Detection of Soluble Solids Content (SSC) in Pears Using Near-Infrared Spectroscopy Combined with LASSO–GWF–PLS Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. SSC Measurement
2.3. Spectral Data Acquisition and Preprocessing
2.4. Feature Wavelength Selection
2.4.1. Feature Wavelength Selection Using Different Algorithms
2.4.2. Characteristic Wavelength Selection Using Chemical Group Response Spectra
2.4.3. Feature Wavelength Selection for Group Weighted Fusion Methods
2.5. Characterization Factor-Weighting Model for Pear SSC Modified by Contribution
2.6. Modeling Methods and Model Evaluation
2.6.1. PLS-Based Predictive Model Construction Method
2.6.2. Model Performance Evaluation
3. Results and Discussion
3.1. Sample Division
3.2. Preprocessing Spectral Data
3.3. Results Obtained by Different Characteristic Wavelength Selection Methods
3.3.1. CARS
3.3.2. GA
3.3.3. LASSO
3.3.4. Result and Analysis of Different Models
3.4. Correlation Analysis between Near-Infrared Spectral Characteristics and SSC of Pears
3.5. Analysis of the Results of the Weighted Model
3.6. LASSO–GWF–PLS Model Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, Y.; Fan, S.; Tian, X.; Huang, W.; Li, J. Multi-factor fusion models for soluble solid content detection in pear (Pyrus bretschneideri ‘ya’) using Vis/NIR online half-transmittance technique. Infrared Phys. Technol. 2020, 110, 103443. [Google Scholar] [CrossRef]
- Deng, J.; Jiang, H.; Chen, Q. Characteristic wavelengths optimization improved the predictive performance of near-infrared spectroscopy models for determination of aflatoxin B-1 in maize. J. Cereal Sci. 2022, 105, 103474. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, J.; Chen, Q. Comparison of wavelength selected methods for improving of prediction performance of PLS model to determine aflatoxin B1 (AFB1) in wheat samples during storage. Microchem. J. 2021, 170, 106642. [Google Scholar] [CrossRef]
- Wang, T.; Li, G.; Dai, C. Soluble Solids Content prediction for Korla fragrant pears using hyperspectral imaging and GsMIA. Infrared Phys. Technol. 2022, 123, 104119. [Google Scholar] [CrossRef]
- Xin, Z.H.; Ju, S.C.; Zhang, D.Y.; Zhou, X.G.; Guo, S.; Pan, Z.G.; Wang, L.S.; Cheng, T. Construction of spectral detection models to evaluate soluble solids content and acidity in Dangshan pear using two different sensors. Infrared Phys. Technol. 2023, 131, 104632. [Google Scholar] [CrossRef]
- Martins, J.A.; Rodrigues, D.; Cavaco, A.M.; Antunes, M.D.; Guerra, R. Estimation of soluble solids content and fruit temperature in ‘Rocha’ pear using Vis-NIR spectroscopy and the SpectraNet-32 deep learning architecture. Postharvest Biol. Technol. 2023, 199, 112281. [Google Scholar] [CrossRef]
- Chen, S.B.; Yang, H.; Luo, R.; Hu, Z. Rapid Quantitative Model and Optimization of Potato Soluble Solids by Near Infrared Spectroscopy. Anhui Agric. Sci. 2021, 49, 205–209. [Google Scholar]
- Guo, Y.; Guo, J.; Shi, Y.; Li, X.; Liu, Y.; Huang, H.; Li, Z. Prediction of soluble solids in Hami melon by CARS-SVM. Food Mach. 2021, 37, 81–85. [Google Scholar]
- Liu, Y.; Chen, X.; Ouyang, A. Non-Destructive Measurement of Soluble Solid Content in Gannan Navel Oranges by Visible/Near-Infrared Spectroscopy. Acta Opt. Sin. 2008, 28, 478–481. [Google Scholar]
- Zheng, K.; Li, Q.; Wang, J. Stability competitive adaptive reweighted sampling (SCARS) and its applications to multivariate calibration of NIR spectra. Chemom. Intell. Lab. Syst. 2012, 112, 48–54. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Huang, W.; Tian, X.; Fan, S.; Wang, Q. Optimization and compensation of models on tomato soluble solids content assessment with online Vis/NIRS diffuse transmission system. Infrared Phys. Technol. 2022, 121, 104050. [Google Scholar] [CrossRef]
- Zheng, K.; Feng, T.; Zhang, W. Variable selection by double competitive adaptive reweighted sampling for calibration transfer of near infrared spectra. Chemom. Intell. Lab. Syst. 2019, 191, 109–117. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, C.; Wang, N.; Shi, J.; Sun, Y. Rapid biochemical methane potential evaluation of anaerobic co-digestion feedstocks based on near infrared spectroscopy and chemometrics. Energies 2021, 14, 1460. [Google Scholar] [CrossRef]
- Li, W.; Suhayb, M.K.; Thangavelu, L. Implementation of AdaBoost and genetic algorithm machine learning models in prediction of adsorption capacity of nanocomposite materials. J. Mol. Liq. 2022, 350, 118527. [Google Scholar] [CrossRef]
- Yao, J.; Wu, Z.; Liu, Y. Predicting membrane fouling in a high solid AnMBR treating OFMSW leachate through a genetic algorithm and the optimization of a BP neural network model. J. Environ. Manag. 2022, 307, 114585. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.Y.; Chan, Y.H.; Cheng, Y.H. Week-ahead daily peak load forecasting using genetic algorithm-based hybrid convolutional neural network. IET Gener. Transm. Distrib. 2022, 12, 2416–2424. [Google Scholar] [CrossRef]
- Yoon, D.; Kim, K.; Cha, D.-H. Development of model output statistics based on the least absolute shrinkage and selection operator regression for forecasting next-day maximum temperature in South Korea. Q. J. R. Meteorol. Soc. 2022, 148, 1929–1944. [Google Scholar] [CrossRef]
- Hu, X.; Shen, F.; Zhao, Z.; Qu, X.; Ye, J. An individualized gait pattern prediction model based on the least absolute shrinkage and selection operator regression. J. Biomech. 2020, 112, 110052. [Google Scholar] [CrossRef]
- Narala, S.; Li, S.; Klimas, N.K.; Patel, A.B. Application of least absolute shrinkage and selection operator logistic regression for the histopathological comparison of chondrodermatitis nodularis helicis and hyperplastic actinic keratosis. J. Cutan. Pathol. 2021, 48, 739–744. [Google Scholar] [CrossRef]
- Chu, X.L. Chemometric Methods in Modern Spectral Analysis; Chemical Industry Press: Beijing, China, 2022. [Google Scholar]
- Yu, Y.; Zhang, Q.; Huang, J. Nondestructive determination of SSC in Korla Fragrant Pear using a portable near-infrared spectroscopy system. Infrared Phys. Technol. 2021, 116, 103785. [Google Scholar] [CrossRef]
- Cruz, S.; Guerra, R.; Brazio, A. Nondestructive simultaneous prediction of internal browning disorder and quality attributes in ‘Rocha’ pear (Pyrus communis L.) using VIS-NIR spectroscopy. Postharvest Biol. Technol. 2021, 179, 111562. [Google Scholar] [CrossRef]
- Zaveri, S.T. Hyperspectral endmember extraction using Pearson’s correlation coefficient. Int. J. Comput. Sci. Eng. 2021, 24, 89–97. [Google Scholar]
- Lv, Y.; Yang, H. A multi-model modeling approach based on weighted kernel Fisher criterion feature extraction. Chin. J. Chem. Eng. 2014, 22, 22–28. [Google Scholar]
- Asri, M.N.M.; Verma, R.; Mahat, N.A.; Nor, N.A.M.; Desa, W.N.S.M.; Ismail, D. Raman spectroscopy with self-organizing feature maps and partial least squares discriminant analysis for discrimination and source correspondence of red gel ink pens. Microchem. J. 2022, 175, 107170. [Google Scholar] [CrossRef]
- Wang, H.; Chu, X.; Chen, P.; Li, J.; Liu, D.; Xu, Y. Partial least squares regression residual extreme learning machine (PLSRR-ELM) calibration algorithm applied in fast determination of gasoline octane number with near-infrared spectroscopy. Fuel 2022, 309, 122224. [Google Scholar] [CrossRef]
- Xie, Z.; Feng, X.; Chen, X. Subsampling for partial least-squares regression via an influence function. Knowl.-Based Syst. 2022, 245, 108661. [Google Scholar] [CrossRef]
- Li, Z.; Pang, W.; Liang, H.; Chen, G.; Duan, H.; Jiang, C. Fast Quantitative Modelling Method for Infrared Spectrum Gas Logging Based on Adaptive Step Sliding Partial Least Squares. Energies 2022, 15, 1325. [Google Scholar] [CrossRef]
- Deng, L.; Ma, L.; Cheng, K.K.; Xu, X.; Raftery, D.; Dong, J. Sparse PLS-Based Method for Overlapping Metabolite Set Enrichment Analysis. J. Proteome Res. 2021, 20, 3204–3213. [Google Scholar] [CrossRef]
- Li, J.; Tian, X.; Huang, W.; Zhang, B.; Fan, S. Application of Long-Wave Near Infrared Hyperspectral Imaging for Measurement of Soluble Solid Content (SSC) in Pear. Food Anal. Methods 2016, 9, 3087–3098. [Google Scholar] [CrossRef]
- Wang, S.; Han, P.; Cui, G. The NIR Detection Research of Soluble Solid Content in Watermelon Based on SPXY Algorithm. Spectrosc. Spectr. Anal. 2022, 39, 738–742. [Google Scholar]
Perssad | Chemical Compounds | Wavelength Range (cm−1) |
---|---|---|
O-H | saccharides, organic acid, amino acid | 3200–3600 |
C-H | saccharides, organic acid, amino acid, delspray | 2800–3000 |
C=O | saccharides, organic acid | 1700–1750 |
C-O | saccharides, organic acid, amino acid | 1000–1300 |
N-H | amino acid | 3300–3500 |
Sample Sets | No. of Samples | Mean (%) | Min. (%) | Max. (%) | S.D. (%) |
---|---|---|---|---|---|
Calibration set | 160 | 10.899 | 9.411 | 12.670 | 0.817 |
Prediction set | 80 | 10.316 | 9.549 | 11.945 | 0.667 |
Total sample | 240 | 10.826 | 9.411 | 12.670 | 0.709 |
Models | Wavelength Number | Calibration Set | Prediction Set | ||
---|---|---|---|---|---|
r2cal | RMSEC | r2pre | RMSEP | ||
PLS | 1451 | 0.9491 | 0.184 | 0.9321 | 0.154 |
CARS–PLS | 29 | 0.9751 | 0.173 | 0.9736 | 0.131 |
GA–PLS | 19 | 0.9662 | 0.162 | 0.9637 | 0.151 |
LASSO–PLS | 33 | 0.9762 | 0.178 | 0.9754 | 0.135 |
Wavelength Sets | Wavelength Number | Feature Wavelength |
---|---|---|
S1 | 33 | 350, 368, 392, 412, 413, 522, 523, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 678, 682, 735, 736, 743, 744, 1460, 1461, 1473, 1474, 1475, 1482, 1729, 1740 |
S2 | 9 | 465, 522, 657, 695, 980, 1230, 1260, 1460, 1729 |
S | 38 | 350, 368, 392, 412, 413, 465, 522, 523, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 678, 682, 695, 735, 736, 743, 744, 980, 1230, 1260, 1460, 1461, 1473, 1474, 1475, 1482, 1729, 1740 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, B.; Li, P.; Li, M.; Luo, W.; Zhang, H. Detection of Soluble Solids Content (SSC) in Pears Using Near-Infrared Spectroscopy Combined with LASSO–GWF–PLS Model. Agriculture 2023, 13, 1491. https://doi.org/10.3390/agriculture13081491
Zhan B, Li P, Li M, Luo W, Zhang H. Detection of Soluble Solids Content (SSC) in Pears Using Near-Infrared Spectroscopy Combined with LASSO–GWF–PLS Model. Agriculture. 2023; 13(8):1491. https://doi.org/10.3390/agriculture13081491
Chicago/Turabian StyleZhan, Baishao, Peng Li, Ming Li, Wei Luo, and Hailiang Zhang. 2023. "Detection of Soluble Solids Content (SSC) in Pears Using Near-Infrared Spectroscopy Combined with LASSO–GWF–PLS Model" Agriculture 13, no. 8: 1491. https://doi.org/10.3390/agriculture13081491
APA StyleZhan, B., Li, P., Li, M., Luo, W., & Zhang, H. (2023). Detection of Soluble Solids Content (SSC) in Pears Using Near-Infrared Spectroscopy Combined with LASSO–GWF–PLS Model. Agriculture, 13(8), 1491. https://doi.org/10.3390/agriculture13081491