s to obtain the combination
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of threshing gap and rotation speed of the threshing drum parameters that satisfy the
constraints for the corresponding feed rate.

Table 2. Factor level coding table.

Code
Factors

Feeding Volume (kg/s) Rotation Speed of the Threshing Drum (r/min) Threshing Gap (mm)

−1 6 700 15
0 7.5 800 20

+1 9 900 25

Comparative Test Protocol

Due to the different crop growth and crop density in the field, as well as combining
with the habits of the mechanic driving the combine harvester and the turning needs,
the feeding amount of the combine harvester is different in different areas of the same
field. Therefore, it is necessary to adjust the threshing gap and drum speed of the combine
harvester in real time according to different feeding amounts to improve the operational
performance of the combine harvester. According to the study by Lele Wei et al. [25], it
was found that the rice density distribution in the field block could be analyzed using UAV
photography, while the size of the feeding volume could be deduced based on parameters
such as yield and grain-to-grass ratio, and after regularization, the field feeding volume
distribution map was obtained as shown in Figure 6. In order to verify that the combine
harvester can improve the threshing performance by adjusting the threshing gap and drum
speed according to different feeding amounts, two sets of tests were designed for compari-
son: (i) the drum diameter was adjusted in real time to achieve the required threshing gap
according to the optimal combination of parameters at different feeding amounts, and the
drum speed was adjusted accordingly; (ii) the combine harvester harvested with a fixed
threshing gap and drum speed, which were not adjusted due to changes in the feeding
amount. The test procedure was the same as above, with each group of tests conducted
three times and the threshing performance averaged.
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3. Results and Discussion
3.1. Performance Verification Results
3.1.1. RecurDyn Simulation Results

After setting all the parameters and conditions, the simulation was carried out and
the results are shown in Figure 7. In 0~4 s, the piston rod of the hydraulic cylinder slowly
shrinks with time, and the piston rod shrinks 34.64 mm. At this time, the radius of the
variable-diameter threshing drum with movable radial plates changes. The radius change
range is 355.44~335.45 mm; that is, the adjustable range of threshing gap is 19.99 mm. In
4~8 s, the piston rod of the hydraulic cylinder extends 34.64 mm with time. The piston
rod of the hydraulic cylinder extends 34.64 mm with time at 4~8 s, and the radius change
range is 335.45~355.45 mm, which proves that the variable-diameter threshing drum with
movable radial plates is adjustable back and forth and the adjustment range is in accordance
with the design requirements.
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3.1.2. Installed Performance Verification

Figure 8 shows the installation positions. The diameter adjustment of the variable-
diameter threshing drum with movable radial plates can be realized by manipulating the
switch of the proportional valve and reversing valve in the cab. By pushing the switch
back and forth, the hydraulic oil is controlled from the hydraulic system through the
hydraulic oil pipe into and out of the hollow hydraulic cylinder of the variable-diameter
threshing drum with movable radial plates, thus controlling the piston rod of the hollow
hydraulic cylinder to expand and retract and achieve the role of diameter adjustment. The
monitoring of the threshing gap is indirectly obtained by monitoring the diameter of the
threshing drum, and the change value of the threshing drum diameter is obtained by the
displacement sensor, and is displayed on the instrument in the cab; the monitoring accuracy
is 0.1 mm. After testing, the diameter of the threshing drum can be adjusted freely and the
radius can be adjusted by 20 mm, i.e., the range of threshing gap is 20 mm, which meets
the design requirements and verifies the rationality of the mechanism and the reliability of
the adjustment range.
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3.2. Results of Field Trials

The results were summarized and analyzed according to the formulae of each evalua-
tion index, and the experimental scheme and results are shown in Table 3.

Table 3. Experimental protocol and results.

Test No. A:Feeding Volume
kg/s

B:Drum Speed
r/min

C:Threshing Gap
mm

Entrainment
Loss Rate

%

Un-Threshed
Rate

%

Breakage Rate
%

1 6 800 25 0.63 0.073 0.415
2 7.5 700 15 0.69 0.075 0.514
3 9 800 25 0.81 0.098 0.651
4 9 900 20 0.83 0.081 1.138
5 7.5 800 20 0.59 0.057 0.345
6 7.5 900 15 0.65 0.059 0.912
7 9 700 20 0.97 0.128 0.723
8 7.5 700 25 0.79 0.126 0.456
9 6 800 15 0.48 0.044 0.367

10 7.5 800 20 0.61 0.056 0.315
11 7.5 800 20 0.59 0.063 0.356
12 7.5 800 20 0.62 0.059 0.332
13 9 800 15 0.92 0.074 0.862
14 7.5 900 25 0.75 0.079 0.698
15 7.5 800 20 0.61 0.061 0.362
16 6 700 20 0.57 0.068 0.398
17 6 900 20 0.61 0.068 0.562

3.2.1. Entrainment Loss Rate

An analysis of variance (ANOVA) was performed on the entrapment loss rate by
Design-Expert 13.0 [37], and the results are shown in Table 4.
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Table 4. Analysis of variance for entrapment loss rate.

Source Sum of Squares df Mean Square F-Value p-Value Significance

Model 0.2827 9 0.0314 55.39 <0.0001 Extremely
significant

A-Feeding volume 0.1922 1 0.1922 338.89 <0.0001 Extremely
significant

B-Rotation speed of the
threshing drum 0.0040 1 0.0040 7.14 0.0319 Significant

C-Threshing gap 0.0072 1 0.0072 12.70 0.0092 Extremely
significant

AB 0.0081 1 0.0081 14.28 0.0069 Extremely
significant

AC 0.0169 1 0.0169 29.80 0.0009 Extremely
significant

BC 0.0000 1 0.0000 0.0000 1.0000 Non-significant

A2 0.0181 1 0.0181 31.85 0.0008 Extremely
significant

B2 0.0240 1 0.0240 42.32 0.0003 Extremely
significant

C2 0.0069 1 0.0069 12.18 0.0101 Significant
Residual 0.0040 7 0.0006

Lack of Fit 0.0032 3 0.0011 6.02 0.0578 Insignificant
Pure Error 0.0007 4 0.0002
Cor Total 0.2867 16

R2 0.9862

The regression equation for the entrainment loss rate is as follows:

Sj = 0.604 + 0.155A − 0.0225B + 0.03C − 0.045AB − 0.065AC + 0.0655A2 + 0.0755B2 + 0.0405C2 (2)

As can be seen from Table 4, the model p-value for the entrainment loss rate is less than
0.01 and the model F-value is 55.39, which indicates that the model is significant. Also, the
model coefficient of determination R2 = 0.9862 indicates that the regression model obtained
for the entrained loss rate reflects 98.62% of the variation in response values and the misfit
term is not significant, indicating that the error in the experimental data is small while the
regression equation obtained is a good fit. A p-value less than 0.05 indicates that the model
term is significant; in this case, A, B, C, AB, AC, A2, B2 and C2 are the model terms with
significant entrainment loss rates.

From Table 4, it can be seen that the feeding amount, rotation speed of the threshing
drum and threshing gap are the significant terms of entrainment loss, and the response sur-
face of the significant terms and the entrainment loss rate were analyzed comprehensively.
From Figure 9, the entrainment loss rate increased with increasing feed volume, which
was attributed to the fact that the density and thickness of rice in the threshing chamber
increased with increasing feed volume, resulting in increased difficulty in getting the al-
ready threshed seeds through the straw to reach the underside of the concave sieve [38].
The entrainment loss rate decreased and then increased with the increase in rotation speed
of the threshing drum because the intensity of the action of the threshing element on the
crop increased as the speed of the threshing drum increased, and the entrained seeds
were more easily separated out, but as the speed continued to increase, the time that the
crop remained in the threshing drum decreased, resulting in an increase in entrainment
losses. The entrainment loss varies little with the threshing gap, and the overall trend
is to increase, because the threshing gap determines the thickness of the crop inside the
threshing chamber, and the greater the crop thickness the greater the entrainment loss.
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3.2.2. Un-Threshed Rate

An analysis of variance (ANOVA) was performed by Design-Expert 13.0 on the un-
threshed rate, and the results are shown in Table 5.

Table 5. Analysis of variance (ANOVA) for the un-threshed rate.

Source Sum of Squares df Mean Square F-Value p-Value Significance

Model 0.0084 9 0.0009 45.05 <0.0001 Extremely
significant

Feeding volume 0.0020 1 0.0020 98.33 <0.0001 Extremely
significant

B-Rotation speed of the
threshing drum 0.0015 1 0.0015 72.62 <0.0001 Extremely

significant

C-Threshing gap 0.0019 1 0.0019 92.28 <0.0001 Extremely
significant

AB 0.0006 1 0.0006 26.51 0.0013 Extremely
significant

AC 6.250 × 10−6 1 6.250 × 10−6 0.3001 0.6009 Not significant
BC 0.0002 1 0.0002 11.53 0.0115 significant
A2 0.0002 1 0.0002 10.70 0.0137 significant

B2 0.0016 1 0.0016 79.05 <0.0001 Extremely
significant

C2 0.0001 1 0.0001 6.74 0.0356 significant
Residual 0.0001 7 0.0000

Lack of Fit 0.0001 3 0.0000 4.59 0.0874 Not significant
Pure Error 0.0000 4 8.200 × 10−6

Cor Total 0.0086 16
R2 0.9830

The regression equation for the un-threshed rate is as follows:

W = 0.0592 + 0.016A − 0.0137B + 0.0155C − 0.0118AB − 0.0012AC − 0.0078BC + 0.0073A2 + 0.0198B2 + 0.0058C2 (3)

From Table 5, it can be seen that the model p-value for the un-threshed rate is less than
0.01 and the model F-value is 45.05, which indicates that the model is significant. Also,
the model coefficient of determination R2 = 0.983, indicating that the regression model
obtained for the un-threshed rate reflects 98.3% of the variation in response values and
the misfit term is not significant, indicating that the error in the experimental data is small
while the regression equation is a good fit. A p-value less than 0.05 indicates that the model
term is significant; in this case, A, B, C, AB, BC, A2, B2, and C2 are the model terms with
significant un-threshed rates.

As can be seen from Table 5, for the un-threshed rate, the feeding amount, rotation
speed of the threshing drum and threshing gap were significant terms, and the response
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effects of the significant terms and the un-threshed rate were analyzed comprehensively.
As can be seen from Figure 10, the un-threshed rate increased with the increase in feeding
volume, because the increase in feeding volume led to the thickness and density of the crop
layer inside the threshing chamber, which resulted in the rice spike head interspersed in
the middle of the stalk not being in full contact with the threshing element, resulting in
some of the seeds not being threshed out and the un-threshed rate increasing. The reason
is that when the drum speed increases, the force of the threshing element on the spike
head becomes larger, which makes the seeds easier to be threshed out and reduces the
un-threshed rate; as the drum speed continues to increase, the crop residence time and the
number of threshing actions decrease, resulting in some of the seeds being discharged from
the machine before being threshed out. The un-threshed rate increases with the increase in
the threshing gap, because the increase in the threshing gap will lead to the contact between
the threshing element and the head of the rice spike, which increases the un-threshed rate.
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3.2.3. Breakage Rate

An analysis of variance (ANOVA) was performed on the breakage rate by Design-
Expert 13.0 and the results are shown in Table 6.

Table 6. Analysis of variance for breakage rate.

Source Sum of Squares df Mean Square F-Value p-Value Significance

Model 0.9318 9 0.1035 103.59 <0.0001 Extremely
significant

A-Feeding volume 0.3329 1 0.3329 333.08 <0.0001 Extremely
significant

B-Rotation speed of the
threshing drum 0.1857 1 0.1857 185.83 <0.0001 Extremely

significant

C-Threshing gap 0.0237 1 0.0237 23.66 0.0018 Extremely
significant

AB 0.0158 1 0.0158 15.76 0.0054 Extremely
significant

AC 0.0168 1 0.0168 16.78 0.0046 Extremely
significant

BC 0.0061 1 0.0061 6.09 0.0430 Significant

A2 0.0898 1 0.0898 89.79 <0.0001 Extremely
significant

B2 0.1987 1 0.1987 198.82 <0.0001 Extremely
significant

C2 0.0310 1 0.0310 30.97 0.0008 Extremely
significant

Residual 0.0070 7 0.0010
Lack of Fit 0.0056 3 0.0019 5.17 0.0732 Not significant
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Table 6. Cont.

Source Sum of Squares df Mean Square F-Value p-Value Significance

Pure Error 0.0014 4 0.0004
Cor Total 0.9388 16

R2 0.9925

The regression equation for the breakage rate is

P = 0.342 + 0.204A + 0.1524B - 0.0544C + 0.0627AB - 0.0648AC - 0.039BC + 0.146A2 + 0.2172B2 + 0.0858C2 (4)

As can be seen from Table 6, the model p-value for breakage rate is less than 0.01
and the model F-value is 103.59, indicating that the model is significant. Also, the model
coefficient of determination R2 = 0.9925 indicates that the regression model obtained for the
crushing rate reflects 99.25% of the variation in response values and the misfit term is not
significant, indicating that the error in the experimental data is small while the regression
equation is a good fit. A p-value less than 0.05 indicates that the model term is significant;
in this case, A, B, C, AB, AC, BC, A2, B2 and C2 are the model terms with significant
breakage rates.

A comprehensive analysis of the response effect of significant factors and the breakage
rate was performed. As can be seen from Figure 11, the breakage rate decreases and then
increases with the increase in feeding volume; because of the increase in feeding volume,
threshing by threshing element striking decreases, and the increase in rubbing threshing
between crops reduces the crushing of the threshing element on the seeds, but as the feeding
volume continues to increase, a large number of seeds are produced, which increases the
probability of striking on the seeds by the threshing element and increases the breakage
rate. The breakage rate decreases and then increases with the increase in the threshing
drum speed, which is due to the fact that when the drum speed starts to increase, the crop
stay time decreases and the probability of impact on the seeds decreases, reducing the
breakage rate; the drum speed continues to increase and the striking force of the threshing
element for each material becomes larger, increasing the breakage rate of the seeds. The
breakage rate decreases as the threshing gap increases, because the material becomes fluffy
when the threshing gap increases, reducing the chance of contact between the seeds and
the threshing parts and thus reducing the breakage rate.

3.2.4. Comparison Test

According to Figure 6 the optimal parameters at the corresponding feeding rates
were found and analyzed using Design-Expert software to obtain the required operational
prescription. The optimal parameter combinations are shown in Table 7.
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Table 7. Optimal combination of parameters at different feeding rates.

Feed Rate
(kg/s)

Optimal Combination of Parameters

Rotation Speed
of the

Threshing
Drum (r/min)

Optimized
Drum Speed

(r/min)

Threshing
Gap (mm)

Optimized
Threshing
Clearance

(mm)

Entrainment
Loss Rate

(%)

Un-Threshed
Rate (%)

Breakage
Rate (%)

6 775.000 775 16.000 16 0.464 0.041 0.314
7 791.362 791 17.572 17.6 0.545 0.049 0.315

7.8 799.460 800 18.944 18.9 0.636 0.060 0.406
8.2 803.942 804 19.634 19.6 0.689 0.066 0.483
8.5 807.324 807 20.181 20.2 0.733 0.072 0.555
9 812.928 813 21.180 21.2 0.811 0.083 0.699

Since the threshing device was adjusted with limited accuracy and could not achieve
the accuracy predicted by the optimal combination of parameters, the parameters were
adjusted: the rotation speed of the threshing drum was adjusted to an integer level and
the threshing gap was kept to one decimal place. Tests were conducted according to the
comparative test scheme, and the results are recorded in Table 8.

Table 8. Comparison test results.

No.
Real-Time Adjustment of Threshing Gap and Drum Speed No Adjustment

Sj W P Sj W P

1 0.65 0.061 0.563 0.98 0.079 0.762
2 0.63 0.066 0.379 1.34 0.087 0.683
3 0.67 0.062 0.468 1.22 0.095 0.694

Mean 0.65 0.063 0.47 1.18 0.087 0.713

According to Table 8, it can be seen from the three evaluation indexes that the real-
time adjustment of the drum diameter to change the threshing gap and rotation speed
of the threshing drum during operation reduces the entrainment loss rate by 44.9%, the
un-threshed rate by 27.6%, and the breakage rate by 34.1% compared with the fixed
parameters. It shows that the real-time adjustment of the working parameters according to
the field conditions is effective, and the amplitude disc moving variable-diameter threshing
drum has good threshing performance, which improves the operating performance of the
combine harvester and lays a firm foundation for the intelligent adaptive adjustment of the
threshing gap.

4. Conclusions

(1) In order to solve the problem of the complicated adjustment of the threshing gap in
large-size, large-feeding combine harvester and to provide a basis for an adaptive
adjustment of the threshing gap, a hydraulically driven variable-diameter threshing
drum with movable radial plates based on a concentric adjustment principle is studied,
which can quickly adjust the threshing gap by changing the drum diameter.

(2) Through RecurDyn simulation and practical validation, it is verified that the diameter
of the variable-diameter threshing drum with movable radial plates can be adjusted,
and the drum diameter can be changed by 40 mm when the hollow hydraulic cylinder
goes back and forth by 34.64 mm, i.e., the threshing gap can be adjusted by 20 mm.

(3) Through the field test, the evaluation index model of the variable-diameter threshing
drum with movable radial plates for a single species of rice was established, and the
optimal combination of operating parameters of the threshing drum under different
feeding amounts was obtained. The results showed that when the operating parame-
ters were adjusted in real time at different feed rates, the entrainment loss rate was
0.65%, the un-threshed rate was 0.063%, and the breakage rate was 0.47%, compared
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with the fixed threshing gap and drum speed. Compared with the fixed threshing gap
and rotation speed of the threshing drum, the entrained loss rate, un-threshed rate
and breakage rate were reduced by 44.9%, 27.6% and 34.1%, respectively. Therefore,
the real-time adjustment of threshing parameters is obviously better than the fixed
parameters, and the variable-diameter threshing drum with movable radial plates of
the amplitude disc can meet the requirements of use and lay a good foundation for
adaptive adjustment of the threshing gap.
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