An Efficient Micropropagation Protocol for the Endangered European Shrub February Daphne (Daphne mezereum L.) and Identification of Bacteria in Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Medium Preparation
2.2. Explant Preparation
2.3. Identification of Bacteria in Cultures
2.4. Culture Establishment
2.5. Shoot Proliferation
2.6. Rooting
2.7. Hardening of Micropropagated Plants
2.8. Statistical Analysis
3. Results and Discussion
3.1. Sterilization and Identification of Bacteria in Cultures
3.2. Shoot Proliferation
3.3. Rooting
3.4. Hardening of Micropropagated Plants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mullan, K.; Sills, E.; Pattanayak, S.K.; Caviglia-Harris, J. Converting forests to farms: The economic benefits of clearing forests in agricultural settlements in the Amazon. Environ. Resour. Econ. 2018, 71, 427–455. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef]
- Hinsley, A.; de Boer, H.J.; Fay, M.F.; Gale, S.W.; Gardiner, L.M.; Gunasekara, R.S.; Kumar, P.; Masters, S.; Metusala, D.; Roberts, D.L.; et al. A review of the trade in orchids and its implications for conservation. Bot. J. Linn. Soc. 2018, 186, 435–455. [Google Scholar] [CrossRef]
- Mikuła, A.; Makowski, D.; Tomiczak, K.; Rybczyński, J.J. Kultury in vitro i krioprezerwacja w zachowaniu różnorodności roślin—Standardy dla banku genów [In vitro culture and cryopreservation for biodiversity conservation—Gene bank standards]. Pol. J. Agron. 2013, 14, 3–17. [Google Scholar] [CrossRef]
- Bohne, B.; Dietze, P. Rośliny Trujące. 170 Gatunków Roślin Ozdobnych i Dziko Rosnących [Poisonous Plants. 170 Species of Ornamental and Wild Plants]; Bellona: Warszawa, Poland, 2008; ISBN 978-83-11-11088-5. [Google Scholar]
- Seneta, W.; Dolatowski, J. Dendrologia [Dendrology]; PWN: Warszawa, Poland, 2000. [Google Scholar]
- Borg-Karlson, A.K.; Unelius, C.R.; Valterová, I.; Nilsson, L.A. Floral fragrance chemistry in the early flowering shrub Daphne mezereum. Phytochemistry 1996, 41, 1477–1483. [Google Scholar] [CrossRef]
- Drobnik, J.; Bacler, B. Rośliny lecznicze w osiemnastowiecznym polskim poradniku medycznym Compendium medicum auctum. Część 2 [Medicinal plants in an 18th-century Polish medical guide Compedium medicum auctum. Part 2]. Ann. Acad. Medicae Silesiensis 2009, 63, 51–65. [Google Scholar]
- Kupchan, S.; Baxter, R. Mezerein: Antileukemic principle isolated from Daphne mezereum L. Science (80-) 1975, 187, 652–653. [Google Scholar] [CrossRef]
- Brown, S.A. Biosynthesis of Daphnetin in Daphne mezereum L. Zeitschrift für Naturforsch. C 1986, 41, 247–252. [Google Scholar] [CrossRef]
- Cui, Y.; Deng, Y.; Zheng, K.; Hu, X.; Zhu, M.; Deng, X.; Xi, R. An efficient micropropagation protocol for an endangered ornamental tree species (Magnolia sirindhorniae Noot. & Chalermglin) and assessment of genetic uniformity through DNA markers. Sci. Rep. 2019, 9, 9634. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, S.; Guo, B.; Niu, M.; Zhang, X.; Li, Y.; Wu, K.; Zheng, F.; da Silva, J.A.T.; Zeng, S.; et al. An efficient micropropagation protocol for Metasequoia glyptostroboides Hu et Cheng from shoot segments of 2-year-old trees. Trees—Struct. Funct. 2020, 34, 307–313. [Google Scholar] [CrossRef]
- Zinniel, D.K.; Lambrecht, P.; Harris, N.B.; Feng, Z.; Kuczmarski, D.; Higley, P.; Ishimaru, C.A.; Arunakumari, A.; Barletta, R.G.; Vidaver, A.K. Isolation and Characterization of Endophytic Colonizing Bacteria from Agronomic Crops and Prairie Plants. Appl. Environ. Microbiol. 2002, 68, 2198–2208. [Google Scholar] [CrossRef]
- Orlikowska, T.; Nowak, K.; Reed, B. Bacteria in the plant tissue culture environment. Plant Cell Tissue Organ. Cult. 2017, 128, 487–508. [Google Scholar] [CrossRef]
- Labrador, K.L.; Lustica, E.L.T.; Novero, A.U. Isolation and characterization of bacterial endophytes associated with sago palm (Metroxylon sagu Rottb.) in tissue culture. Asian J. Microbiol. Biotechnol. Environ. Sci. 2014, 16, 877–885. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel Kalmia latifolia by use of shoot-tip culture. Comb. Proc. Int. Plant Propagators’ Soc. 1980, 30, 421–427. [Google Scholar]
- Nowakowska, K.; Pacholczak, A. Comparison of the effect of meta-Topolin and benzyladenine during Daphne mezereum L. micropropagation. Agronomy 2020, 10, 1994. [Google Scholar] [CrossRef]
- Wilson, K. Preparation of genomic DNA from bacteria. Curr. Protoc. Mol. Biol. 2001, 56, 2.4.1–2.4.5. [Google Scholar] [CrossRef]
- van Burik, J.-A.H.; Schreckhise, R.W.; White, T.C.; Bowden, R.A.; Myerson, D. Comparison of six extraction techniques for isolation of DNA from filamentous fungi. Med. Mycol. 1998, 36, 299–303. [Google Scholar] [CrossRef]
- Pacholczak, A.; Nowakowska, K. Micropropagation of february daphne (Daphne mezereum L.). Propag. Ornam. Plants 2019, 19, 106–112. [Google Scholar]
- Compton, M.E. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tissue Organ. Cult. 1994, 37, 217–242. [Google Scholar] [CrossRef]
- Wójcik, A.R.; Laudański, Z. Planowanie i Wnioskowanie Statystyczne w Doświadczalnictwie [Statistical Planning and Concluding in Experimental Works]; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1989; ISBN 83-01-08994. [Google Scholar]
- Mihaljevic, I.; Dugalic, K.; Tomas, V.; Viljevac, M.; Pranjic, A.; Cmelik, Z.; Puskar, B.; Jurkovic, Z. In vitro sterilization procedures for micropropagation of ‘oblacinska’ sour cherry. J. Agric. Sci. Belgrade 2013, 58, 117–126. [Google Scholar] [CrossRef]
- Iliev, I.; Gajdoov, A.; Libiakov, G.; Jain, S.M. Plant Micropropagation. In Plant Cell Culture; Davey, M., Anthony, P., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. 1–23. [Google Scholar]
- Orlikowska, T.; Zawadzka, M. Bakterie w kulturach tkanek roślinnych in vitro. Biotechnologia 2006, 4, 64–77. [Google Scholar]
- Leifert, C.; Cassells, A.C. Microbial hazards in plant tissue and cell cultures. Vitr. Cell. Dev. Biol.—Plant 2001, 37, 133–138. [Google Scholar] [CrossRef]
- Pradhan, P.; Tamang, J.P. Phenotypic and Genotypic Identification of Bacteria Isolated From Traditionally Prepared Dry Starters of the Eastern Himalayas. Front. Microbiol. 2019, 10, 2526. [Google Scholar] [CrossRef]
- Taber, R.; Thielen, M.; Falkinham III, J.; Smith, R. Mycobacterium scrofulaceum: A bacterial contaminant in plant tissue culture. Plant Sci. 1991, 78, 231–236. [Google Scholar] [CrossRef]
- Koskimäki, J.J.; Hankala, E.; Suorsa, M.; Nylund, S.; Pirttilä, A.M. Mycobacteria are hidden endophytes in the shoots of rock plant [Pogonatherum paniceum (Lam.) Hack.] (Poaceae). Environ. Microbiol. Rep. 2010, 2, 619–624. [Google Scholar] [CrossRef]
- Quambusch, M.; Pirttilä, A.M.; Tejesvi, M.V.; Winkelmann, T.; Bartsch, M. Endophytic bacteria in plant tissue culture: Differences between easy- and difficult-to-propagate Prunus avium genotypes. Tree Physiol. 2014, 34, 524–533. [Google Scholar] [CrossRef]
- Pirttilä, A.M.; Pospiech, H.; Laukkanen, H.; Myllylä, R.; Hohtola, A. Seasonal variations in location and population structure of endophytes in buds of Scots pine. Tree Physiol. 2005, 25, 289–297. [Google Scholar] [CrossRef]
- Hruska, K.; Kaevska, M. Mycobacteria in water, soil, plants and air: A review. Vet. Med. 2013, 57, 623–679. [Google Scholar] [CrossRef]
- Noshad, D.; Miresmaili, S.; Riseman, A.; Ekramoddoullah, A. In vitro propagation of seven Daphne L. species. Plant Cell Tissue Organ. Cult. 2009, 96, 201–209. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Linsmaier, E.M.; Skoog, F. Organic Growth Factor Requirements of Tobacco Tissue Cultures. Physiol. Plant. 1965, 18, 100–127. [Google Scholar] [CrossRef]
- Schenk, R.U.; Hildebrandt, A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 1972, 50, 199–204. [Google Scholar] [CrossRef]
- Nowakowska, K.; Pacholczak, A.; Tepper, W. The effect of selected growth regulators and culture media on regeneration of Daphne mezereum L. ‘Alba.’ Rend. Lincei 2019, 30, 197–205. [Google Scholar] [CrossRef]
- Malá, J.; Máchová, P.; Cvrčková, H.; Karady, M.; Novák, O.; Mikulík, J.; Dostál, J.; Strnad, M.; Doležal, K. The role of cytokinins during micropropagation of wych elm. Biol. Plant. 2013, 57, 174–178. [Google Scholar] [CrossRef]
- Jana, S.; Shekhawat, G.S. Plant growth regulators, adenine sulfate and carbohydrates regulate organogenesis and in vitro flowering of Anethum graveolens. Acta Physiol. Plant. 2011, 33, 305–311. [Google Scholar] [CrossRef]
- Hanus-Fajerska, E.; Wiszniewska, A.; Czaicki, P. Effectiveness of Daphne L. (Thymelaeaceae) in vitro propagation, rooting of microshoots and acclimatization of plants. ACTA Agrobot. 2012, 65, 21–28. [Google Scholar] [CrossRef]
- Gavidia, I.; Pérez-Bermúdez, P.; Segura, J. Micropropagation of bay laurel (Daphne gnidium L.). J. Hortic. Sci. Biotechnol. 1996, 71, 977–983. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Muszyńska, E.; Hanus-Fajerska, E.; Smoleń, S.; Dziurka, M.; Dziurka, K. Organic amendments enhance Pb tolerance and accumulation during micropropagation of Daphne jasminea. Environ. Sci. Pollut. Res. 2017, 24, 2421–2432. [Google Scholar] [CrossRef]
- Pospísilová, J.; Synková, H.; Haisel, D.; Semorádová, Š. Acclimation of plantlets to Ex vitro conditions: Effects of air humidity, irradiance, CO2 concentration and abscisic acid (a Review). Acta Hortic. 2007, 748, 29–38. [Google Scholar] [CrossRef]
- Chirinéa, C.F.; Pasqual, M.; de Araujo, A.G.; Pereira, A.R.; Castro, E.M. de Acclimatization and leaf anatomy of micropropagated fig plantlets. Rev. Bras. Frutic. 2012, 34, 1180–1188. [Google Scholar] [CrossRef]
- Pospisilova, J.; Ticha, I.; Kadlecek, P.; Haisel, D.; Plzakova, S. Acclimatization of micropropagated plants to ex vitro conditions. Biol. Plant. 1999, 42, 481–497. [Google Scholar] [CrossRef]
- Pospisilova, J.; Haisel, D.; Synkova, H.; Batkova-Spoustova, P. Improvement of ex vitro transfer of tobacco plantlets by addition of abscisic acid to the last subculture. Biol. Plant. 2009, 53, 617–624. [Google Scholar] [CrossRef]
- Vilela, B.J.; Carvalho, L.C.; Ferreira, J.; Amâncio, S. Gain of function of stomatal movements in rooting Vitis vinifera L. plants: Regulation by H2O2 is independent of ABA before the protruding of roots. Plant Cell Rep. 2007, 26, 2149–2157. [Google Scholar] [CrossRef]
- Mittler, R.; Blumwald, E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 2015, 27, 64–70. [Google Scholar] [CrossRef]
- Dias, M.C.; Correia, C.; Moutinho-Pereira, J.; Oliveira, H.; Santos, C. Study of the effects of foliar application of ABA during acclimatization. Plant Cell Tissue Organ. Cult. 2014, 117, 213–224. [Google Scholar] [CrossRef]
- Dancheva, D.; Iliev, I. Factors affecting adventitious shoot formation in Fraxinus excelsior L. Propag. Ornam. Plants 2015, 15, 10–20. [Google Scholar]
Assigned Species of Bacteria | Similarity | Sequence Coverage |
---|---|---|
Mycobacterium vanbaalenii strain PYR-1 | 98% | 100% |
Mycobacterium peregrinum strain CIP 105382 | ||
Mycobacterium peregrinum strain ATCC 14467 |
WPM Medium with the Cytokinin [μM] | % Regeneration of Explants | Average Number of Shoot/Explants | Shoot Length (cm) |
---|---|---|---|
0 | 91.5 b * | 1.99 d | 0.71 c |
4.92 2iP | 96.6 a | 2.81 c | 0.73 c |
4.65 Kin | 98.3 a | 2.63 c | 0.81 bc |
4.56 Zea | 100 a | 3.89 b | 0.97 a |
4.44 BA | 100 a | 3.91 b | 0.90 ab |
4.14 mT | 100 a | 4.85 a | 0.93 ab |
WPM Medium with Perlite and IBA [μM] | % Rooting of Shoots | Average Number of Root/Shoot | Root Length (cm) |
---|---|---|---|
0 | 45.00 c * | 2.30 d | 0.64 c |
4.92 | 70.00 b | 3.60 c | 1.07 b |
9.84 | 66.67 b | 4.62 b | 1.21 b |
19.68 | 86.67 a | 6.63 a | 2.15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowakowska, K.; Nongdam, P.; Samsurizal, N.A.; Pacholczak, A. An Efficient Micropropagation Protocol for the Endangered European Shrub February Daphne (Daphne mezereum L.) and Identification of Bacteria in Culture. Agriculture 2023, 13, 1692. https://doi.org/10.3390/agriculture13091692
Nowakowska K, Nongdam P, Samsurizal NA, Pacholczak A. An Efficient Micropropagation Protocol for the Endangered European Shrub February Daphne (Daphne mezereum L.) and Identification of Bacteria in Culture. Agriculture. 2023; 13(9):1692. https://doi.org/10.3390/agriculture13091692
Chicago/Turabian StyleNowakowska, Karolina, Potshangbam Nongdam, Nabilah Amany Samsurizal, and Andrzej Pacholczak. 2023. "An Efficient Micropropagation Protocol for the Endangered European Shrub February Daphne (Daphne mezereum L.) and Identification of Bacteria in Culture" Agriculture 13, no. 9: 1692. https://doi.org/10.3390/agriculture13091692
APA StyleNowakowska, K., Nongdam, P., Samsurizal, N. A., & Pacholczak, A. (2023). An Efficient Micropropagation Protocol for the Endangered European Shrub February Daphne (Daphne mezereum L.) and Identification of Bacteria in Culture. Agriculture, 13(9), 1692. https://doi.org/10.3390/agriculture13091692