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Abstract: Agricultural soils serve as crucial storage sites for soil organic carbon (SOC). Their appro-
priate management is pivotal for mitigating climate change. Continuous monitoring is imperative to
evaluate spatial and temporal changes in SOC within agricultural fields. In-field datasets of Vis-NIR
soil spectra were collected on a long-term experimental site using an on-the-go spectrophotometer.
Data processing for continuous SOC prediction involves a two-step modeling approach. In Step 1, a
partial least square (PLSR) regression model is trained to establish a relationship between the SOC
content and spectral information, including spectral preprocessing. In Step 2, the predicted SOC
content obtained from the PLSR models is interpolated using ordinary kriging. Among the tested
spectral preprocessing techniques and semivariogram models, Savitzky–Golay and the Gap-Segment
derivative preprocessing along with a Gaussian semivariogram model, yielded the best performance
resulting in a root mean square error of 1.24 and 1.26 g kg−1. A striping effect due to the transect-
based data collection was addressed by testing the effectiveness of extending the spatial separation
distance, employing data aggregation, and defining the distribution based on treatment plots using
block kriging. Overall, the results highlight the high potential of on-the-go spectral Vis-NIR data for
field-scale spatial-temporal monitoring of SOC.
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1. Introduction

The spatial-temporal monitoring of soil organic carbon (SOC) in agricultural lands
is instrumental in enabling climate-responsive agricultural management with a focus on
enhancing SOC stocks. One of the key global frameworks that recognize the importance of
SOC sequestration is the Paris COP 21 Climate Change Agreement [1], which emphasizes
the critical role that soils play in capturing carbon dioxide from the atmosphere. By harness-
ing high-resolution spatial-temporal SOC data, it becomes possible to align agricultural
practices with the goals outlined in this landmark agreement [2]. In essence, monitoring
SOC at the field scale permits farmers to engage in precision carbon farming, adapt to
climate variability, and contribute to global climate goals. The integration of advanced
technologies like soil sensing is essential in collecting these data. And collaboration among
scientists, policymakers, and farmers can foster the development and adoption of practices
that maximize SOC sequestration in line with the objectives to combat climate change.

Conventional soil laboratory analysis often goes along with high costs, making it an
unfeasible approach for extensive data acquisition [3]. To address this, sensor data are
often incorporated alongside conventional data collection methods for constructing high-
resolution field maps. One particularly promising avenue in this regard is proximal sensing
applying Vis-NIR soil spectroscopy. Proximal sensing refers to measurements in direct
contact with or close to the soil. It is recognized as a cost-effective method that can generate
high-density data at field scale [4]. Soil spectroscopy entails the analysis of how soils
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interact with electromagnetic radiation. It has been researched for its potential in predicting
SOC among other properties [3,5,6]. Although the application of soil spectroscopy under
field conditions is an area that is yet to be thoroughly explored, some studies demonstrate
its potential through measurements at individual points [7–9]. Moreover, there is a growing
interest in the utilization of on-the-go sensing for soil spectroscopy, which has proven to be
more appropriate for high-resolution spatially continuous predictions at field scale [10–12].

Soil spectroscopy has emerged as a potent tool for monitoring SOC due to its ability to
detect and analyze the interactions between electromagnetic radiation and soil constituents.
In the Vis-NIR range (350–2500 nm), soil spectra exhibit weak overtones and combinations
of fundamental vibrations caused by the bending and stretching of various soil compounds.
This range is especially sensitive to organic matter, making it viable for SOC estimation [13].
As of now, the state of the art in soil spectroscopy predominantly involves laboratory-based
analyses. Under controlled conditions, processed soil samples are subjected to spectral
measurements, and the data are analyzed to establish relationships between spectral
characteristics and SOC content. Among the methods employed, partial least squares
regression (PLSR) has been widely used. It efficiently handles the spectra by extracting
the information that is most relevant to SOC, and thus enables the development of robust
prediction models [14].

Attempts have been made to extend soil spectroscopy to field conditions for continu-
ous, field-scale SOC monitoring. This involves various approaches, such as UAV-based,
airborne remote sensing, and proximal on-the-go sensing. For instance, unmanned aerial
vehicles (UAVs) can carry sensors that capture soil spectra over large areas. Similarly,
airborne remote sensing platforms can provide spectral data at broader scales. However,
these methods can be limited by spectral resolution, image quality, and frequency of ac-
quisitions [15,16]. Proximal on-the-go sensing represents a more direct approach, where
sensors are close to the soil and can capture high-density data. However, implementing
soil spectroscopy in the field is inherently challenging due to various environmental factors
affecting the spectra, such as soil moisture, surface roughness, crop residuals and/or roots,
incident light, soil texture, bulk density, and soil structure [17–19]. The resulting uncertain-
ties in the SOC Vis-NIR relationship models can pose limitations for field mapping and the
transferability of the models to other sites [20].

Long-term field experiments (LTEs) are designed to evaluate the long-term effects of
various agricultural management practices on soil properties and crop traits [21]. By ob-
serving the influence of different practices on soil within the same experimental framework,
LTEs provide time series data that are crucial for understanding how SOC levels change
over time under different agricultural management practices. This makes LTEs an invalu-
able resource for making informed decisions about sustainable agricultural management
with an emphasis on the vital role of SOC in soil health.

This study aims to delve into the feasibility and potential of employing on-the-go
Vis-NIR spectroscopy as a tool for spatial-temporal monitoring of SOC. A comprehensive
modeling procedure is formulated and presented as a central component of this inves-
tigation. Additionally, the study meticulously examines the specific influence that each
stage of the modeling procedure has on predictive uncertainty. Through this multifaceted
approach, the study seeks to shed light on the capabilities and limitations of on-the-go
Vis-NIR spectroscopy in accurately capturing the spatial and temporal variations in SOC.

2. Materials and Methods
2.1. Study Area

Data were collected on the LTE site Static Fertilization Experiment in Bad Lauchstädt,
Saxony-Anhalt, Germany (51◦24′ N, 11◦53′ E, 113 m a.s.l). The site is characterized by
an average total annual precipitation of 470–540 mm and an average annual temperature
of 8.5–9.0 ◦C. The soil was described as Haplic Chernozem developed from loess [22].
Accordingly, it has a topsoil texture varying between highly clayey silt (Ut4) and highly
silty clay (Tu4) according to the German soil survey system [23]. The field experiment
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was initialized in 1902 by Schneidewind and Gröbler on an area of c. 4 ha [24] with eight
subfields (Figure 1A). From the initial crop rotation of winter wheat, sugar beet, summer
barley, and potato, the root crops were replaced by silage maize from 2015 onwards.
Different crops in nearby fields started the agricultural rotation, ensuring that all crops
are always produced concurrently on the experimental site. Thirty dt of lime is applied
to subfield 1 every 4 years in the spring. On subfield 8, legumes have been a part of the
agricultural rotation every seventh and eighth year since 1926. The 288 plots as a whole
vary according to how they were fertilized with minerals and organic fertilizer. One-
third of each field is covered with farmyard manure applied at rates of 20 and 30 t ha−1,
respectively, while the other third is left devoid of organic fertilizer. Mineral fertilizer is
applied in various N, P, and K combinations. In 1978, the experimental site’s subfields 4 and
5 were modified to examine additional fertilizer treatments involving varied levels of N in
combination with an adapted organic fertilizer treatment. Körschens and Pfefferkorn [25]
delve into greater detail.
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Figure 1. The study area located in Bad Lauchstädt. (A) Management factors of the long-term
experiment. (B) Long-term experimental site with sampling points and Veris transects. Coordinate
reference system: EPSG 25833.

2.2. Data Collection

In September 2018, soil samples were collected from 100 different locations at depths
ranging from 0 to 10 cm (Figure 1B). To cover the spatial soil variability according to the
LTE agricultural treatment without having to sample each of the 288 plots, two sampling
designs were applied to select 100 locations by taking into account spatial soil heterogeneity
according to soil archive data [26]: 50 sampling points were selected according to stratified
random sampling, and the other 50 sampling points were selected by employing the
Kennard–Stone algorithm [27]. Plot margins of 1.5 m were excluded from sampling. Before
measuring carbon with dry combustion, the soil samples were air-dried, sieved (2 mm),
and powdered. Total carbon was assessed using the elemental analyzer, vario EL cube
CN (Elementar Analysensysteme GmbH), with three replicates conducted for each sample.
While carbonates were initially measured, their values were found to be inconsequential,
and therefore were omitted from the analysis. As a result, the total carbon measured was
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regarded as an indicator of SOC in this study. The observed SOC content is 19.6 g kg−1 with
a range of 14–25 g kg−1, indicating a wide range of SOC values generated from different
fertilization treatments.

Spectral measurements were made using a Veris® Vis-NIR spectrophotometer manu-
factured by Veris Technologies, Inc. (thus referred to as Veris). The Veris is equipped with
an Ocean Optics USB4000 instrument (300 to 1100 nm) and a Hamamatsu TG series mini-
spectrometer (1100 to 2200 nm), with a resolution of 4–6 nm. Due to logistical constraints,
Veris field measurements were completed a year following soil collection in September
2019. Before conducting the Vis-NIR measurements, the soil’s volumetric water content
was assessed at each point location using a time domain reflectometry (TDR) moisture
sensor. The TDR measurements indicated that the soil’s moisture content ranged between
15 and 25%, signifying adequate soil moisture for establishing good soil contact of the
sensor. The data were acquired at different dates to cover the entire field, and the soil water
content at the moment of measurement was in the range of 15–30%. Several transects with a
distance of 3–4 m were recorded covering the entire field and considering passing through
the soil sampling points, obtaining about 10,000 data points (Figure 1). The spatial location
of the on-the-go spectral measurements was initially recorded using the Veris instrument.
These original GPS coordinates were then corrected and refined using a high-precision
GNSS instrument, ensuring enhanced spatial accuracy and reliability in the positioning
of the spectral measurements. Meanwhile, the spatial location of the soil sampling points
was recorded directly using the GNSS instrument. The Veris spectrometer is built in a
shank that is pulled through the soil by a tractor with a measurement depth of about
12 cm; measurements are taken through a sapphire window located on the shank’s bottom.
Approximately 20 spectra are captured each second [28]. The 400–2200 nm spectral range
was used for model development.

2.3. Data Preprocessing

The PCOut function in the R-package mvoutlier was used to evaluate the soil spectra
for outliers per LTE plot [29]. The scattering effects on the spectral signal were then reduced
using various preprocessing approaches. The four combinations used were: Savitzky–Golay
(SG; [30]), Savitzky–Golay + continuum removal (SGCR; [31]), Gap-Segment derivative
(gapDer; [32]), and multiplicative scatter correction (MSC; [33]). Details are provided in
Table 1. The prospectr R-package was used to obtain the SG, SGCR, and gapDer, and the
pls R-package was used to obtain the MSC [34].

Table 1. Combinations of preprocessing techniques used in this study; w is window size, s is segment
size.

Preprocessing Method Abbreviation Veris Wavelength Range

Savitzky–Golay SG 432–2201
Savitzky–Golay w = 11 and continuum removal SGCR 432–2201

Gap-Segment derivative (w = 11, s = 10) gapDer 408–2186
Multiplicative scatter correction MSC 403–2201

2.4. Model Training and Evaluation

Model training was conducted in a two-step approach according to Figure 2. In Step 1,
a regression model (R-model) is trained to relate the SOC content to the spectral information.
In Step 2, the thereby obtained predictions of the SOC content are interpolated by ordinary
kriging (K-model) to generate spatially continuous predictions throughout the area. We
will refer to it as R + K modeling approach. It is not to be confused with regression kriging
which would first build a regression model and then interpolate the residuals. Regression
kriging would only be feasible if we have continuous spectral measurements throughout
the area. However, this is not the case when on-the-go proximal sensing data are collected
by sensors with a small spatial footprint.
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Figure 2. Two-step model training and evaluation procedure. Step 1: regression model training
(R-model), Step 2: ordinary kriging (K-model). X = spectra, Y = SOC values, RMSER = RMSE of the
regression model, RMSER+K = RMSE of the R + K modeling approach.

In our study, we chose to apply partial least squares regression (PLSR) to build
the R-model. PLSR offers several advantages in dealing with high-dimensional data,
effectively handling multicollinearity, and extracting relevant information from a large set
of predictors. Additionally, PLSR is a well-established and interpretable method in the
field of soil spectroscopy, providing meaningful insights into the relationship between soil
spectra and soil properties [35]. With regards to Step 2, the K-model, one might argue, that
simpler interpolation methods such as inverse distance weighting would also perform the
job. However, only kriging allows for modeling spatial autocorrelation.

The R+K modeling procedure was implemented in the following way. First, the
10 spectral on-the-go measurements X1 closest to each sampling point were averaged
and assigned to the respective sampling point. Together with the average SOC value
per sampling point, these data form the XYdata A. In Step 1 of the modeling procedure,
these data A are then used to train PLSR models by a nested k-fold cross-validation (CV)
procedure. Each training set XYtrain1,mwithm = 1, 2, . . . k of the outer CV loop was again
subdivided into k-folds in the inner CV loop to allow for model tuning, i.e., to determine the
number of components. The PLSR model was then trained with XYtrain1,m and evaluated
with XYtest1,m. After applying the respective PLSR model to all those spectra X2, which
were not assigned to any sampling point, the resulting SOC predictions Y2 were combined
with Ytrain1,m to form Ydata B, the input data for Step 2 of the modeling procedure. In Step
2 of the modeling procedure, the Ydata B was spatially stratified into k-folds making sure
that each fold contained spectral measurement points from all LTE plots. This inner CV
loop of modeling Step 2 was then used to determine the semivariogram parameters for
ordinary kriging (OK). The K-models were again evaluated by the same test sets Ytest1,m as
the R-models.

Data subdivision for the nested CV accounted for possible spatial autocorrelation
between training and test data in two aspects: (1) Nearby sampling points were assigned
to the same fold, and (2) spectral measurements in the near surrounding of those spectral
measurements were assigned to the sampling points to generate the XYdata were excluded
when building the K-model. The overall CV procedure was conducted with k = 5 and
repeated five times, resulting in 25 R + K models and 25 spatially continuous predictions
for each of the four differently preprocessed datasets and the three different semivariogram
models: Spherical, Exponential, and Gaussian. Equal data subdivisions were used to allow
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for direct comparison. The root mean square error (RMSE) was used to evaluate model
performance. Spatially continuous predictions were realized with 1 m spatial resolution.

Due to the structure of the LTE (divided into plots with different treatments), the
maximum spatial separation distance considered to construct the experimental variogram
was 10 m. Alternative kriging approaches including pair of point aggregation and block
kriging were also applied to pay tribute to data collection on an LTE. The PLSR models
were trained with R-package pls, and the geospatial analysis was carried out using the
R-package gstat [36,37]. The plots were created using the R-packages ggplot2 [38,39] and
lattice [40].

3. Results and Discussion
3.1. Model Structure

Figure 3 shows distinct patterns in the optimal number of PLSR components for each
preprocessing method. The SG and SGCR methods generally required a higher number
of components, indicating a need to capture finer details and variations in the data. This
aligns with the smoothing and denoising properties of the SG filter and the inclusion of
continuum removal in the SGCR method to preserve intricate features. In contrast, the
gapDer and MSC methods tended to require fewer components, suggesting a concise
representation of the data. The gapDer method effectively reduced noise and identified
important spectral regions through gap segmentation, while the MSC method corrected for
multiplicative effects, enhancing the accuracy of the spectral information.
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Figure 4 shows the K-models corresponding to the R-model predicted SOC of the
on-the-go spectral data (Ydata B). When comparing the K-models built from the predictions
on behalf of the differently preprocessed data, there is a similarity in the spatial structure,
although the semivariance in SG and gapDer is slightly lower. However, there is a difference
in the parameter values between semivariogram models.

The Spherical model exhibited a smoother and more gradual change in the variable
being measured, indicating a lower level of small-scale variability. This implies that
neighboring data points within a certain distance tend to have similar values. In terms of
maximum variability, the Spherical model displayed moderate to high levels, suggesting
significant variations across the dataset. Furthermore, the Spherical model had larger
spatial correlation ranges, indicating a wider extent of influence between data points.
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Figure 4. Semivariogram models corresponding to the PLSR predicted SOC of the on-the-go spectral
data using the 25 models. The semivariogram model lines correspond to the average values, while
the boxplots show the variation of the parameter values. (A) SG: Savitzky–Golay, (B) SGCR: Savitzky–
Golay + continuum removal, (C) gapDer: Gap-Segment derivative, and (D) MSC: multiplicative
scatter correction. SPH: Spherical, EXP: Exponential, GAU: Gaussian.

The Exponential model displayed moderate levels of small-scale variability, charac-
terized by a decay pattern where nearby data points were more similar than those farther
apart. Its spatial correlation range was generally smaller than that of the Spherical model,
indicating a more rapid decrease in correlation with increasing distance.

The Gaussian model, however, exhibited similar patterns of small-scale and maximum
variability to the Exponential model. It captured intermediate levels of small-scale vari-
ability, displaying a balance between the smoother Spherical model and the decay pattern
of the Exponential model. The Gaussian model’s spatial correlation range was smaller
than both the Spherical and Exponential models, suggesting a more localized influence
of neighboring points. This suggests that data points which are nearby have a stronger
impact on each other, while the impact diminishes rapidly as the distance increases.

3.2. Performance Metrics of PLSR and OK

Figure 5 presents the predictive model performance of the PLSR models. The best
models were the ones using SG and gapDer with a median RMSER value below 1.6 g kg−1.
They also indicate a lower dispersion compared to the other two models as is observable in
the comparison of predicted versus measured values (Figure 6). SG is a common method
that mainly smoothes the original signal to remove multiplicative and additive effects [41].
Meanwhile, the gapDer method works by derivate specific segments of the signal [42]. The
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gapDer is the preprocessing method with a lower number of wavelengths used compared
with the others selected in this study, thus the reduction in the model complexity [43] could
have a positive effect in this case. The differences observed between preprocessing methods
remark on the importance of selecting an adequate method. There is no standard procedure
even under laboratory conditions since the required type and amount of preprocessing is
data specific for soil [3,44].
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The overall predictive model performance of modeling Step 1 + Step 2 (R+K model) is
presented in Figure 7 and the scatter plot with a line of equality is shown in Figure 8. By
including modeling Step 2, the overall predictive performance was further improved. The
best predictive performance for Step 2 was achieved with the Gaussian model. Accordingly,
the best results were obtained with the combination SG—Gaussian (RMSER+K = 1.24 g
kg−1, R2

R+K = 0.84) and gapDer—Gaussian (RMSER+K = 1.26 g k−1, R2
R+K = 0.82). The

observable pattern of the dispersion in the predictions (Figure 8) has more similarities
concerning the preprocessing method than with regard to the semivariogram model.
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+ continuum removal, (C) gapDer: Gap-Segment derivative, and (D) MSC: multiplicative scatter
correction. (1): Spherical, (2): Exponential, (3): Gaussian.
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Another aspect to consider is the spatial distribution of the residuals. Figure 9 presents
an example of the SG—Gaussian and gapDer—Gaussian methods. Both approaches
present similarities in the distribution of the residuals, and the majority is in the range
of −0.5–0.5 g kg−1. There is no clear trend based on the plot size or the cluster division
used for the sampling design, although areas with higher SOC showed higher interquartile
range values and vice versa in the case of areas with low SOC values.
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Figure 9. Average residuals of predicted SOC values per sampling point location of (A) Savitzky–
Golay—Gaussian, and (B) Gap-Segment derivative—Gaussian methods.

3.3. Spatially Continuous Predictions of SOC

The spatially continuous prediction of SOC presented similar patterns independent of
the combination of methods used for interpolation. As an illustration, Figure 10 presents
the maps of the estimated SOC using the models with the best performance (SG—Gaussian
and gapDer—Gaussian) and the difference in prediction between them. The SOC values
presented a range of about 10–30 g kg−1, which is a wider range compared with the
laboratory samples (14–25 g kg−1). Not only the pattern is similar between methods but
also the differences in the prediction were low with the exception of some specific areas.
Figure 11 displays the spatial predictions of the same models comparing the interquartile
range distribution of 25 predictions for each one. In general, the median interquartile range
is below 1 g kg−1 in both cases. Altogether, the spatial variation is most homogeneous in
the case of the SG—Gaussian model.

Predictive uncertainty decreased with the combined use of the R and K models. This
improvement can be attributed to the similarity in spectral data among neighboring points
located within the same treatment plot, indicating lower soil variation within the plot.
Among the semivariogram models, the Gaussian model exhibited effective balancing of
small-scale variability and spatial correlation. It displayed a rapid decrease in correlation
with distance, emphasizing localized influences, and displayed a lower level of small-scale
variability. These characteristics resulted in better predictions compared to the Spherical
and Exponential semivariogram models (Figure 4). It is worth noting that the maximum
spatial separation distance used for the semivariogram model in this study was short
(10 m), focusing on capturing influences within the plot. However, the effectiveness of
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the model may vary throughout the area due to differences in LTE plot sizes. Therefore,
selecting a model that accurately represents the spatial structure is crucial for reliable
interpolation [45]. Notably, when examining the residuals, similar trends were observed
across different combinations, with higher values tending to be underestimated and lower
values tending to be overestimated.
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Figure 10. The median of predicted SOC values of the R+K models with the best performance.
(A) Savitzky–Golay—Gaussian, (B) Gap-Segment derivative—Gaussian, (C) difference between models.
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Previous studies used in situ soil spectral measurements, e.g., [46,47], and some of
them have used a Veris spectrometer [4,11,12,28,43]. The model performance in our study
presented better RMSE values to predict SOC compared with these studies (best RMSE
= 2.7 g kg−1), although our R2 was lower compared with [43] (R2 = 0.90). While the
comparison is not straightforward due to differences in the SOC range, field conditions,
and model evaluation procedure, and no other study has used an on-the-go spectrometer
on an LTE. Our results presented high accuracy showing the high potential of our approach
for field-scale SOC monitoring.

Regarding the generated maps, different methodological data processing and mod-
eling combinations resulted in similar SOC spatial distribution, which could be expected
due to the high sampling density of the Veris measurements reducing the uncertainty
of the spatial interpolation. A striping effect in the SOC distribution maps was evident,
which was likely caused due to the Veris transect measurements in one direction [12] and
due to the short maximum spatial separation distance considered for the experimental
semivariograms. This effect could be changed with data aggregation using different ap-
proaches. To illustrate alternatives for mapping the field, Figure 12 presents maps using a
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Savitzky–Golay—Gaussian model with pair of point aggregation (Figure 12A), another with
extending the maximum spatial separation distance of the experimental semivariogram
to 25 m (Figure 12B), and using block kriging with blocks defined by the plot treatments
(Figure 12C). By pair of point aggregation, the striping effect is diminished but still visible.
When extending the maximum spatial separation distance, the striping effect disappears,
and a more general SOC distribution is observed. Nevertheless, a generalization of the
SOC distribution could mask the values of small plots and the spatial variation inside the
plots; therefore, it is better applied in fields with homogeneous management. In the case of
block kriging, a map with blocks divided by the plot treatments is presented. Block kriging
has been less used in soil mapping compared with point kriging methods [48]. Generally, it
uses blocks of the same size to upscale point observations [49]. In the LTE, the block kriging
approach could be an alternative to monitor SOC changes by having a unique value per
plot treatment, although it will not represent the internal variation inside the plot.
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Figure 12. Maps of the median of predicted SOC values using the Savitzky–Golay—Gaussian method
using three different approaches, (A) pairing points of Veris data, (B) extending the maximum spatial
separation distance for the semivariogram to 25 m, (C) applying block kriging with the field plots as
block delineation.

Mapping SOC has also been studied with remote sensing using airborne and satellite
platforms to cover extended areas although with lower precision. Consequently, it should
be integrated with field and laboratory measurements and complementary sensor data
for better results [50]. Our results showed the feasibility of using on-the-go soil spectra
for mapping SOC with appropriate reliability, having an accuracy closer to laboratory
measurements than remote sensing data. Overall, different challenges appear when using
field measurements due to environmental factors [17]. For example, peaks in the spectral
signal associated with soil water content can obscure peaks related to organic functional
groups [12]. Different methods have been tested to correct for disturbance effects impacting
sensor measurements under field conditions [51,52]. In the context of on-the-go Vis-NIR
spectroscopy for SOC monitoring, it is crucial to consider the potential effect of temporal
variation on spectral data. While our study successfully estimated SOC levels with high
spatial resolution, it is essential to acknowledge that agricultural SOC levels can exhibit
temporal variability due to various factors. These include seasonal changes, crop rotations,
management practices, natural disturbances, and soil moisture fluctuations. These temporal
variations can introduce additional complexity to the spectral data and may influence the
accuracy of predictive models over time. To address this, continuous monitoring of SOC
levels through multiple on-the-go measurements at different time points are required. Long-
term monitoring can help to identify trends and seasonal patterns, providing valuable
insights into SOC dynamics under varying environmental conditions.
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4. Conclusions

The prediction of SOC using on-the-go field spectra demonstrated promising results.
PLSR models, constructed with spectra close to the sampling location, effectively predicted
the remaining Veris measurements, enabling the creation of high-resolution field maps.
An enhancement in model performance was evident when PLSR was synergized with
ordinary kriging (R+K model) to generate continuous predictions, making this combination
particularly noteworthy.

The preprocessing methods Savitzky–Golay (SG) and Gap-Segment derivative (gapDer)
stood out for their efficacy, and this was further accentuated when paired with a Gaussian
semivariogram model. The boost in model performance upon utilizing these methods
suggests that there is an inherent similarity in spectral data among neighboring areas and
within identical treatment plots. This improvement emphasizes the potential significance
of these techniques in efficiently capturing spatial patterns and dependencies in the context
of SOC prediction.

When the different R+K model predictions were compared, a pronounced similarity
in the spatial distribution of SOC was observed, which is consistent with the expectations
due to the high-density data collected using Veris. Nonetheless, the striping effect became
apparent due to the data being gathered in transects and the use of a relatively small
maximum spatial separation distance for the semivariograms. Alleviating this striping
effect could be achieved by extending the spatial separation distance, employing data
aggregation techniques, or defining the distribution based on treatment plots (i.e., block
kriging or similar methods). The applicability of data aggregation is contingent on the
layout of the field and the specificity of the information sought. It is crucial to acknowledge
that employing field soil spectroscopy for predicting SOC at field scale is an area still in
development. However, the results of this study underline the potential of this technique in
the continuous monitoring of SOC. There is an imperative need for ongoing efforts to refine
and establish standard practices for spectral soil measurements under field conditions.
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