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Abstract: Peanut southern blight has a severe impact on peanut production and is one of the
most devastating soil-borne fungal diseases. We conducted a hyperspectral analysis of the spectral
responses of plants to peanut southern blight to provide theoretical support for detecting the severity
of the disease via remote sensing. In this study, we collected leaf-level spectral data during the
winter of 2021 and the spring of 2022 in a greenhouse laboratory. We explored the spectral response
mechanisms of diseased peanut leaves and developed a method for assessing the severity of peanut
southern blight disease by comparing the continuous wavelet transform (CWT) with traditional
spectral indices and incorporating machine learning techniques. The results showed that the SVM
model performed best and was able to effectively detect the severity of peanut southern blight when
using CWT (WF770~780, 5) as an input feature. The overall accuracy (OA) of the modeling dataset
was 91.8% and the kappa coefficient was 0.88. For the validation dataset, the OA was 90.5% and
the kappa coefficient was 0.87. These findings highlight the potential of this CWT-based method for
accurately assessing the severity of peanut southern blight.

Keywords: peanut southern blight; reflection spectrum; spectral index; continuous wavelet transform;
machine learning

1. Introduction

Peanut southern blight, which is caused by the soil-borne fungus Sclerotium rolfsii
Sacc, is a fungal pathogen that significantly impacts global peanut production [1,2]. This
pathogen gradually turns peanut leaves brown or yellow, eventually leading to their
detachment. The fungus destroys the fleshy tissues within the stems. Noticeable white
mycelia appear on the roots, and at high temperatures, light brown spherical sclerotia
develop within the infected tissues. Ultimately, this can lead to complete crop failure [3].
Due to the rapid onset of peanut southern blight, current field surveys and control measures
are insufficient. Therefore, it is essential to explore the spectral response mechanism of
peanut southern blight in order to achieve precise prevention and control strategies [4].

In recent years, the majority of research efforts have focused on viruses, bacteria, fungi,
and nematodes, which have long been recognized as the main culprits behind infectious
diseases. The changes in a pathogen and in the interactions between plants and pathogens
can be reflected through variations in plant tissue color [5], leaf shape [6], transpiration rate,
and plant density. The physiological and biochemical changes that occur during this process
are inevitably reflected in certain spectral bands. Typically, healthy green plants exhibit
low reflectance in the visible (VIS) spectrum, high reflectance in the near-infrared (NIR)
spectrum, and low wide-band reflectance in the shortwave infrared (SWIR) spectrum [7]. In
recent years, there has been an increasing number of reports regarding pests and diseases
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affecting plant leaves [8–10]. With leaf infection, various spots or necrotic areas often
appear [11]. This leads to a reduction in leaf pigmentation and photosynthesis [12,13]. The
result is a typical red-edge “blue-shifting” phenomenon that can be observed in the visible-
light range [14]. Ray et al. pointed out that red-edge information becomes particularly
important when subtle structural changes occur [15]. At this point, the importance of
spectral resolution becomes clear, as a higher spectral resolution enables the more detailed
observation of spectral responses. Hyperspectral sensors contain hundreds to thousands of
useful narrow-band data [16], and they have been proven to detect the spectral response
mechanisms of plants under stress, such as wheat stripe rust [17,18] and rice blast [19].
However, few studies have used hyperspectral technology to investigate the spectral
response mechanisms of plants with peanut southern blight.

Currently, there are two main categories of methods for monitoring plants under
stress: empirical methods and physical methods [20]. Physical methods based on Radiative
Transfer Models (RTMs) have consistently attracted attention in the field of pest and dis-
ease monitoring [21,22]. The main advantage of this approach is that it does not require
parameterization [23]. Rather, it uses existing leaf or canopy spectra to simulate changes
in plant growth and developmental traits. For example, Saddik et al. [24] combined RGB
images and hyperspectral reflectance data with an RTM to differentiate spectra affected by
yellowness and esca infections. Although RTMs have model interpretability and mecha-
nistic modeling advantages, they rely on the calibration of the input feature set, and this
may limit their applicability in real-world scenarios [25]. Empirical methods can effectively
characterize spectral changes [26]. Some studies focus on developing crop-specific spectral
indices [27,28]. In addition, some studies have analyzed different spectral transformation
forms, such as logarithms, derivatives, and continuous wavelet transforms, to enhance
the separability of spectra under different severity levels [29,30]. In order to ascertain the
spectral response mechanism of plants with peanut southern blight, we have employed the
Continuous Wavelet Transform (CWT) technique. This method decomposes the reflectance
spectra of leaves into multiple scale components, amplifying the underlying spectral dif-
ferences [31]. Previous studies have used the CWT technique in various domains, such
as the study of vegetation [32], minerals [33], and inland water bodies [34]. Specifically,
wavelet analysis has been applied in the detection and assessment of plant physiological
stress [35]. Some authors have also utilized wavelet analysis in the study of airborne
imaging spectroscopy data to quantify forest structural parameters [36] and identify plant
species [37]. The use of the Standard Normal Variate (SNV) method and some previously
reported spectral indices has also been evaluated in detail and has been compared with the
CWT technique [38].

In recent years, the combination of Feature Selection (FS) methods and Machine
Learning (ML) algorithms has been widely applied in the field of remote sensing [39,40]. By
utilizing selected features as input, it is possible to significantly reduce model running time
and enhance model accuracy [41]. Wang et al. utilized Principal Component Analysis (PCA)
to reduce the dimensionality of features and combined it with the Backpropagation Neural
Network (BPNN) machine learning algorithm to analyze grape and wheat diseases [42].
Huang et al. employed the relief algorithm to extract wavelength information concerning
different diseases from wheat leaf spectral data and used machine learning modeling to
monitor various wheat diseases [10]. To evaluate the severity of peanut southern blight, we
applied the relief algorithm to determine the feature weights of the vegetation indices [43].
Through feature stacking, we identified the most sensitive features for the classification
task. In addition, we evaluated three classification models (Support Vector Machine (SVM),
decision tree, and K-Nearest Neighbors (KNN)) in combination with the selected features.

Different stress conditions caused by various pathogens have different effects on crop
growth and development [20]. Currently, hyperspectral remote sensing research mainly
focuses on aspects such as chlorophyll content, nitrogen content, and pest and disease
detection. For peanuts, most studies concentrate on diseases with obvious pathogenic
characteristics, such as leaf spot and stem rot. For instance, Guan et al. used portable spec-
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troradiometers and spectrophotometers to study the spectral characteristics of peanut leaf
spot disease [44]. Wei et al. used hyperspectral sensors and machine learning techniques
to identify the optimal wavelength features for detecting peanut stem rot [45]. However,
to the best of our knowledge, there have been no research reports on the remote sensing
monitoring mechanism of peanut southern blight. Whether the progress of previous work
is applicable to our research presents new challenges.

The overall objective of this study is to investigate the spectral response mechanism of
peanut southern blight and distinguish peanuts with different levels of severity. Specifically,
our goals are to address the following questions: (1) Can we extract the spectral response
mechanism of peanut southern blight from the hyperspectral remote sensing data? (2) Can
CWT be applied to our hyperspectral data to differentiate the severity of peanut southern
blight at the leaf level? (3) Is the combination of CWT and ML models more effective than
traditional spectral indices and spectral preprocessing methods?

2. Materials and Methods
2.1. Experimental Design

The peanut trial was conducted in 2021 and 2022 at the Wenhua Road Campus of
Henan Agricultural University. A laboratory pot was used to control the publication-
grade experiment manually. The experimental peanut variety was Yuhua 37, sown in the
greenhouse laboratory and managed regularly. The soil for peanut culture was a mixture
of matrix and vermiculite with a volume ratio of 3:1 after autoclaving. Peanut plants
with uniform size and healthy growth in the greenhouse for ten days were inoculated
with different concentration doses (namely benzovindiflupyr and thifluzamide). The
experimental concentrations of benzovindiflupyr were 50, 100, and 200 mg L−1, respectively,
and thifluzamide was used as the control agent with a concentration of 100 mg/L. Blank
control peanut plants were treated with distilled water, and 10 mL of each concentration
of fungicide was applied with a 5 mL pipettor to the stem base of the plant 48 h before
inoculation (preventive activity) or after inoculation (therapeutic exercise). This study
selected the inoculation strain for highly virulent Sclerotium rolfsii Sacc (ZMGD-2). Four
agar disks containing mycelium (5 mm in diameter) were placed around the root and stem
of each peanut plant and buried with the matrix. The inoculated plants were kept at 30 ◦C
and 80% relative humidity for seven days as far as possible. The data collection is shown in
Table 1.

Table 1. Sample inoculation and acquisition time.

Sample Inoculation Time Sample Acquisition Time Quantity

02 Nov. 2021 05 Dec. 2021 76
04 Dec. 2021 05 Jan. 2022 46
20 Mar. 2022 26 Apr.2022 53

2.2. Data Collection
2.2.1. Classification and Analysis of Disease Severity

The samples for the pot experiment were obtained through investigation conducted by
plant protection experts from Henan Agricultural University. The surveyed peanut plants
had an average height of approximately 10 cm. Samples were selected from peanut plants
treated with different chemicals and concentrations to assess the disease grade of southern
blight. Based on previous research on the genetic and phenotypic diversity of peanuts, the
severity of southern blight was defined as Grade 0 = healthy plants, Grade 1 = mild, and
Grade 2 = severe, as shown in Table 2 and Figure 1.

2.2.2. Reflectance Spectral Measurement

The spectral measurement instrument of this experiment adopted the ASD Field Spec3
spectrometer and the matching plant probe to collect the spectral data of peanut leaves.
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The dimensions of the equipment are 12.7 cm × 36.8 cm × 29.2 cm and its weight is 5.44 kg.
The wavelength range is 350–2500 nm, the sampling intervals are 1.4 nm (350–1000 nm) and
2 nm (1001–2500 nm), and the resampling interval is 1 nm. To avoid signal loss due to light
absorption by atmospheric water vapor at wavelengths between 1400 nm and 1800 nm, the
handheld Leaf Clip (ASD Leaf Clip) of the matching spectrometer was used to measure
the spectrum of peanut leaves in this experiment. The built-in standard whiteboard was
calibrated every 3 min to obtain a baseline close to 100% to ensure the accuracy of spectral
data during the experiment.

Table 2. Grading standard of peanut southern blight disease.

Disease Severity Symptom

Health (Grade 0) No apparent symptoms

Mild (Grade 1)
Most of the leaves exhibit yellowing and

wilting, while a significant amount of white
mycelium is observed at the plant’s root base.

Severe (Grade 2)
The entire plant exhibits complete wilting of
leaves, while brown spherical sclerotia are

present at the plant’s root base.
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2.3. Data Analysis Methods
2.3.1. Continuous Wavelet Transform

CWT is a linear operation that transforms a reflectance spectrum f (λ) (λ = 1, 2, . . .,
n, where n is the number of spectral bands) into sets of coefficients at various scales
by using a mother wavelet function. The mother wavelet ψ(λ) is a small wave and
has an average value of zero, which can be shifted (translated) and scaled (stretched
or compressed) to produce a series of continuous wavelets ψa,b(λ) as follows (dyadic
numbers 21, 22, 23, . . ., 28 are denoted as Scale 1, Scale 2, Scale 3, . . ., Scale 8 for simplicity,
respectively) [44]. In Formula (1), a represents the wavelength and b represents the phase.
After spectrum decomposition, the complete wavelet coefficient matrix of different bands
and decomposition scales can be obtained:

ψa,b(λ) =
1√
a

ψ

(
λ− b

a

)
(1)

W f (a, b) =
∫ ∞

−∞
f (λ)ψa,b(λ)dλ (2)
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where ψa,b(λ) denotes the inner products of wavelets and the input spectrum. The output
W f (a, b) of a one-dimentional input spectrum comprises a two-dimentional wavelet power
scalogram. Each element of the scalogram is a wavelet feature or wavelet coefficient that
characterizes the correlation between a subset of the input spectrum and a scaled, shifted
version of the mother wavelet [45].

The wavelet transform has proven to be an effective technique for extracting spectral
information related to foliar chemistry and species composition from vegetation reflectance
spectra when applied to spectroscopic data in remote sensing [46,47]. The Continuous
Wavelet Transform (CWT) was utilized instead of the Discrete Wavelet Transform (DWT),
because CWT provides scale components that are directly comparable to the input re-
flectance spectrum on a band-by-band basis, making the results easier to interpret.

2.3.2. Standard Normal Variable Transformation Processing

The SNV transformation was used to eliminate the influence of diffuse reflectance
spectra caused by surface scattering and solid particle sizes during data collection. The
average value of the spectral data was subtracted from the initial spectral reflectance data
and then divided by its standard deviation [48]. The formula is as follows:

Xsnv =
X− x√

∑m
k=1(Xk−x)
(m − 1)

(3)

where x = ∑m
k=1 xk

m , m is the total number of wavelengths, and k = 1, 2. . ., m.

2.3.3. Spectral Index

After reviewing the previous research on spectral indices, 12 spectral indices related
to pest and disease stress were selected from the highly cited literature (Table 3). We then
analyzed their weights using the relief algorithm to retain the most sensitive features for
assessing their transferability.

Table 3. The spectral indices included in this study.

Index Formulation Reference

SIPI (R800 − R445)/(R800 + R680) [49]
R R700/R670 [50]
G R570/R670 [51]
B R450/R490 [51]

NRI (R570 − R670)/(R570 + R670) [52]
WI R900/R970 [53]

mNDI (R750 − R705)/(R750 − R705 − 2R445) [54]
HI (R739 − R402)/(R739 + R402) − 0.5R403 [10]

NSRI R890/R780 [55]
PSRI (R680 − R500)/R750 [56]
MSR (R750 − R445)/(R705 − R445) [54]

PSSRa R800/R675 [57]

2.3.4. Relief

The relief algorithm is a classic feature weight selection method that assigns weights
to different features based on their relevance to the target variable.

In the initial feature set, the relief algorithm randomly selects a sample, denoted as
“a”, and then searches for the nearest neighbor sample within the same class, known as
the “Near Hit”. It also searches for the nearest neighbor sample outside the same class,
referred to as the “Near Miss”. Feature weights are defined as follows: if the distance
between the feature of interest and the Near Hit (H) is smaller than the distance between
the same feature and the Near Miss (M), the weight is increased, which indicates that the
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feature effectively distinguishes different classes. Conversely, the weight is decreased for
the reverse case [58].

w = di f f (l, a, M)− di f f (l, a, H) (4)

di f f (l, a, b) =
|a− b|

max(l)−min(l)
(5)

where di f f (l, a, b) represents the distance between samples a and b for feature l, and max(l)
and min(l) represent the upper and lower bounds of feature l, respectively.

2.3.5. Machine Learning

In this study, three non-parametric machine learning algorithms, namely SVM, deci-
sion tree, and KNN, were employed to detect the severity of peanut southern blight.

The working principle of SVM is to create an optimal classification hyperplane using
the training dataset and achieve different sample classifications based on minimal errors. In
this study, we employed grid search to determine the best parameters, including the Radial
Basis Function (RBF) kernel and polynomial kernel functions, for SVM classification [59].
Decision tree is a supervised learning algorithm that learns from a labeled training dataset
to construct a root node and selects the best feature to further partition the data, aiming to
achieve the best classification for each data point at each step [60]. KNN is a non-parametric
classification method that assigns labels to data points based on the classification of K
similar training samples. It does not assume any specific distribution for the data [61].

2.3.6. Evaluation of Accuracy

In this study, a 5-fold cross-validation with 100 repetitions was performed to evaluate
the accuracy and robustness of all models. The first two sets of data (n = 122) were used to
build and validate the models, while the third set of data (n = 53) was used for independent
validation. The sample sizes for each severity level were approximately balanced across
the three sets. The OA and kappa coefficient were used to assess the performance of the
models. The formulas for calculating these two metrics are shown as Equations (6) and (7),
respectively. In the equations, N represents the total number of classes; n represents the
number of samples; akk represents the number of correctly classified samples; xii represents
the diagonal elements of the confusion matrix; and xij represents each element of the
confusion matrix.

OA =

(
∑N

k=1 akk
)

n
(6)

kappa =
N∑m

i=1 xii −∑m
k=1

(
∑m

i=1 xij∑m
j=1 xij

)
N2 −∑m

k=1

(
∑m

i=1 xij∑m
j=1 xij

) (7)

3. Results
3.1. Spectral Response of Peanut Southern Blight

The sample contained 175 healthy, mild, moderate, and severe peanut leaves. The
average spectral responses of each leaf type in different wavelength bands are shown in
Figure 2. The findings indicate that in the green-light wavelength band (530–580 nm),
healthy leaves exhibited the highest reflectance, while severely affected leaves showed the
lowest reflectance. In the red-light wavelength band (620–670 nm), although the differences
were not significant, some features were observed. Specifically, the spectral reflectance
followed the pattern of healthy leaves > mild leaves > severe leaves, with a relatively small
peak at 640 nm. In the red-edge wavelength band (700–780 nm), there were significant
differences between healthy and severely affected leaves. The reason for this difference is
attributed to the destruction of photosynthetic pigments, including chlorophyll, in infected
leaves. The absorption capacity in the blue-light wavelength band (centered at 450 nm) and
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red-light wavelength band (centered at 660 nm) weakened, resulting in relatively small
peaks. As chlorophyll continued to be destroyed and the photosynthetic ability weakened,
the reflectance in the green-light wavelength band (centered at 550 nm) decreased, with a
noticeable difference at 560 nm, due to changes in cell structure, loss of water content, and a
decrease in chlorophyll and photosynthetic intensity in leaf cells caused by the continuous
invasion of Sclerotium rolfsii in the intercellular space of the leaves. The hyperspectral
reflectance of southern blight was relatively low in the visible band (400–760 nm) and
relatively high in the near-infrared band (760–1350 nm). In comparison with healthy plants,
the red edge of the infected southern blight largely shifted toward shorter wavelengths,
indicating a “blue shift” phenomenon. In the overall analysis, the spectral reflectance of
infected leaves in the visible light and near-infrared wavelength bands showed a decreasing
trend with the increasing severity of the disease.
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3.2. Continuous-Wavelet-Transform-Sensitive Spectral Characterization

The spectral reflectance data of different severity levels collected in 2021 and 2022
were applied to CWT, and then the spectral results for each severity level were averaged,
as shown in Figure 3b. Compared to the original spectra, CWT amplified the spectral
differences in the red-edge range (700–790 nm) for different severity levels. Furthermore,
we generated a classification scale based on the data, as shown in Figure 3a. We evaluated
the accuracy of the machine learning models by incorporating the most sensitive wavelet
features for each scale separately. Ultimately, we found that the SVM model using CWT
(WF770~780, 5) performed best. The validation set OA was 90.5% and the kappa coefficient
was 0.87 (Table 4).

3.3. Standard Normal Variable Transformation Processing

Figure 4 shows the spectral curves after SNV preprocessing, which altered the shape
of the spectra compared to the original spectra (OR). SNV increased the separability of
the spectral curves for different severity levels in the range of 350–1200 nm. We employed
simple Linear Discriminant Analysis (LDA) to explore the sensitive bands of OR and
SNV. For OR, the 940–1300 nm range exhibited the best performance, with the 942 nm
band having the highest accuracy and an OA of 87.4%. For SNV, the 780–1300 nm range
demonstrated the best performance, with the 903 nm band having the highest accuracy
and an OA of 88.7%. Overall, both OR and SNV showed their highest accuracies in the
near-infrared (NIR) range, and SNV enhanced NIR spectral differences among different
severity levels (Figure 5).
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Table 4. Accuracy evaluation using CWT machine learning models.

Features Model
Calibration Validation

OA (%) Kappa OA (%) Kappa

WF770~780, 5
SVM 91.8% 0.88 90.5% 0.87
KNN 85.2% 0.78 86.6% 0.79

Decision Trees 89.3% 0.84 86.8% 0.79
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3.4. Assessing the Transferability of Spectral Indices

To explore the spectral indices characterizing the severity of peanut southern blight, we
analyzed the weights of 12 spectral indices using the relief algorithm (Figure 6a). To further
evaluate the accuracy of these features, we performed the SVM modeling with different
combinations of the features and evaluated their performance, as shown in Figure 6b. The
highest OA was 74.9%, which was achieved by using 11 features. Notably, these features
exhibited complementarity in the model. Removing the NSRI feature resulted in a 2.9%
reduction in OA when the remaining 10 features were used. Likewise, removing the HI
feature resulted in a 5.7% drop in OA when using the remaining nine features. Removing
the G feature resulted in a 2.9% reduction in OA when using the remaining four features.
Finally, removing the SIPI features led to a 2.9% decrease in OA. Based on these findings,
we can conclude that the NSRI, HI, G, and SIPI features had a particular impact on the
performance of the model.
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We further conducted an autocorrelation analysis on the four selected features (Table 5).
The correlation between each feature was found to be very low, indicating the absence of
multicollinearity among the features. We proceeded to evaluate the accuracy of different



Agriculture 2023, 13, 1504 10 of 15

machine learning models (Table 6). Among them, the SVM model achieved the highest
performance on the training set, with an OA of 92.6% and kappa coefficient of 0.89. How-
ever, when applied to the independent validation data, the SVM model showed lower
performance, with an OA of only 62.3% and kappa coefficient of 0.43, indicating poor
robustness of the model.

Table 5. Correlation analysis of NSRI, HI, G, and SIPI.

NSRI HI G SIPI

NSRI 1
HI 0.330943 1
G −0.36627 0.340911 1

SIPI −0.05788 0.539683 0.202275 1

Table 6. Accuracy of different machine learning models.

Features Model
Calibration Validation

OA (%) Kappa OA (%) Kappa

NSRI, HI, G, SIPI
SVM 92.6% 0.89 62.3.% 0.43
KNN 86.9% 0.8 67.9% 0.51

Decision Trees 74.6.% 0.61 64.2% 0.47

4. Discussion
4.1. Spectral Response Mechanism of Peanut Southern Blight

Peanut southern blight is a highly contagious and extremely destructive soil-borne
fungal disease that occurs in most countries. It has become a key factor limiting peanut yield
and quality [62,63]. Currently, there are few reports on the spectral response mechanism of
peanut southern blight. In this study, we obtained spectral curves of samples with different
severity levels through variable-controlled experiments. Machine learning techniques have
been applied to hyperspectral data to enhance the detection capability of peanut southern
blight severity. The main focus in this regard is to explore the spectral response of southern
blight and obtain the optimal spectral features. These methods are consistent with previous
advancements in the field [64].

Previous research has indicated that when plants are under stress from pests and
diseases, their spectra tend to shift toward shorter wavelengths, and the amplitude of the
red edge decreases [65]. When peanut plants are infected with southern blight disease, their
photosynthesis is disrupted, resulting in a decrease in the absorption capacity of blue- and
red-light wavelengths and a decrease in reflectance. As the disease progresses over time,
it further damages the leaf structure, leading to the loss of chlorophyll and water content.
Therefore, samples with different severity levels exhibit significant differences in the red-
edge and near-infrared range (725–1200 nm). Infected samples generally show a decreasing
trend in spectral reflectance, accompanied by a red-edge shift toward shorter wavelengths.

4.2. Advantages of Wavelet Analysis in Pest and Disease Detection

CWT can perform spectral decomposition at continuous wavelengths and scales.
It effectively reduces noise interference, amplifies implicit weak spectral information,
and plays a significant role in eliminating spectral background differences. Moreover, it
enhances the sensitivity of spectra to the severity of peanut southern blight disease [66,67].

In this study, we conducted a comparative analysis using CWT at different scales, and
the results showed that CWT at five scales achieved the best performance. Additionally,
we found that the SVM model constructed using CWT (WF770~780, 5) outperformed the
models based on the SNV and the original spectra. The main reason for this improvement
is that CWT enhances the spectral response in the red-edge region, enabling effective
differentiation of different severity levels of peanut southern blight disease [68].
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4.3. Application of Spectral Index in Pest and Disease Detection

To assess the transferability of spectral indices under previous disease and pest stress,
this study selected 12 spectral indices that contain information in the red-edge region. These
indices were chosen based on current reports on the remote sensing of diseases and pests,
such as wheat stripe rust [69] and apple fire blight [70]. Furthermore, relief analysis was
employed to determine feature weights, and SVM models were evaluated by individually
incorporating each feature. We observed that the model’s accuracy significantly changed
when certain features were removed (Figure 6). This variation can be attributed to the
complementary nature of different features in the model. As a result, we identified and
confirmed four features as the final inputs for the model.

Although the SVM model achieved the highest accuracy on the training dataset, we
observed poor robustness when validating the model using independent data. This may be
attributed to the fact that the data from the final period were collected in spring, while the
training dataset consisted of data collected in winter (Table 1). The different growth stages
could have led to suboptimal model performance. However, we also identified several
spectral indices that are related to the severity of peanut southern blight, indicating that
spectral indices can rapidly detect the stress of plant diseases and pests, which is consistent
with previous findings. Moving forward, our future work will likely focus on exploring
additional vegetation indices that can accurately detect the severity of peanut southern
blight, thus providing feasibility analysis for large-scale remote sensing of this disease.

4.4. Implications for Future Applications

The study also found some complex challenges in the early monitoring of peanut
southern blight. The first problem is that the physiological interaction between fungal
pathogens and host plants depends on pathogenic fungi. So, more in-depth investigation is
needed to explore the interaction between different pathogens. Previously unconsidered
variations can be revealed as the original source of reflectance data. A non-imaging sensor,
to capture the average of healthy and diseased plant tissue parts, has been used to measure
the reflectance curve, which causes many typical single-point measurement problems [71].
The second challenge lies in the complexity of field environments, where phenomena
like spectral variations from the same object and the co-occurrence of multiple diseases
can occur. Our severity classification model for peanut southern blight built at the leaf
scale may be influenced by various factors. For example, in terms of spectral response,
peanut leaf spot disease shows a significant negative correlation between the disease index
and the spectral curve in the NIR range, which is very similar to the spectral response
of peanut southern blight [11]. In terms of plant structure, peanut stem rot disease also
exhibits yellowish-brown rotting signs at the base of the stem during the early stages of
infection [72]. However, without the presence of white mycelium and brown sclerotia at
the base, it can often lead to misinterpretation. Therefore, it requires the integration of field
meteorological data, agronomic background, and other relevant data for comprehensive
discrimination, which is a difficult task. The third challenge is to integrate multiple data
sources and enable data sharing of peanut southern blight between different provinces,
aiming to improve the model’s transferability. Our future focus is on integrating multi-
source remote sensing data to achieve data exchange between provinces and establishing a
dynamic monitoring platform for peanut southern blight. This platform aims to provide
technical support for disease prevention and control in peanuts.

5. Conclusions

This study analyzed the spectral response mechanism of different severity levels of
peanut southern blight. For the severity classification problem, we compared the machine
learning modeling using CWT with traditional spectral indices and spectral preprocessing
methods. The results showed that CWT was more effective and amplified the spectral
differences between different levels of severity. Furthermore, this study emphasized the



Agriculture 2023, 13, 1504 12 of 15

potential of using hyperspectral sensors for monitoring peanut southern blight, which is an
exciting tool for disease management and control in peanuts.
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