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Abstract: Addressing the challenge of the current harvester route detection method’s reduced
robustness within lodging-affected farmland environments and its limited perception of crop lodging,
this paper proposes a harvesting operation image segmentation method based on SLIC superpixel
segmentation and the AdaBoost ensemble learning algorithm. This segmentation enables two
essential tasks. Firstly, the RANSAC algorithm is employed to extract the harvester’s operational
route through straight-line fitting from the segmented image. Secondly, the method utilizes a 3D
point cloud generated by binocular vision, combined with IMU information for attitude correction, to
estimate the height of the harvested crop in front of the harvester. Experimental results demonstrate
the effectiveness of this method in successfully segmenting the harvested and unharvested areas of
the farmland. The average angle error for the detected harvesting route is approximately 1.97◦, and
the average error for crop height detection in the unharvested area is around 0.054 m. Moreover,
the algorithm exhibits a total running time of approximately 437 ms. The innovation of this paper
lies in its simultaneous implementation of two distinct perception tasks, leveraging the same image
segmentation results. This approach offers a robust and effective solution for addressing both
route detection and crop height estimation challenges within lodging-affected farmland during
harvesting operations.

Keywords: route detection; crop height estimation; lodged farmland

1. Introduction

Unmanned operation is the current trend in the development of intelligent agricultural
machinery [1]. Whether high-quality and high-efficiency operation directly determines
whether unmanned agricultural machinery can be popularized and applied, and the real-
time sensing detection of crop growth state is the premise of high-quality operation of
unmanned agricultural machinery [2]. Harvesting is an important part of rice production.
In the rice harvesting process, the harvested area and the area for harvesting are similar in
color, different areas have high repeatability and rice lodging often exists, which brings
challenges to the real-time detection and recognition of the state of unmanned rice harvest-
ing. In automatic rice harvesting operations, the distinction between harvesting area and
unharvested area, line recognition, and height detection of fallen crops have attracted the
interest of many researchers.

During the rice harvest period, occurrences of crop lodging are frequent. This phe-
nomenon is typically triggered by agronomic variables such as cultivation practices and
external natural forces like wind and rain [3]. The extent of lodging can vary significantly.
An illustrative image of lodging-affected farmland is provided in Figure 1. On the one hand,
lodging-affected crops exhibit distinct image characteristics and varying heights compared
to their non-lodging counterparts. Most of the existing harvester route extraction methods,
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designed for conventional harvesting scenarios, are not suitable for lodging conditions.
Moreover, studies and experimental research dedicated to lodging scenarios are relatively
limited. On the other hand, parameters such as breakage rate, impurity rate, and stubble
height are critical performance indicators in rice harvesting activities. Generally, in the
context of harvesting non-lodging crops, the harvester’s header is positioned at a relatively
elevated level. Conversely, when encountering lodging-affected crops, it becomes essential
to lower the header’s height appropriately to minimize harvesting losses [4,5]. Presently,
the adjustment of header height is predominantly reliant on manual observation of crop
conditions and empirical height estimation by the operator. Unfortunately, there lack a
mature real-time crop height estimation method during operational phases [6].
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This paper will delve into the precision segmentation of both the harvested and un-
harvested regions within farmland images influenced by lodging. The primary objective 
is to extract the harvester’s route while concurrently achieving real-time height detection 
of unharvested crops positioned in front of the harvester. This paper proposes a harvest-
ing operation image segmentation method based on SLIC superpixel segmentation and 
the AdaBoost ensemble learning algorithm. This segmentation enables two essential tasks. 
Firstly, the RANSAC algorithm is employed to extract the harvester’s operational route 
through straight-line fitting from the segmented image. Secondly, the method utilizes a 

Figure 1. Image of farmland with different levels of lodging(a) Lodging Farmland Scene 1 in
Jiading District; (b) Lodging Farmland Scene 2 in Jiading District; (c) Lodging Farmland Scene 1 in
Chongming District; (d) Lodging Farmland Scene 2 in Chongming District.

This paper will delve into the precision segmentation of both the harvested and
unharvested regions within farmland images influenced by lodging. The primary objective
is to extract the harvester’s route while concurrently achieving real-time height detection
of unharvested crops positioned in front of the harvester. This paper proposes a harvesting
operation image segmentation method based on SLIC superpixel segmentation and the
AdaBoost ensemble learning algorithm. This segmentation enables two essential tasks.
Firstly, the RANSAC algorithm is employed to extract the harvester’s operational route
through straight-line fitting from the segmented image. Secondly, the method utilizes a 3D
point cloud generated by binocular vision, combined with IMU information for attitude
correction, to estimate the height of the harvested crop in front of the harvester.
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Initially, we employed the Simple Linear Iterative Clustering (SLIC) [7] image seg-
mentation algorithm to preprocess the collected images, generating a substantial number
of superpixel samples for machine learning. After performing multi-dimensional feature
extraction and manual labeling of these superpixels, we utilized the AdaBoost ensemble
learning algorithm [8] for model training. During the harvester’s operation, we execute su-
perpixel segmentation, feature extraction, and predictive classification on real-time collected
images. Subsequently, we extract the harvester’s operating route through straight-line
fitting using the random sampling consensus (RANSAC) algorithm [9]. Simultaneously,
we transform the disparity map into a 3D point cloud and apply attitude correction based
on the IMU information. By leveraging the range of the unharvested area determined
through machine learning, we extract the crop height within a specific range of this area.
The algorithm’s flow is visually represented in Figure 2.
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This paper is structured as follows: Section 2 presents related work. Section 3 intro-
duces the materials and methods. Section 3.1 introduces the experimental platform and
equipment installation. Sections 3.2–3.4 introduce sample acquisition based on superpixel
segmentation, feature selection, and identification of crops to be harvested based on the
AdaBoost algorithm. Section 3.5 presents a method for route detection of harvesters based
on the RANSAC algorithm. Section 3.6 presents a method for crop height estimation based
on 3D point clouds. Section 4 presents the results. Sections 4.1 and 4.2 present validation of
the quality of the AdaBoost model and experiment results for route extraction and crop
height estimation. Section 5 presents a discussion. Section 6 presents the conclusions.

2. Related Work

Scholars have used various methods to study the regional perception of crops to
be harvested. According to the sensors used, it can be roughly divided into two types:
image processing methods based on monocular cameras [10] and 3D information processing
methods based on laser sensors and binocular cameras [11]. Detection based on a monocular
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camera is the extraction of specific edge features based on the color and texture of two-
dimensional images, including the extraction method based on wavelet filter and fuzzy
pattern recognition, the method based on inverse perspective mapping, the region growth
algorithm based on adaptive threshold, and the image segmentation algorithm based on
maximum interclass variance [12]. Methods based on binocular cameras are mostly based
on depth maps after binocular stereo matching. Luo et al. [13], for example, proposed a
fast and robust detection method for harvesting edges of multiple crops based on stereo
vision, realizing simultaneous detection of unharvested crop edges and crop end edges.
However, the detection based on the laser sensor is based on the extraction of specific
boundary points based on the three-dimensional location information of the scene. For
example, Chateau et al. [14] used filters to limit the interference caused by dust on the laser
sensor to achieve crop edge detection.

However, the aforementioned detections of crops intended for harvesting have all been
conducted in ideal farmland conditions, neglecting a significant phenomenon—lodging.
During the rice harvest period, crop lodging is a prevalent occurrence, primarily caused
by agricultural factors such as cultivation methods and external forces like wind and rain.
The degree of lodging can vary considerably. In the previously mentioned route detection
algorithm for the harvester, the traditional image processing method typically operates at a
speed between 100 ms and 500 ms due to its low computational requirements, allowing
for real-time detection during the harvesting process. However, since this algorithm is
primarily based on the color contrast between harvested and unharvested plots, variations
in light intensities and directions during farmland operations can significantly influence
the image’s color. Moreover, when there are lodging crops in the field, the color difference
between the lodging area and the harvested area is not substantial. Consequently, the
robustness of such algorithms is limited, and no algorithmic improvements or experiments
have been conducted to address large-scale crop lodging. The three-dimensional informa-
tion processing algorithms based on binocular cameras or lidars solely rely on the height
difference in the farmland scene for detection. Nevertheless, when a significant area of
crops is severely lodged, the height of the crops in this area becomes similar to that of the
harvested stubble. Consequently, the lodged unharvested crops will inevitably be mistaken
for the harvested area. As a result, such algorithms cannot be applied in lodging-affected
farmland scenarios at all.

Additionally, the occurrence of crop lodging has given rise to another essential per-
ception requirement for the autonomous operation of the harvester, which involves the
height detection of crops to be harvested in front of the machine. Crop lodging detection
plays a crucial role in providing reference information for adjusting header height and
harvesting direction [15]. During the operation of lodging farmland, ensuring that the
harvester’s header changes reasonably with crop height is vital to achieving a low breakage
rate, minimizing impurity content, and maintaining an appropriate stubble height during
rice harvesting. When harvesting normal crops, the position of the harvester’s header is
relatively high, but when faced with lodging crops, the header’s height should be appro-
priately reduced to minimize harvesting losses [16]. Currently, the adaptive control of
combined harvester header height has emerged as the main trend in its development [17,18].
According to relevant data, the average loss rate of mechanical harvesting caused by crop
lodging exceeds 5% [19]. Therefore, it is necessary to detect crop height in lodging areas.

At present, the detection of crop height is generally based on typical three-dimensional
sensors such as lidar to construct farmland maps, and according to the detection platform,
it is divided into two categories: unmanned aerial vehicle systems and agricultural vehicle
systems. UAVs fly smoothly and do not damage crops, so many scholars use UAVs to
carry sensors for ground data collection [20–23]. For example, Chu et al. [24] used a small
UAS platform equipped with consumer-grade RGB and near-infrared cameras to collect
low-altitude view images of cornfields and reconstruct the 3D structural information of
plants to calculate the height and growth of crops. Chang et al. [25] proposed a framework
for monitoring crop height using UAS data and estimated the crop growth curve of each
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sorghum variety. Liu et al. [26] used UAVs to collect visible light and thermal infrared
images and established a comprehensive rice lodging identification model based on particle
swarm optimization and the SVM algorithm. However, UAV systems are all used to
monitor crop growth information. The method is neither real-time nor connected with
ground agricultural machinery, so it cannot provide a real-time reference for ground
agricultural machinery operations. In their research on in-vehicle systems, Weiss and
Biber [27] used a MEMS-based 3D lidar sensor to discriminate between ground and plants.
Moreno et al. [28] installed a laser scanner on the front of the cab of the sprayer, creating a
rolling 3D terrain map as a representation of the environment. Masuda et al. [29] proposed
a method to detect the lodging degree of rice plants using a laser rangefinder and a camera.
It can be concluded that the method of the vehicle-mounted system is basically based on a
lidar or binocular camera to realize the height detection of crops, which can provide crop
object information for real-time spraying, harvesting, and other operations, and then realize
the dynamic adjustment of equipment such as headers.

Based on the above analysis, we choose to seek a better engineering application method
for the perception problem of harvesting operations based on binocular vision sensors.
On the one hand, with the improvement in the computing power of edge computing
devices, machine learning algorithms in the field of vision have spawned a large number
of real-time application scenarios [30]. According to the machine learning algorithm, the
lodging area and the harvested area of the farmland can be accurately distinguished based
on the comprehensiveness of multi-dimensional color and texture features. Moreover, due
to the existence of some features that are not sensitive to light brightness, compared with
traditional image processing methods, the performance of such algorithms in the actual
farmland operation environment is more stable. On the other hand, stereo matching can
obtain a 3D point cloud of the surrounding environment from binocular images, which also
provides rich information for crop height detection. In this way, with a single binocular
camera sensor, we successfully achieve the perception of both problems.

3. Materials and Methods
3.1. Experimental Platform and Equipment Installation

Due to the large amount of real-time environment perception data based on vision
and the high computing speed of the algorithm, NVIDIA’s Jetson TX2 series modules were
selected as the main controller of the system. The NVIDIA Jetson TX2 is a powerful edge
computing processor that is very suitable for artificial intelligence. It is equipped with a
dual-core 64-bit CPU and an NVIDIA Pascal GPU with 256 NVIDIA CUDA cores. This mod-
ule fully supports all functions that a discrete NVIDIA GPU can achieve. The CUDA frame-
work and many application programming interfaces based on it, such as the ZED 2 camera
used in this paper, is applied to the function interface in the Jetpack 4.5 software devel-
opment kit, which is suitable for fast computing, image processing, and multi-threaded
application scenarios in the field of robotics.

The experimental platform is a Kubota 4LZ-4J (PRO988Q-Q) full-feed crawler har-
vester, and the experimental sites are harvested farmland in Jiading District and Chongming
District, Shanghai. The ZED 2 binocular camera produced by Stereolabs is used as the
visual sensor; the side-by-side output resolution is 3080 × 1080, and the frame rate is
30 frames per second. The vehicle-mounted Jetson TX2 product of NVIDIA is also used
as the algorithm processor, and the camera is connected to the processor through USB
for image transmission. In addition to using some functions in the computer vision open
source library OpenCV for image processing, the ZED 2 camera software development
kit applied to Jetpack 4.5 is used for image acquisition, depth map output, and camera
pose detection.

The depth module of the ZED 2 camera has a measurement accuracy of 1% to 3 m and
5% to 15 m. In order to ensure the reliability of stereo camera ranging, we discussed the
range and resolution of stereo cameras more accurately according to the binocular ranging
formula and realized the derivation of the installation position of the vision sensor.
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For the perception task based on stereo vision, we can generally estimate the depth
range of the target object in this task and deduce the corresponding parallax value of the
stereo camera at this depth from Equation (1).{

d1(Zmeasured) =
[

b× fx
Zmeasured

]
d2(Zmeasured) = d1(Zmeasured) + 1

(1)

where Zmeasured represents the depth distance expected to be measured, in mm, d1(Zmeasured)
and d2(Zmeasured) represent the parallax that may correspond to the depth measurement.
Since it is an integral pixel resolution, it is necessary to round the calculated decimal,
so there are two parallax differences of 1 pixel, so the parallax resolution at this time is
0.5 pixels.

When the measurement distance is Zmeasured, the ranging resolution is approximately
calculated by Equation (2).

ε(Zmeasured) =
(

b× fx
d1(Zmeasured)

− b× fx
d2(Zmeasured)

)
/2

= b× fx
d1(Zmeasured)×d2(Zmeasured)×2

(2)

where ε(Zmeasured) represents the ranging resolution of the stereo camera when the mea-
surement depth is Zmeasured, in mm.

For the identification and height detection experiments of unharvested crops, in order to
ensure the accuracy of 5 cm crop height measurement, it is calculated that Zmeasured ≤ 3.50 m.
At the same time, the viewing angle of the camera installation position needs to avoid the
occlusion of the harvester header. The experimental platform and equipment installation
are shown in Figure 3. The installation height of the camera relative to the ground is 2.4 m,
protruding 1 m in front of the cab of the harvester; the vertical viewing angle parameter of the
camera is a maximum of 70◦; and the installation angle of the camera is calculated to be 18◦

tilted relative to the ground and viewed from above.
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3.2. Sample Acquisition Based on Superpixel Segmentation

The size and quality of datasets significantly impact the performance of machine
learning algorithms. However, in the agricultural field, research and applications are
relatively limited, leading to a scarcity of large-scale datasets, particularly in the context of
the harvesting farmland scenarios explored in this chapter. To address this data limitation,
a large number of samples are initially acquired through superpixel segmentation and
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manual annotation, effectively mitigating the dataset scarcity. Moreover, employing such
image processing granularity reduces dimensionality and enhances subsequent image
processing efficiency without compromising accuracy.

For the superpixel segmentation of farmland images, the SLIC algorithm is chosen
due to its superior overall performance in terms of algorithm speed and superpixel shape.
Before segmentation, histogram equalization is applied to the original farmland images
to minimize the adverse effects of lighting. The results of the superpixel segmentation
of farmland images are depicted in Figure 4. The image collected by the left camera is
1920 × 1080 pixels. Considering the running time of the machine learning algorithm, the
scale after downsampling (960 × 540 pixels) is selected as the appropriate scale for the
classification of farmland harvesting areas and cropped.
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The number of superpixels obtained in Figure 4c amounts to 259. It can be seen that the
size of each superpixel is relatively moderate, the pixel characteristics inside the superpixels
are similar, the obvious edges are all separated, and the boundary between the harvested
area and the unharvested area is also more accurate.

3.3. Feature Selection

Commonly used image features mainly include color features and texture features. In
this paper, the 6-dimensional color feature vector and the 10-dimensional texture feature
vector of superpixels are extracted, which constitute a total of 16-dimensional feature
vectors to characterize the characteristics of superpixels. The specific feature selection
method is as follows.

3.3.1. Color Feature Extraction

Choose to calculate the first-order color moment (mean) and second-order color mo-
ment (variance) of the HSV three-channel to represent the color characteristics of the image.
The HSV color space is more visually intuitive. Compared with the highly correlated RGB
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color space, the HSV color space is more convenient for color processing and identification.
For each channel, the color moment is calculated by Equation (3):

µi =
1
N

N
∑

j=1
pi,j

σi =

(
1
N

N
∑

j=1

(
pi,j − µi

)2
) 1

2
(3)

where µi represents the first-order color moment of superpixel i, σi represents the second-
order color moment of the superpixel i, N represents the number of pixels in the superpixel
i and pi,j represents the channel value of the jth pixel in the superpixel i.

The visualization effect of the color moment feature is shown in Figure 5.
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3.3.2. Texture Feature Extraction

Considering the texture characteristics of the harvested farmland images under in-
vestigation, it is hypothesized that intensity features and orientation features of textures
would be effective for the image detection process. As such, the mean gradient magnitude
and Histogram of Oriented Gradient (HOG) features of pixels within each superpixel are
computed as texture features [31].

The Sobel operator is employed for plane convolution with the image, serving the dual
purpose of noise reduction and gradient calculation. The gradient calculation formula of the
Sobel operator in both the horizontal and vertical directions is presented in Equation (4):

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

× I

Gy =

−1 −2 −1
0 0 0
+1 +2 +1

× I

(4)

where Gx represents the horizontal gradient of the image, Gy represents the vertical gradient
of the image, and I represents the grayscale image of the image.



Agriculture 2023, 13, 1700 9 of 18

Then, for each pixel p(x, y) in the image, the calculation formula of its gradient
magnitude and gradient direction is shown in Equation (5):G(x, y) =

√
Gx(x, y)2 + Gy(x, y)2

α(x, y) = tan−1
(

Gx(x,y)
Gy(x,y)

) (5)

where G(x, y) represents the gradient magnitude of p(x, y) and α(x, y) represents the
gradient direction of p(x, y).

For each superpixel, its gradient mean value can be directly calculated, as depicted
in Figure 6. For its HOG feature, the directional gradient histogram of 9 bins is used for
statistics; that is, 360◦ is divided into fan-shaped areas in 9 directions, and the gradient
magnitude of each pixel in the superpixel is used as the weight coefficient, and each pixel
is projected to the fan-shaped area to which its gradient direction belongs. Finally, a
1-dimensional gradient intensity feature vector and a 9-dimensional gradient direction
feature vector corresponding to the pixel are obtained.
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3.3.3. Consolidation of Eigenvectors

According to the above calculation process, the 6-dimensional color feature vector and
the 10-dimensional texture feature vector of the superpixel are finally extracted; that is, a
total of 16-dimensional feature vectors are formed to represent the characteristics of the
superpixel, and subsequent machine learning training and prediction are performed.

3.4. Identification of Unharvested Crops Based on the AdaBoost Model
3.4.1. AdaBoost Model Training Sample Processing

AdaBoost is a representative boosting algorithm among integrated learning algorithms.
Its principle is to form a strong classifier by properly integrating multiple weak classifiers.
The reason for choosing this algorithm is that under the framework of Adaboost, various
regression classification models can be used to build a weak learner that is very flexible
and has high precision, and the training error decreases at an exponential rate.

The farmland rice harvest images collected in the Chongming and Jiading districts
of Shanghai were screened and preprocessed by superpixel segmentation, and superpixel
training samples were obtained from 24 images. Manually label the training samples: set the
harvested superpixels as negative samples, marked as−1, and the unharvested superpixels
as positive samples, marked as +1. Finally, a training sample set (xi, yi), i = 1, 2 . . . 6383
containing 2862 positive samples and 3521 negative samples is obtained, where xi is the
16-dimensional feature vector extracted from the ith superpixel sample, and yi is the
pre-labeled label of this sample, yi = {−1,+1}.

3.4.2. AdaBoost Model Training for Unharvested Crop Recognition

AdaBoost forms a strong classifier by appropriately integrating multiple weak classi-
fiers, which are widely used in the image field.

First, a weak classifier, G1(x), is trained with the initial weights, and the weights of
the training samples are updated according to the performance of the learning error rate
of G1(x). By reducing the weight of the correctly classified samples and increasing the
weight of the wrongly classified samples, the next weak classifier, G2(x), is guided to make
a correct judgment on the wrongly classified samples. A weak classifier G2(x) is then
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trained based on the weighted training set. . . This is repeated until the number of weak
learners reaches a pre-specified number K, and finally, these weak classifiers are integrated
according to Equation (6) to obtain the final strong classifier G(x).

G(X) = sign

(
K

∑
k=1

αkGk(x)

)
(6)

where αk represents the weight coefficient of the kth weak classifier, which is related to the
classification error rate of the weak classifier Gk(x) on the training samples.

Use the labeled training sample set to train the AdaBoost model, set the maximum
number of iterations of the weak classifier of the AdaBoost model to 15, the weak classifier
adopts the decision tree model and set the maximum possible depth of the decision tree to 15.

In addition, for model selection, cross-validation is a means to avoid overfitting and
a method to solve overfitting. We can choose the model with the best generalization
performance among multiple candidate models [32–34]. Due to the small sample size
obtained, the 10-fold cross-validation method was used to increase the generalization
ability of the model. The training sample set is randomly divided into 10 parts: 9 samples
are used as the training sample set, and 1 sample is used as the test sample set. The
AdaBoost model training based on different training and test sets was repeated 10 times,
and the model with the highest accuracy was selected as the final model to participate in
the subsequent prediction process.

3.4.3. Verification of AdaBoost Model

The prediction effect of the AdaBoost model is shown in Figure 7, where the green
part is the superpixel predicted by the model as the unharvested area. It can be seen that
the classification results of this model for farmland harvest images are basically accurate.
Although there are a few superpixels that have not been correctly classified, they will not
have an excessive impact on the route extraction process.
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3.5. Route Detection of Harvester Based on RANSAC Algorithm

The RANSAC algorithm is used to perform straight-line fitting on the classified images
to detect the route of the harvester. The RANSAC algorithm performs well for straight-line
fitting of samples containing noisy points.

For the harvested farmland images classified in the previous section, the route detec-
tion process based on the RANSAC method is as follows:

1. Perform Otsu binarization, small connected domain removal, and Canny edge detec-
tion operations on the farmland classification results;

2. Perform RANSAC straight line fitting on the obtained edge curve to obtain the route
of the harvester.

The route detection process based on the RANSAC method is shown in Figure 8.
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3.6. Crop Height Estimation Based on 3D Point Cloud

An IMU is generally composed of three single-axis accelerometers, gyroscopes, and
magnetometers, which can respectively obtain the three-axis acceleration, three-axis attitude
angle (or angular rate), and magnetic field information of the object. The magnetic field
information can be corrected at the three-axis angle. The essence of attitude correction
based on the IMU is to transform the space coordinate system.

Due to the muddy land in the rice harvesting farmland, the harvester will inevitably
bump during the harvesting process. The ground directly under the head of the harvester is
regarded as the origin of the ground coordinate system. At this time, there will be a dynamic
angular deviation between the camera coordinate system and the ground coordinate system.
We believe that crops are stationary relative to the ground coordinate system, and the 3D
point cloud constructed using the camera depth map is based on the camera coordinate
system. Therefore, to accurately describe the actual height of the crop with 3D point cloud
data, use the inertial sensor (Inertial Measurement Unit, IMU) module that comes with
the camera, which obtains the attitude of the camera in real time and converts the camera
coordinate system to the ground coordinate system.

Using the stereo camera as a visual sensor, while detecting the unharvested area of the
farmland, the point cloud of the area of interest is constructed according to the depth map
obtained in real time, and the height of the crops ahead can be estimated.

3.6.1. Construction of Farmland 3D Point Cloud Based on IMU Correction

According to the depth map obtained by stereo matching, the three-dimensional point
cloud of the image is constructed, and the calculation formula is shown in Equation (7),
as follows: 

XC = (u−cx)
fx
× ZC

YC =
(v−cy)

fy
× ZC

ZC = fx×bl
d

(7)

where cx, cy, fx, fy and bl are both obtained by camera calibration, this paper adopts the
calibration method in the literature [35].

The ground directly below the front of the harvester is regarded as the origin of
the ground coordinate system, and there will be a dynamic angular deviation between
the camera coordinate system and the ground coordinate system during harvesting. To
accurately describe the actual height of crops with 3D point cloud data, the Inertial Mea-
surement Unit (IMU) that comes with the ZED 2 camera is used to obtain the attitude of
the camera in real time to convert the camera coordinate system to the ground coordinate
system. The schematic diagrams of the two coordinate systems are shown in Figure 9.
The OC − XCYCZC coordinate system represents the camera coordinate system, and the
OG − XGYGZG coordinate system represents the ground coordinate system. The relation-
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ship between the camera coordinate system and the ground coordinate system is shown in
Equation (8). 

XC
YC
ZC
1

 =

[
R t
0T 1

]
XG
YG
ZG
1

 (8)

where R represents the rotation matrix, which is calculated by the built-in IMU module of the
camera, and t represents the translation matrix, which is obtained by manual measurement.
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Figure 10 shows the 3D point cloud of the farmland image obtained after IMU
attitude adjustment.
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Figure 10. (a) The original image of the harvesting farmland; (b) 3D point cloud of the
harvesting farmland.

3.6.2. Point Cloud Extraction of Interest Region

According to the actual application scenario, the following constraints are put forward
for the region of interest:

1. The detection of crop height only needs to pay attention to the crop area that is about
to be harvested in the farmland, so the point cloud extraction is restricted to the
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unharvested area identified above, and the right area of the route in the image is
directly used for the convenience of processing;

2. The experimental platform is a Kubota 4LZ-4J (PRO988Q-Q) full-feed crawler har-
vester. According to the working width of the harvester, the width of the point cloud
extraction is limited to the area to be harvested is about 2 m;

3. Since the ranging accuracy of the stereo camera is directly related to the measurement
distance, it is meaningless for the stereo ranging of too-far targets. In order to ensure
the accuracy of crop height measurement, and according to the operating speed of the
harvester of about 1.2 m/s, it is determined to measure the 1.5 m-long area in front of
the harvester in each frame of the image;

4. In the ground coordinate system, the crop must be higher than the ground. Generally,
the height of rice grown in the mature stage is about 100–110 cm, and there may be
lodging. Therefore, point clouds with a height of 0–150 cm are considered as crops, so
as to quickly filter some noise interference.

The constraints for specific regions of interest are summarized in Equation (9).
p ∈ Ipos

xG > max
(
xG_pos

)
− 2000

2000 < zG < 3500
0 < yG < 1500

(9)

where Ipos represents the set of all the pixels in the image that the model predicts to be 1,
that is, the image of the unharvested area, (xG, yG, zG) represents the three-dimensional
coordinates of the pixel in the ground coordinate system after coordinate transformation,
in mm, xG_pos represents the coordinate value in the x-direction of the pixel predicted by
the model to be 1 after coordinate transformation, in mm.

The point cloud extraction effect of the region of interest is shown in Figure 11a. After
the point cloud extraction of the area of interest is completed, a square grid with a side
length of 10 cm is established for it on the ground coordinate system, and the average
height of the point cloud in each grid is calculated to realize the estimation of the crop
height in front of the harvester operation. The height estimation point cloud is shown in
Figure 11b.
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4. Results
4.1. Validation of the Quality of the AdaBoost Model

To verify the quality of the AdaBoost model, the obtained model is evaluated by the
F1 score (F1-Score), which is an indicator used in statistics to measure the accuracy of the
binary classification model. It can be seen as a weighted average of model precision and
recall. The higher the F1 score, the better the prediction performance of the model. The
formula for calculating the F1 score is shown in Equation (10), as follows:

F1 = 2
precision× recall
precision + recall

(10)
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where precison represents model accuracy, the ratio of positive samples predicted to
be positive to all samples predicted to be positive. Recall represents model recall, the
proportion of positive samples predicted to be positive to all samples that are actually
positive. Their calculation formulas are shown in Equation (11), as follows:{

precision = TP
TP+FP

recall = TP
TP+FN

(11)

where TP represents true positives, positive samples whose predictions are correct. TN rep-
resents true negatives, negative samples whose predictions are correct. FP represents false
positives—positive samples whose predictions are wrong. FN represents false negatives—
negative samples whose predictions are wrong.

Generally speaking, precision and recall are negatively correlated. The F1-Score is
introduced here as a comprehensive indicator to balance the impact of the accuracy rate
and the recall rate and evaluate a classifier more comprehensively. F1 is the harmonic mean
of precision and recall. The larger the F1 score, the higher the quality of the model.

In addition to the photos collected from farmland in Chongming and Jiading districts,
photos taken on farmland in Yanzhou, Shandong, were added to test the robustness of
the model. A total of 50 farmland images during the harvest period were selected, and a
total of 14,410 superpixels were obtained. After manual annotation, there are 6224 positive
samples and 8186 negative samples, and the AdaBoost model classification results of all
superpixels are counted. The data are shown in Table 1.

Table 1. Statistics and evaluation of model classification results.

TP TN FP FN Precision (%) Recall (%) F1 Score (%)

5701 7387 799 523 87.7 91.6 89.6

It can be seen that the effect of this model is good. Although some scattered super-
pixels are misclassified, experiments show that this model can already meet the needs of
subsequent steps and can achieve the research goals of unharvested crop identification and
height estimation.

4.2. Experiment Results of Route Extraction and Crop Height Estimation

A Kubota harvester equipped with a stereo system was used to carry out field experi-
ments. The harvester was harvesting at a speed of about 1.2 m/s. The ZED 2 camera captured
images in real time and processed them by the Jetson TX2. The farmland images in the two
districts were tested, and the original farmland images, superpixel classification results, route
extraction effects, and crop height estimation point clouds are shown in Figure 12. The average
angle error of the algorithm-detected route and the manually marked route is used as the
evaluation index for the identification of unharvested crops, and the average error of the
height of the crop at at least four sampling points measured randomly in the region of interest
and the height of the corresponding position in the point cloud is used as the evaluation index
of the crop height measurement. The experimental results show that the average angle error
of the route is about 1.97◦ and the average error of the height is about 0.054 m. It is believed
that this method can provide a reliable reference for the harvesting operation of the harvester.
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Figure 12. (a) The original image of the harvesting farmland; (b) Superpixel binary classification
results diagram; (c) Route extraction graph; (d) Crop height point cloud map.

In addition, the average computation time of each part of the algorithm is shown in
Table 2, where the larger part of the crop height estimation step is processed in parallel
with the other two steps, so the calculation of one frame of a picture can be completed in
about 437 ms, which meets the real-time requirements.

Table 2. The running schedule of each step of the algorithm.

Processing Steps Time Required (ms)

Image Segmentation Based on AdaBoost 209
Route Detection Based on RANSAC Algorithm 104

Crop Height Estimation Based on 3D Point Cloud 256
Total Time Required 437

5. Discussion

In this paper, we address the perception problem of harvesters operating in fields with
lodging, which involves two primary sub-problems: route detection during the harvesting
process and crop height estimation in the harvest area.

To achieve more accurate differentiation between the harvested and unharvested
areas in farmland with fallen crops, we proposed a classification method based on the
AdaBoost model. The SLIC superpixel segmentation preprocessing satisfied the machine
learning sample requirements and reduced computational costs. The 16-dimensional
feature vector, comprising a 6-dimensional color feature and a 10-dimensional texture
feature, was thoughtfully designed to fully utilize image information. This design enhanced
the model’s robustness compared to single-feature-based training.

For real-time crop height estimation in the harvest area, we converted the depth
map obtained from the binocular camera into a 3D point cloud and use IMU data for
position and pose correction, ensuring the accuracy of point cloud data during dynamic
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operations. Additionally, we constrained the range of unharvested regions based on
practical application data to enhance calculation speed and facilitate subsequent processing.
The mean height of the regions of interest was then calculated using a grid-based approach.

In the experimental phase, we tested the algorithm in Jiading district and Chongming
area farmlands. The results demonstrate that training the AdaBoost classification model
accurately segments the farmland in both regions, distinguishing between harvested and
unharvested areas. The average error for detecting harvest routes is approximately 1.97◦, and
the average error for detecting crop height is about 0.054 m, effectively meeting the perception
requirements for harvester operations. The total algorithm running time is approximately
437 ms, which fulfills real-time requirements at a harvester speed of about 1.2 m/s.

Future research efforts will focus on integrating existing perception methods with agri-
cultural machinery control processes to enhance the unmanned operation capabilities of rice
and wheat harvesters. Additionally, we plan to expand the dataset to optimize the detection
model, collecting more fallen farmland data to further improve detection accuracy.

6. Conclusions

This paper addresses the challenges posed by reduced reliability in existing harvester
route detection methods and a lack of perception regarding the degree of crop lodging in
the field scene. The study focuses on route detection and crop height estimation methods
for lodging-affected farmland harvesters during harvesting operations.

The novelty of this approach lies in utilizing image segmentation based on AdaBoost
ensemble learning, which proves effective for accurately distinguishing lodging areas and
unharvested areas where edge features may not be distinct. Subsequently, two-dimensional
images are employed for route detection, while three-dimensional point clouds are used for crop
height estimation. The method fully leverages sensor information, enabling the simultaneous
accomplishment of two perception tasks based on the same image segmentation results.

Experimental data verifies the effectiveness of the proposed method, with the follow-
ing key findings:

1. The image segmentation method based on the AdaBoost model enables precise divi-
sion of the harvested area and the unharvested area in lodging-affected farmland.

2. Utilizing the RANSAC straight line fitting algorithm to obtain the route yields superior
results, with an average angle error of approximately 1.97◦.

3. By using the IMU for pose correction and calculating the average height of the area of
interest through gridding, the detected crop height in the unharvested area exhibits
an average error of about 0.054 m, meeting the required accuracy levels.

4. The total running time of the algorithm is approximately 437 ms, effectively meeting the
perception requirements during the harvester’s operation at a speed of about 1.2 m/s.
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